FRED: A Frontrunning Resistant Darkpool

Jacob Chudnovsky

jchudnov @stanford.edu

Henry Friedlander
hnf035 @stanford.edu

Abstract—Darkpools are exchanges, in which prior to
matching, a counterparty does not need to publicly broad-
cast their trading intentions. This is useful for traders
wishing to dump a large amount of an asset quickly.
Centralized darkpools have been demonstrated to not be
equitable for the trades since the darkpool operators place
priority on their own trades rather than external trades.
In this paper, we introduce the FRED system architecture
to ensure that the darkpool mechanism treats trades
according to equitable matching rules. We achieve this by
publishing a BFT public ledger of hashed transactions.

Index Terms—darkpool, HFT, HotStuff, BFT,
Blockchains

I. INTRODUCTION

In today’s electronic-dominant trading world, at any
given point, about 12-15% of all US trades [1] are done
on a purposefully-opaque Dark Pool. These darkpools
match buy and sell orders anonymously so that traders
can prevent their orders from being known before exe-
cution, and hence protect the spread of their executions,
especially for large block orders [2].

While a darkpool’s anonymity solves these problems,
they still suffer from one main flaw — namely, that
they are operated by a single entity with complete
anonymity and loose regulatory oversight [2]. This leads
to the problem of today’s darkpools: frontrunning by the
darkpools themselves. Since the inner workings and state
of a dark pool are totally opaque, there is no mecha-
nism to prevent a darkpool operator from frontrunning
orders. Any naive solution that attempts to resolve the
frontrunning problem would inevitably release data about
the orders in the darkpool, which would in turn, negate
the very purpose of the darkpool (namely, by putting
information out in the clear, it opens the way for High
Frequency Trading (HFT) firms to frontrun the large
block orders.)

In this paper, we introduce a novel approach to this
problem. Chiefly, a distributed mechanism by which
we can keep a centralized darkpool accountable (and
thus honest). To this end, we construct a distributed
ledger that every participating node in our system needs
to curate according to some Byzantine fault tolerance
(BFT) protocol. There are many algorithms proposed to
solve this problem, including pBFT [4], Honey Badger
BFT [10], Streamlet [5], among others. However, these
consensus protocols all do not satisfy the reasonable

Ajay Vasisht

avasisht @stanford.edu

Federico Zalcberg
fedez@stanford.edu

assumption of partial synchrony and, perhaps even more
importantly, scale super linearly in the number of nodes
in the system. Since our system needs to be robust to
many nodes executing consensus to serve an arbitrary
number of trades, we need linear scaling in the number
of nodes. We leverage HotStuff [12], a leader-based
Byzantine fault-tolerant replication protocol for the par-
tially synchronous model, as an append-only blockchain
that stores hash commitments of orders in the darkpool,
which has the property of linear scaling in the number
of nodes.

In this paper, we provide implementation details for
a basic darkpool that can be either honest or dishonest
(toggle-able via API call) as well as a basic client that
is using the darkpools, which executes the HotStuff
consensus protocol. We claim that the proposed solution
allows users to monitor and hold a centralized darkpool
accountable in a decentralized byzantine fault tolerant
manner. It prevents a darkpool from doing internal,
opaque frontrunning without leaking any information
about orders in the darkpool. As well it prevents any
client nodes from adverserially manipulating the ledger
history. The implementation for FReD can be found at
https://github.com/avasisht23/cs244b_{p.

II. RELATED WORK

There has been a thread of literature analyzing from
the perspective of market design and how incentives
could give rie to front running. The seminal paper [3] in
this field which demonstrated the incentives that drove
the industry to compete on speeds of microseconds. They
argue that markets could be ordered in batches to combat
front running. Follow up work [9] has documented
the role and negative externalities that the increasing
infiltration of High Frequency Trading and front running
has had on markets.

In the cryptocurrencies markets, there recently has
been a lot of interest in construction of distributed
exchanges, which has the potential to address some
of these frontrunning problems. Ox [11] and Loopring
[7] provide interfaces for atomic asset swaps between
untrusted parties. Also, decentralized finance has made
used of automated market makers to enable uses to
bootstrap liquidity from liquidity pool ratios. However,
both of these approaches are not intrinsically front-

running resistant. To combat front-running, Clockwork
employs timelock puzzles to allow exchanges to commit
to processing an order before the trader is able to see
other orders.

In many of these systems, there is a mempool where
traders submit their trades to be picked up by miners.
However, for many of these trades, traders are able to
ping the darkpool and potentially go to another exchange
before the market is able to globally adjust its prices.
In the context, of decentralized finance, the negative
externalities come from a trading strategy called Max-
imum Extractable Value (MEV) where traders are able
to deterministically front-run trades by bribing miners
to order their trades in an advantageous manner. There
are services like flashbots [6], which obfuscates access
to the pending transactions mitigating the effects of
MEV but also front-running. In principle, this paper’s
project is similar to their approach though the domain
and techniques applied are quite different.

III. PROBLEM

At first glance, this appears to be a catch-22. That is,
having a totally opaque darkpool to prevent frontrunning
on the open market allows for the darkpool operator
to itself frontrun without anyone else knowing. Any
information that is revealed to prevent this darkpool from
doing this will in turn open the door for the initial
malicious HFT firms to frontrun.

To better see this, we consider an opaque Darkpool
that makes buy and sell limit orders from customers.
At any given time, only the darkpool knows what bid
and are in the pool waiting to be matched (denoted by
By, Bs, ...) and what the asks are (denoted by Ay,As,...).
For this example, we assume we only provide coverage
over one asset (AAPL).

1) Customer Alice submits a limit bid order By at
price $100 for asset AAPL to the darkpool

2) Customer Bob submits a limit ask order A, at price
$99.5 for asset APPL to the darkpool

In theory, the fair thing for the darkpool to do would
be to match these two orders and for Alice and Bob to
meet in the middle (since the bid is higher than the ask).
However, what the darkpool could do is the following:

1) Customer Alice submits a limit bid order B; at
price $100 for asset AAPL to the darkpool

2) Customer Bob submits a limit ask order A; at price
$99.5 for asset AAPL to the darkpool

3) The darkpool gets one of its traders to submit a
limit ask order As at price $100 for asset AAPL

4) The darkpool gets one of its traders to submit a
limit bid order By at price $99.5 for asset AAPL

5) Bj is matched with A, at strike price $100

6) A; is matched with By at strike price $99.5

Note that here, although Alice and Bob are contently
matched and both are within their limits, they got
suboptimal pricing and the darkpool/trader gains 0.05 in
arbitrage. Since this is all opaque, there is no way for
Alice and Bob to know that A; and B; should’ve been
matched first before A, and By were created. There is
also no way of knowing that this arbitrage took place
unfairly.

Another example of wrongdoing by the darkpool could
be:

1) Customer Alice submits a limit bid order B; at
price $100 for asset AAPL to the darkpool

2) Customer Bob submits a limit ask order A; at price
$100 for asset AAPL to the darkpool

3) Customer Charlie submits limit ask order As at
price $100 for asset AAPL to the darkpool

4) Bj is matched with A, at strike price $100

Note that the darkpook didn’t do any arbitrage or create
any new orders, but what did happen is that it didn’t
match Bob’s order with Alice’s although Bob’s came in
first. The reason for this might be that Charlie is a bigger
client or Bob pays more commissions, etc. This is unfair
behavior that can not be proved by any actor other than
the darkpool since no one has enough information about
others, only about their own orders.

IV. PROPOSED SOLUTION

These are precisely the problems that we seek out to
solve. Namely, a mechanism by which all orders in the
darkpool are kept a secret from outside HFT firms, but
that is also protected against wrongdoing on the darkpool
operator’s behalf.

One solution might seek to have some kind of gossip
mechanism in which Alice and Bob tell each other what
order they put in and what time they submitted each
other. However, this would negate the entire purpose of
the darkpool since Alice and Bob would have to reveal
details about orders prior to executing (exposes them to
being front run by High Frequency Trading Algorithms).
We somehow need a trusted, non-centralized mechanism
in which Alice and Bob could prove their order timing
safely without revealing anything about them.

A. Overview

To do this, we introduce a distributed additional
component that will act as a source of truth in
any debates. Specifically, we introduce a Byzantine
Fault Tolerant, Append-Only ledger (in our case, the
blockchain maintained by the Hotstuff protocol) that
will contain the hash commitments of orders submitted
to the darkpool. Note that we need this append-only
ledger to not leak any data about any unexecuted orders

Dark Pool

Client 0

After Step 1 (Alice)

Bid Memory: [Bid_100]

1. Submit(Bid_100)

After Step 2
Bid Memory: [Bid_100]
Ask Memory: [Ask_99.5]

Client 1
(Bob)

2. Submit(Ask_99.5)

After Step 3
Bid Memory: []
Ask Memory: [Ask_99.5]
AWS DynamoDB:
[(Bid_100, Ask_100)]

After Step 7/8
Bid Memory: []
Ask Memory: []

AWS DynamoDB:
[(Bid_100, Ask_100),
(Bid_99.5, Ask_99.5)]

Client 2

3. Submit(Ask_100)

4. Submit(Bid_99.5) Agent)

(Dark Pool

Hotstuff Main (id:0) Final Ledger

Block Storage Bid_100_Hash

1. Append(Bid_100_Hash)

l
Consensus Ask_99.5_Hash

!
Event Queue Ask_100_Hash

i
REST/ RPC Handler Bid_99.5_Hash

Hotstuff Replica (id:1), Final Ledger

Block Storage Bid_100_Hash
!

Consensus Ask_99.5_Hash

!
Event Queue Ask_100_Hash

l
REST/ RPC Handler Bid_99.5_Hash

Hotstuff Replica (id:n) Final Ledger

Block Storage Bid_100_Hash

Consensus

1
3. Append(Ask_100_Hash) Ask_99.5_Hash

4. Append(Bid_99.5_Hash)

U
Event Queue Ask_100_Hash

REST/ RPC Handler

1
Bid_99.5_Hash

Fig. 1. System diagram for the darkpool solution setup.

(as to prevent front running).

Our new mechanism will consist of hashing an order
before submitting it to a darkpool (using a Collision
Resistant Hash Function), and appending this hash value
to the append-only ledger, prior to sending the order to
the darkpool. Our darkpool is still centralized, but when
a customer sends an order to the darkpool, they also
show that the hash of their order is in the ledger (which
darkpool can calculate itself and verify). Then when the
darkpool does a match, anyone who feels like they had a
better match can verify and prove this. We have outlined
an example system execution diagram in Figure 1 above.
To better understand this, let’s revisit our initial example:

1) Customer Alice creates a limit bid order B; at
price $100 for asset AAPL to the darkpool. She
computes the hash of B as hy; and appends this to
the distributed ledger. She waits for confirmations
(for liveness), and then submits B; to the darkpool.
The darkpool, if it wants, can verify that this
is on the ledger by computing the hash itself
and checking the ledger, although this isn’t really
necessary.

2) Customer Bob creates a limit ask order A; at
price $99.5 for asset AAPL to the darkpool. He
computes the hash of A; as h,; and appends this
to the distributed ledger. He waits for confirmations
(for liveness), and then submits A; to the darkpool.

3) The darkpool gets one of its traders to submit a

limit ask order A, at price $100 for asset AAPL.
Even if the trader computes the hash of Ay as hyo
and appends it to the distributed ledger, it will still
occur AFTER hyq and h,; on the chain.

4) The darkpool gets one of its traders to submit a
limit bid order Bs at price $99.5 for asset AAPL.
Again, even if the trader computes the hash of Bs
as hpo and appends it to the distributed ledger, it
will still occur AFTER hy1 and chg.

5) Bj is matched with A, at strike price $100

6) A; is matched with By at strike price $99.5

Note that the orders that have been matched are pub-
licly revealed after they are matched (part of settlement
process in traditional finance). However, this time we
can prove any wrongdoing. For example, when Bob sees
that A5 was matched with B; instead of his A;, he can
compute the hash of Ay as h,s and look for it on the
ledger. When he sees that his h,; occurs BEFORE £
on the ledger, he can very clearly prove that the darkpool
was unfair. Likewise, Alice can do a similar thing with
Bs being matched with A; instead of her Bj.

B. Dark Pool Algorithm and Client Bid-Ask Submissions
The Centralized darkpool server has the following
endpoints:
1) GET
a) /getState - this returns a JSON dump of

the entire state of the darkpool which includes
pending BID / ASK orders

b) /getNewClientId - this returns the lat-
est id (which is just a simple incremented
counter) to be used as the newest client
id. For any client to interact with the Dark
Pool, they must receive an unused nonce
from the Darkpool using /getClientId.
Serving as their auth token, they append this
client id when submitting an order through
the /sendOrder endpoint.

2) POST

a) /setFairness - this sets the fairness of
the darkpool. This coefficient is solely for in-
ternal testing purposes to demonstrate how a
darkpool can be on a spectrum of “fairness”.
In production this would be permissioned
only for admin.

/sendOrder - this sends a new pending
order with asset, limit price, side,
and client id details to the darkpool to
be processed. It will do some basic input val-
idation, then check if the order can be exactly
matched to any other order on the other side
of the order book based on limit prices. If so,
the order is matched and stored as a bid-ask
tuple in a public AWS DynamoDB table for
Clients to reference in the future to validate if
the darkpool had frontrunned this order. On
the client side, this is called after sending the
identical hashed order to the hotstuff ledger

b)

The Centralized Dark Pool is a single server imple-
mented in Node.js and Express. The Clients we used
to test written in JavaScript, and make calls to the
Centralized Dark Pool and the Replicated State Machines
that forms consensus through Hotstuff.

C. Client Consensus Mechanism

The Client Consensus Mechanism can be used to
verify that the darkpool operators aren’t frontrunning
orders. The client side algorithm is as follows:

Algorithm 1 Client procedure

procedure (asset, limit Price, side)
clientID := getClientld()
hashedOrder := sha256(asset, limitPrice, side)] + clientID
index := append(hashedOrder)
send identical hashedOrder to darkpool
dynDBTable = DY NAMO_DB()
while true do
if dynDBTable[hashedOrder] exists then
filledIndex := getIndex(hashedOrder+dynDBTable[key])
if index < filledIndex then
FRONTRUNNING OCCURRED
Exit
sleep()

When a client submits an order to the Centralized Dark
Pool through /sendOrder, they will also submit the
SHA-256 hash of that order to the Distributed System of
State Machines making up the Hotstuff Protocol through
the append REST endpoint on all replicas. Through
the Hotstuff Consensus, the order hash will be replicated
onto multiple state machines that make the protocol, and
avoiding Byzantine Fault Tolerance as well. New orders
submitted to this distributed system will be appended to
the ledger (chain of blocks) of order hashes. That way,
if a client sees a new match come out of the darkpool
where they for sure believe they should have been
matched given they submitted their order side before the
announced match, they can cross reference their order
hash and the matched order hash to see which one came
first, by calling get Index on the Hotstuff protocol. If
the index of their order hash indeed came before the
matched order hash on the same side of the order book,
then it’s clear the darkpool had frontrunned the order.

It should be noted that the darkpool is also responsible
for verifying that there is no bad client actors - that is,
clients who submit to the darkpool but do not append
to the distributed ledger through a getIndex call to
the replicated state machines. In this event, the client to
matched to the bad actor client could prove frontrunning
even in the case that the darkpool acted totally fairly.
Thus, a darkpool should probably have a way to verify
that the orders they are processing have confirmed entries
in the distributed ledger. Although this isn’t really needed
for our mechanism, it protects the darkpool against false
fraud accusations.

V. BYZANTINE FAULT TOLERANT LEDGER

The Replicated State Machines are each servers writ-
ten in C++, and each contain a chained ledger of blocks
representing data around submitted proposals that have
undergone HotStuff Consensus.

A. Data Structures Within HotStuff

HotStuff [12] has a couple concepts central to its
implementation. Many are standard in the literature on
Byzantine fault tolerance.

Quorum Certificates. A Quorum Certificate over
a tuple (type, viewNumber, node) aggregates
signatures for the (n — f) replicas.

Messages. A message m controls four state vari-
ables. The first, m.type € { NEW-VIEW, PREPARE,
PRE-COMMIT, COMMIT, DECIDE}, keeps track of the
current phase the message is referring to. The second,
m.node, contains a proposed node, which is the leaf
node of a proposed branch. The third, m.justify, is used
by the leader to carry the QC for different phases, and
replicas use the variable to carry the highest prepareQC.
And the replicas hold the m.partialSig over the previ-
ous variables.

Tree and branches. Each node hold a history of
the commands. During the protocol, a replica delivers
a message only after the branch led by the node is
in its local tree. These replicas recover from falling
behind through acquiring information from nodes who
are farther ahead.

Concretely, each node keeps track of the following
state variables

o V[]: mapping from a node to its votes.

o vheight: height of the last voted node.

o biock: last executed node.

e (Chign: the highest known QC kept by a Pacemaker
e bieay: leaf node kept by a Pacemaker

B. Algorithmic Overview

Since the service of an exchange requires the in-
frastructure to handle many traders and many trades,
our approach to solving the problem of constructing a
Byzantine fault tolerance needs to scale up to many
states. We chose to integrate and implement the HotStuff
BFT protocol. In this section, we will go over the various
steps of this protocol. In the original paper, the authors
introduce three variants to the protocol. We will discuss
the Chained HotStuff implementation.

There are 5 steps to the protocol.

The first is the prepare phase. The protocol for a new
leader starts by collecting NEW-VIEW messages from the
(n — f) replicas. The NEW-VIEW message is sent by a
replica as it transitions into view N umber and carries the
highest prepare@C' that the replica received. The leader
processes these messages in order to select a branch that
has the highest preceding view in which a prepareQQC
was formed.

The leader processes these messages to find a branch
with the highest preceding view where a prepareQQC
was constructed. Then, the leader selects the prepare@QC
with the highest view to make the highQC' out of all the
NEW-VIEW messages. And since there aren’t any higher
quorum certificates among the (n — f) replicas and thus
no higher view could have reached a commit decision,
the branch with highQC.node must be safe. Now that
the leader knows that the tail of highQC'.node is safe, it
calls createLeaf to extend this safe tail with his new
proposal. Finally, when the nodes receive the PREPARE
message, a replica r uses the safeNode predicate to
determine whether or not to accept this message. If it
is accepted, the replica sends a PREPARE vote with a
partial signature to the leader.

This safeNode predicate examines the proposal
message m carrying a quorum certificate justification
m.justify and determines whether m.node is safe to
accept. There are two conditions for a node to determine
whether a predicate is true. Either the node personally

has enough information to verify if it is true, which con-
cretely means that the branch of m.node extends from
the currently locked node locked@C.node. Otherwise,
the node might have missed some information and would
be able to verify its safety through the liveness rule. That
is, the replica will accept m if m.justify has a higher
view than the current lockedQC.

The next phase of the protocol is the PRE-COMMIT
phase. The receipt of the (n— f) PREPARE votes for the
current proposal curProposal, it combines them into a
prepare@C'. The leader then broadcasts prepare@C' in
the PRE-COMMIT messages. A replica responds to the
leader with PRE-COMMIT messages. A replica responds
to the leader with a PRE-COMMIT vote after signing
the proposal. Again, in a similar step, the algorithm
executes the COMMIT phase. When the leader receives
(n — f) PRE-COMMIT votes, it combines them into
a precommitQC and broadcasts it in the COMMIT
messages. The important difference with this step is that
the replicas all become locked on their precommitQC
vote.

Finally, in the DECIDE phase, the leader receives
(n — f) COMMIT votes, and it combines them into a
commitQC then sending a DECIDE message to all
the other replicas. When a replica receives this mes-
sage, it considers and executes the proposal in the
commit@QC' and executes the commands in the commit-
ted branch. Closing this round, the replicas increment the
viewNumber and start the next view.

C. Chained HotStuff

An astute reader might notice that each of the three
phases of the HotStuff have similar operating procedures
aside from the naming details of the vote collection. The
HotStuff protocol leverages this phase similarity to allow
for the bundling of messages and pipelining of decisions.

In the Chained HotStuff, the votes over a PREPARE
phase are collected in a view by the leader into a
genericQC. However, rather than waiting for the entire
round to end to initiate the next proposal, the next
leader is able to bootstrap the PRE-COMMIT phase
using the next PREPARE phase. That is, the PREPARE
phase for the view v + 1 simultaneously serves as the
PRE-COMMIT for the view v. Similarly, the COMMIT
phase for the view v and the PRE-COMMIT phase for
the view v+ 1 become bundled with the PREPARE phase
for the view v.

Standard to the literature, the hotstuff protocol uses
a Pacemaker to guarantee progress after the GST. The
designed pacemaker achieves this through two avenues.
First, the pacemaker ensures that all honest replicas and
a unique leader are bought into a a common height for
a sufficiently long period of time. Then the Pacemaker
provides a way to choose a proposal that will be sup-

ported by the honest replicas. This feature is especially
important in the context of our darkpool implementation.

D. HotStuff API
1) GET
a) /index?order=${hashedOrder} -
this returns the index of the hashedOrder
in a particular node ledger in hotstuff. The
client floods all nodes with getlndex to get
the correct index.
2) POST
a) /append - this appends the hashedOrder to
the end of the ledger of a particular node
in hotstuff. The client floods all nodes with
append.

VI. FUTURE STEPS
A. Transaction Costs

As common in various decentralized ecosystem, we
will need to add a transaction fee structure for the ledger.
The purpose of this is two-fold:

1) Since each client will have to pay a small fee prior
to appending a hash to the darkpool, it prevents
them from submitting an arbitrarily long amount
of fake hashes. Consider the case where a client
submits hashes to the ledger for the top 10,000
most common orders they might want to place in
the future. In the future, when they do want to
place one of these orders, they can unfairly claim
a much earlier spot in the darkpool then when they
actually submitted their order. By having to pay a
fee every time they want to append to the darkpool,
clients will be disincentivize from this behavior.

2) The transaction fees will be divided amongst the
hosts operating the HotStuff nodes. This provides
a financial incentives for them to spin up and run
these nodes, which are the backbone of this entire
project.

B. Penalization of an dishonest Darkpool

The whole premise of the approach described herein
is to provably and safely discover when a darkpool is not
being totally fair to its clients. As described in section 1V,
once we discover that a darkpool is being dishonest, we
will need some way of penalizing it, both to incentives
fair darkpool behavior and to provide confidence to
consumers (clients). Some potential avenues to pursue
here include:

1) The darkpool puts up a collateral to a trusted
third-party (or even a Decentralized autonomous
organization) that slashes the collateral whenever
a proof of unfairness is submitted

2) The proofs of unfairness are just submitted to
regulartory agencies (such as the SEC) which can

fine and handle it directly with the force of the
Government

3) The darkpool itself is implemented as smart con-
tract that has a function for taking in proofs of
unfairness and will payout upon receiving a proof
of unfairness. Although we concede that this might
be better in theory than in practice, as it would lead
to a variety of potential issues.

4) We create another decentralized consensus entity
that maintains a whitelist of trusted darkpools.
When a proof of unfairness is submitted, the dark-
pool is removed from this list. Traders can check
this list prior to routing their orders (similar to how
Google’s Transparency Report works [8])

VII. CONCLUSION

Modern day darkpools have a purpose in financial
markets, but with a lack of regulatory oversight, they
can fall victim to operator frontrunning. In hopes of
providing at-trade-time transparency, we’re leveraging a
Byzantine Fault Tolerant consensus mechanism across
replicated state machines to programmatically verify
the absence of frontrunning in a darkpool, in which
each party keeps each other accountable via a publicly
accessible append-only ledger.

We achieve this by ensuring that before clients submit
their orders to a darkpool, the submit a hash of their
order to an append-only distributed ledger. Clients can
verify that the order they matched to is the earliest in
the append-only ledger, or otherwise announce the dark-
pool’s unfair frontrunning. The darkpool must also verify
that orders submitted to it have also been recorded in the
append-only ledger, otherwise they would be liable to the
ramifications of an unverified match. All parties can be
incentivized by transaction fees: clients for submitting
to both the darkpool and replicated state machine, the
darkpool for ensuring good matches, and the nodes for
running consensus protocol to ensure Byzantine Fault
Tolerance.

The obvious next step would be to implement this in
practice and see how clients react to this new darkpool
paradigm. This paper presents just a new idea, in part
for a class project, and the authors would love to see
how something like this might be implemented in a
production system.

VIII. ACKNOWLEDGEMENT

We would like to acknowledge and thank our CA
Geoff Ramseyer for his invaluable help in both un-
derstanding and implementing HotStuff. We are also
grateful to our instructor, David Mazieres, for teaching
us everything distributed systems we needed for this
project.

(1]
(2]

(3]

(4]

(51

(6]

(7]

(8]
(9]

[10]

[11]

[12]

REFERENCES

Dark pool trading system amp; regulation.
Commissioner Luis A. Aguilar. Shedding light on
dark pools, 2020.

Eric Budish, Peter Cramton, and John Shim. The
high-frequency trading arms race: Frequent batch
auctions as a market design response. The Quar-
terly Journal of Economics, 130(4):1547-1621,
2015.

Miguel Castro, Barbara Liskov, et al. Practical
byzantine fault tolerance. In OsDI, volume 99,
pages 173-186, 1999.

Benjamin Y Chan and Elaine Shi. Streamlet: Text-
book streamlined blockchains. In Proceedings of
the 2nd ACM Conference on Advances in Financial
Technologies, pages 1-11, 2020.

Philip Daian, Steven Goldfeder, Tyler Kell, Yungi
Li, Xueyuan Zhao, Iddo Bentov, Lorenz Breiden-
bach, and Ari Juels. Flash boys 2.0: Frontrun-
ning, transaction reordering, and consensus insta-
bility in decentralized exchanges. arXiv preprint
arXiv:1904.05234, 2019.

Alex Wang Matthew Finestone Daniel Wang,
Jay Zhou. A decentralized token exchange proto-
col., 2017.

Google. Working together to detect maliciously or
mistakenly issued certificates.

Andrei Kirilenko, Albert S Kyle, Mehrdad Samadi,
and Tugkan Tuzun. The flash crash: High-frequency
trading in an electronic market. The Journal of
Finance, 72(3):967-998, 2017.

Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi,
and Dawn Song. The honey badger of bft protocols.
In Proceedings of the 2016 ACM SIGSAC confer-
ence on computer and communications Security,
pages 31-42, 2016.

Will Warren and Amir Bandeali. 0x: An open pro-
tocol for de- centralized exchange on the ethereum
blockchain, 2017.

Maofan Yin, Dahlia Malkhi, Michael K Reiter,
Guy Golan Gueta, and Ittai Abraham. Hotstuff:
Bft consensus with linearity and responsiveness.
In Proceedings of the 2019 ACM Symposium on
Principles of Distributed Computing, pages 347—
356, 2019.

