A blockchain-based digital wallet application with HoneyBadger-BFT consensus

algorithm
Haoyang Zhang Zhuoyi Huang Rui Li
Stanford University Stanford University Stanford University

Stanford, USA
hz5@stanford.edu

Stanford, USA
zhuoyih@stanford.edu

Stanford, USA

ruiliup@stanford.edu

Yanfei Xiong
Stanford University
Stanford, USA

yanfeix@stanford.edu

Abstract

HoneyBadger-BFT [41] is a consensus algorithm
for blockchain that can tolerate Byzantine fault in an
asynchronous network. However, there has never been
a public blockchain that utilizes HoneyBadger. At the
same time, public blockchain such as Bitcoin [5] uses
Proof-of-Work to solve consensus, which is not power-
efficient. In this project, we explore the possibility of
HoneyBadger-BFT by building a simple digital wallet
applications built on top of a blockchain that utilizes
HoneyBadger-BFT. Our system provides a simple user
interface for clients to register accounts and submit
transactions, all records of which is recorded on the
blockchain, which is totally ordered among all repli-
cas in the system.

1. Introduction

Blockchain technology is gaining huge momentum
in the past decade. Its decentralized and public na-
ture revolutionized many traditional industries. For
instance, cryptocurrency like Bitcoin and Ethereum
received profound attention and investment due to
certain advantages compared to traditional financial
system, while novel applications like Non-Fungible
Token start to break new grounds. The core of
Blockchain is a Byzantine-Fault tolerant consensus al-
gorithm that solves the replicated log problem in a

replicated state machine context. Among all such
algorithms, HoneyBadger-BFT [4] is introduced as
the first algorithm that is able to guarantee progress
even in a completely asynchronous network with
no assumptions on network timing. In addition,
HoneyBadger-BFT is a more power and computation-
ally efficient algorithm compared to some of these al-
gorithm, like Proof-of-Work used in Bitcoin.

We believe that HoneyBadger-BFT has great poten-
tials in future blockchain applications, so we decided
to build a simple blockchain based on HoneyBadger-
BFT, on top of which runs a digital wallet appli-
cation that takes full advantage of the benefit of
blockchain. Our application supports client requests
including transaction posting and balance reading, and
these requests are processed and validated before writ-
ten to blockchain, after which all transactions are pub-
lic and are kept in the same order across all replicas in
the system.

This paper is organized in the following way. Sec. 2
introduces the background knowledge involved in our
system. Sec. 3 describes the high-level design of our
system. Sec. 4 describes the implementation details.
Sec. 5 discusses the evaluation we have done and the
results we have got. And finally, Sec. 6 and Sec. 7
talks about some improvement that can be made and
our final conclusion.

2. Background
2.1. Blockchain

Blockchain first gained its popularity in the advent
of Bitcoin [5]. The ability to make powerful decen-
tralized applications that is safe and consistent is very
attractive. Blockchain, in many context, is just a syn-
onym for replicated log. The core problem that lies in
the center of log replication in a distributed system is
the consensus algorithm. Traditional blockchain con-
sensus protocol consists of some specific objectives
such as coming to an agreement, collaboration, co-
operation, equal rights to every node, and mandatory
participation of each node in the consensus process.
Thus, a consensus algorithm aims at finding a common
agreement that is a win for the entire network. There
are many different ways for nodes to reach consensus.
Bitcoin, for instance, leverages a mechanism called
Proof-of-Work [5], which requires nodes to solve an
extremely computationally heavy mathematical puzzle
in order to reach consensus. Proof of Work(PoW) [3]
powered blockchains currently account for more than
90% of the total market capitalization of existing digi-
tal cryptocurrencies. While Bitcoin is the most popular
cryptocurrency nowadays, this consensus mechanism
is considered to be very wasteful in terms of energy
and computation. PBFT [2] is another example of a al-
gorithm for replicated log. But since it makes assump-
tions on network synchrony, an actual deployment of
the system using PBFT would not be ideal in a com-
pletely asynchronous network. Ever since then, efforts
have been made to come up with algorithms that solve
these problems. And some great progress has been
made, in the form of algorithms like HoneyBadger-
BFT [4].

2.2. HoneyBadger-BFT

HoneyBadger-BFT is the first BFT protocol that
guarantees liveness in asynchronous network without
making timing assumptions. It focuses primarily on
taking full utilization of the network bandwidth rather
than optimizing for latency. In each round, each node
reads in a batch of transactions from its buffer, and
send this batch to other nodes. Threshold encryption
is used here so that the decryption requires multiple
nodes to prevent single-node attack. Next, batches are
submitted to Asynchronous Common Subset, which

utilizes Binary Agreement and Reliable Broadcast to
reach an agreement among all nodes which of these
batches to include in the output of this round. Fi-
nally, all shares are received and decrypted in the hon-
est nodes that are ready to be shipped. Of course there
are assumptions that HoneyBadger-BFT makes, like
that reliable communication channels are set up be-
tween nodes and even though messages can be de-
layed indefinitely, they should be eventually delivered
[4]. But these assumptions hold up way more eas-
ily in asynchronous network compared to timing as-
sumptions made by other protocols. During their ex-
periment with HoneyBadger-BFT, they deployed over
100 nodes across 5 continents, and the transaction
throughput results they got scale well across. There-
fore, HoneyBadger-BFT seems like a great building
block for future blockchain applications.

3. System Design
3.1. Overview

We would like our digital wallet application to pro-
vide strong safety and liveness guarantees and a prac-
tical throughput. Financial transactions are mission-
critical and are typically submitted over a wide area
network and among a large number of nodes. In
the real world, network connections can be intermit-
tent and unpredictable, and even worse, malicious net-
work adversaries can arbitrarily block or schedule net-
work traffic. This could cause consensus protocols
with a weak synchrony assumption to not terminate
or take a long time to recover from network parti-
tions. Since HoneyBadger-BFT protocol is an Byzan-
tine Fault Tolerant (BFT) protocol based on asyn-
chronous network assumption, it can guarantee strong
safety and a good throughput even in a fully asyn-
chronous network. Therefore, we decided to use the
HoneyBadger-BFT protocol as the fundamental build-
ing block for our application.

There are two main components in our system: User
Service and HoneyBadger-BFT service. Each node
deploys an instance of the two services. The system
block diagram is shown in Fig. 1.

3.2. User Service

The User Service component is responsible for tak-
ing and processing requests from the client applica-

|
: | | | | :
P b Propose i i
! I
¥ submit | | [y —=ee Tx3 |l —
| transaction | Tx6 \] Fsama|
! : T | | Encrypt, j
| |
¥ User : | HoneyBadger- | | ! Broadcast'_—
<:|> Service | | BFT Service <|:::>
|
. H Handler | : . . Handler : :Common <
Client N L Write to Validate I I Subset Server
|| Read | blockchain Txns <1 b : K
N L X1 X I'1Decrypt ("
H balance | | < 3 [Tx3 P
| | x3 Tx6 X
b by I
[—— —————— | s
| User Service HoneyBadger-BF T Service :
! I
| Server i !
e g
Figure 1. System Block Diagram
API Function system on each node. These block files each contain
create_account Create a new account in 100 transactions as well as the hash of the previous
blockchain. block to make it a logical chain.
create_txn Create a single transaction in Specifically for our application, we need extra pro-
blockchain. cedures to validate the transactions.

Create bulk transactions.

Get account balance for a given
account id.

Get all accounts that have been
created among all nodes in
blockchain.

create_txns
get_balance

get_all_accts

Table 1. User Service APIs

tion. The types of operations supported are listed in
Tab. 1. For account registration requests and trans-
action submission requests, User Service simply for-
ward them to the HoneyBadger-BFT service. For re-
quests that query balance of a user, User Service would
traverse the local copy of the blockchain on the node,
read transactions involving the user, calculate the bal-
ance and return it to the user.

3.3. HoneyBadger-BFT Service

The HoneyBadger-BFT service takes raw transac-
tions and outputs an identical sequence of transactions
on all honest nodes. It processes the sequence of trans-
actions and stores the transactions onto the local file

The original
HoneyBadger-BFT only ensures a global ordering of
a set of transactions. But in our case, several types
of transactions are considered invalid. For instance,
if the user does not have enough balance, then two
transactions that double spend the remaining balance
should be prohibited. Also, transactions made to non-
existent accounts should be forbidden. Such valida-
tions are done after HoneyBadger has decided on the
set of transactions to export in a round and before the
transactions are written to the blockchain.

3.4. Communication Across HoneyBadger-BFT
Nodes

The HoneyBadger-BFT protocol assumes each pair
of nodes is connected by a reliable authenticated point-
to-point channel that does not drop messages. Further,
it assumes that every message sent between correct
nodes must eventually be delivered [4]. To meet this
assumption, we choose to use gRPC because it is de-
signed to work with a variety of authentication mecha-
nisms to provide a reliable authenticated point-to-point
channel that does not drop messages.

4. Implementation

We used Python to implement our system. User ser-
vice and HoneyBadger-BFT service run as two sepa-
rate processes on every node. More implementation
details of each component are discussed below.

4.1. Communication over gRPC

We use gRPC framework to provide reliable net-
work channels for all communications between the
client application and the server application, as well as
the communications between HoneyBadger-BFT ser-
vice handlers among all of the server nodes. For the
demo project implementation, we choose to use in-
secure communications channels for the ease of de-
bugging. Those configurations can be changed to se-
cure channels fairly easily in gRPC. For the user ser-
vice communications, we defined one RPC service
call for each of the APIs listed in Tab. 1. For the
HoneyBadger-BFT service communications, we de-
fined one RPC service call with a request message
containing one of the four different operation types
— CommonCoinOperation, BinaryAgreementOpera-
tion, ReliableBroadcastOperation, ThresholdEncryp-
tionOperation, to accommodate the need from all dif-
ferent stages of the HoneyBadger-BFT protocol.

4.2. User Service Handler

User service handler is implemented as a gRPC
server. The user service requests are being sent by
clients in the form of a gRPC request. Upon re-
ceiving the call, transactions are stored into a Python
queue structure, and made ready to be dequeued by the
HoneyBadger-BFT service handler in the beginning of
each round.

4.3. HoneyBadger-BFT Service Handler

Communication between HondyBadger-BFT server
nodes are being made as gRPC requests and re-
sponses. In the beginning of each round, each server
node queries its user service queue to receive transac-
tions, and broadcast the transactions to all the avail-
able HoneyBadger-BFT nodes by gRPC service calls.
Once the round of HoneyBadger-BFT terminates, all
decrypted transactions are validated and written into
the blockchain on each node’s local file system. The
transactions made out of users who do not have

] = = =
I~} = & @

Transaction throughput (#txns/second)

,ﬂ
S

100 200 300 400 500 600 700
batch size (#txns each node proposes)

Figure 2. Transaction throughput vs. Batch size

Transaction throughput (#txns/second)

o

node counts

Figure 3. Transaction throughput vs. Node count

enough balance, or the transactions made to invalid ac-
counts would be marked invalid before written to the
blockchain.

For the HoneyBadger-BFT based blockchain imple-
mentation, we used a Python HoneyBadger-BFT li-
brary [1] written by the authors of the HoneyBadget-
BFT paper [4]. An instance of the library running on
each node accepts transactions in the form of ASCII
strings, and outputs a sequence of transactions that has
the same ordering among all instances.

5. Evaluation and Discussion

We deployed our system on AWS EC2 servers and
ran some tests and evaluations on it. All machines
are EC2 t3.xlarge instances all in the Northern Cali-
fornia region, and our system runs in a docker con-
tainer on each of these machines. We first summarized
how many transactions are successfully submitted by
honeybadger-BFT, and the results are shown in Tab.
2. The first part is the comparison between different

Batch Size | #Nodes | Rd#1 | Rd#2 | Rd#3 | Rd#4 | Rd#F5 | Rd#6 | Rd#7 | Rd#8 | Rd#9 | Rd#10
40 4 160 | 160 | 160 | 160 | 160 | 160 | 160 | 160 [160 | 160
60 4 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240
80 4 320 | 320 | 240 | 320 | 240 | 320 | 240 | 320 | 320 | 320
100 4 400 | 400 | 400 | 300 | 400 | 400 | 300 | 400 | 400 | 400
300 4 600 | 900 | 900 | 900 | 900 | 1200 | 900 | 1200 | 900 | 1200
500 4 1500 | 1500 | 1500 | 2000 | 1500 | 1500 | 1500 | 2000 | 1500 | 2000
700 4 2800 | 2100 | 2100 | 2100 | 2100 | 2100 | 2100 | 2100 | 2800 | 2100
100 8 800 | 800 | 800 | 800 | 800 | 800 | 700 | 800 | 800 | 800
100 1 1200 | 1200 | 1200 | 1200 | 1200 | 1200 | 1200 | 1200 | 1200 | 1200

Table 2. Number of transactions successfully submitted by honeybadger and written onto blockfile for each round with
different batch size and number of nodes configurations. Batch Size means how many transactions can each of the node in
the blockchain propose for each round, #Nodes means the total number of nodes in the blockchain. Rd# means different
round, and the value under different columns means the number of transactions submitted for each round. If the number of
transactions for a round is smaller than (Batch_Size * #Nodes), this suggest that not all proposed transactions from the

nodes are successfully submitted.

batch size controlled for node number, and the second
part is the comparison between different node number
while controlled the batch size.

5.1. Transaction Throughput vs. Batch Size

In our first experiment, we tested the relationship
between transaction throughput and batch size by us-
ing different batch sizes 40, 60, 80, 100, 300, 500,
700 running on 4 nodes. To calculate the transaction
throughput, we divided the total number of transac-
tions processed in 10 rounds of HoneyBadger-BFT by
the time to run the 10 rounds.

From Figure Fig. 2 we can see that the relation-
ship is not a simple positive correlation like the exper-
iment in [4]. Based on our discussion, the reason be-
hind this behavior is because as batch size increases,
at a certain point, the significant improved message
size would cause some messages to be delayed, and
since in the Asynchronous Common Subset algorithm
in HoneyBadger-BFT, only N - f deliveries of value 1
from the Binary Agreements are required, after which
0 would be sent to the Binary Agreements, meaning
that batches of transactions proposed by some nodes
will be dropped. We marked rounds with dropped
batches red in Tab. 2. This would not happen for a
small batch size (less than 100), in which case basi-
cally all batches are accepted.

Therefore, even though more transactions are sub-

mitted to the system, due to the congested network,
the actual number of committed transactions does not
scale well against the batch size. Added on top the fact
that it takes more time to finish a round with larger
batch size, the overall decrease of throughput is ex-
plainable.

5.2. Transaction Throughput vs. Node Count

In our second experiment, we tested the relationship
between transaction throughput and number of nodes
deployed. We ran the experiment on node count 4, 8
and 12, all with a batch size of 100. We used the same
calculation as the previous experiment to get transac-
tion throughput.

From Figure Fig. 3 we saw a negative correlation
between throughput and node count. A further glance
into our data showed that even though basically no
batches were dropped in the committed transactions,
the time took to run one round is significantly higher
for higher node counts. Based on the data, we argue
that the reason for this behavior is again due to network
congestion. As more nodes are added to the system,
the number of messages transmitted in HoneyBadger
execution is also higher. In this case the stall due to
congestion seems to be the major factor that dominated
the benefit of having more submitted batches for more
nodes.

In both of our experiment, we were getting results

that seemed off from the original paper, but the slower
performance is expected. Since what we implemented
is an actual system that wrapped around the Hon-
eyBadger consensus protocol, there are many other
factors that affected the performance. For instance,
our user service server constantly receives transactions
submitted from the clients and submit them to the Hon-
eyBadger servers, which can take a significant portion
of the network bandwidth. On top of that, our sys-
tem actually needs to validate the committed transac-
tions and consolidate the committed transactions into
the file system, which is also a relatively slow opera-
tion that can add burden.

6. Future Work

There is still much to do to make our system an ac-
tual system in production. Optimizations in both per-
formance and production can be made. For instance,
the transaction validations and output to file system
can be done in parallel with HoneyBadger process.
User service can also be optimized to make more ef-
fective use of the network bandwidth. Also it would be
nice to integrate HoneyBadger-BFT with some view
change functionality that supports reconfiguration of
the system, which can add more reliability to our sys-
tem.

On top of everything, the HoneyBadger library we
used is more of a proof of concept rather than a
production-ready library. So we believe that the library
will be made more complete and efficient in the future.

7. Conclusion

Through our implementation of a digital wallet
application, we have demonstrated the potential of
HoneyBadger-BFT to make real-world blockchain ap-
plications. Our application supports a simple user in-
terface to keep track of one’s transactions and bal-
ance. When deployment scales out, the total-ordering
guarantee provides a consistent set of record across
all honest nodes with liveness and safety, making a
completely public and distributed application possible.
As popularity of blockchain-based applications gains,
HoneyBadger-BFT makes a strong case for a powerful
yet environmentally friendly consensus mechanism.

References

[1]

(2]

(3]

The honey badger of bft protocols.
https://github.com/initc3/HoneyBadgerBFT-Python. 4

Miguel Castro and Barbara Liskov. Practical byzantine
fault tolerance. 99:173-186, 1999. 2

Arthur Gervais, Ghassan O Karame, Karl Waiist,
Vasileios Glykantzis, Hubert Ritzdorf, and Srdjan Cap-
kun. On the security and performance of proof of work
blockchains. In Proceedings of the 2016 ACM SIGSAC
conference on computer and communications security,
pages 3-16, 2016. 2

Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and
Dawn Song. The honey badger of bft protocols, 2016.
CCS’16, October 24 - 28, 2016, Vienna, Austria. DOI:
http://dx.doi.org/10.1145/2976749.2978399. 1, 2, 3, 4,
5

Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic
cash system. 1, 2

	. Introduction
	. Background
	. Blockchain
	. HoneyBadger-BFT

	. System Design
	. Overview
	. User Service
	. HoneyBadger-BFT Service
	. Communication Across HoneyBadger-BFT Nodes

	. Implementation
	. Communication over gRPC
	. User Service Handler
	. HoneyBadger-BFT Service Handler

	. Evaluation and Discussion
	. Transaction Throughput vs. Batch Size
	. Transaction Throughput vs. Node Count

	. Future Work
	. Conclusion

