
Accountability and Transparency for Privacy-First Network Services

Arden Ma
Stanford University

Thea Rossman
Stanford University

Abe Rosloff
Stanford University

Abstract

We present a transparent, distributed logging utility
implemented in Rust and designed for a distributed net-
work directory service based on Tor [6]. Our design uses
Streamlet [5] to add application-submitted data to an
internal blockchain and pushes regular "checkpoints" to
a public forum. We argue that, if the network directory
system is compromised, a publicly-verifiable, append-
only log forces continued consistent state. We evaluate
our proof-of-concept implementation within a simulated
network directory application, demonstrating that the
utility meets practical complexity and latency require-
ments similar to Tor’s directory system.

1 Introduction

The Tor [3] network provides anonymous,
geographically-obfuscated access to the Web. Clients
select Onion Routers [6] to relay encrypted traffic:
relays mask the true source and destination of a connec-
tion, allowing users to circumvent many surveillance,
tracking, and censorship mechanisms.

Tor’s root of trust is a small set of directory authori-
ties: each authority regularly gathers network state, ex-
changes it with other authorities, and endorses it with
cryptographic signatures. Clients independently fetch
network directories from authorities, which they use to
choose paths through the network. Clients trust fetched
network state if and only if they can verify the signatures
of a majority of authorities [2].

Our project is inspired by a "worst-case scenario": if
a majority of directory servers are compromised, they
could "agree on" and send malicious, arbitrary network
state to users. In particular, it would be trivial for such

an attacker to target specific users, maintaining normal
operation for others to avoid detection.

We describe and prototype an append-only, trans-
parent logging service to force consistency in sce-
narios of total network directory compromise. We
propose that directory authorities create and publish a
distributed, immutable record of validated network state,
which clients can verify both real-time and retroactively.
This system creates a layer of public accountability for
any published state: it enforces network history and elim-
inates the ability to obfuscate an attack by targeting
specific users. In other words, it would not prevent a
compromised system from "lying" about network state,
but it would force the system to "lie to everyone in the
same way" – with a public record of doing so.

In the remainder of this paper, we describe the design
and prototype implementation of our core service. We
first offer additional background on our imagined use
case and threat model. We briefly describe Streamlet [5],
the Byzantine-Fault-Tolerant consensus protocol we use
to append data to an internal log. We then describe our
utility, including its API and key design. We conclude by
evaluating our proof-of-concept implementation, tested
with a basic application designed to behave like Tor’s
directory service [2], and discussing future work. We
argue that our service performs at a similar time-scale to
Tor’s directory system, and it could be optimized much
further.

2 Background

2.1 Tor’s Directory Service

Our use case is modeled after Tor’s directory service and
how clients use it. To provide context for our design, we

1



briefly describe this application here. [2]
The Tor network has 10 trusted directory authorities1.

Each directory authority regularly builds a local view
of the Tor network state ("directory") based on adver-
tisements from relays; every hour, authorities initiate a
consensus protocol to collectively sign a single directory.
Each network state contains a "router descriptor" from
each of the 6,000+ relays on the Tor network; each in-
cludes, e.g., the relay’s IP and port, exit policies, public
key, bandwidth metrics, and published date.2

From a client perspective, any directory signed by
a majority of directory servers is a trusted representa-
tion of relays on the network. (Clients are shipped with
authorities’ identities and public keys.) Clients choose
relays to forward traffic through, both randomly and pri-
oritized based on proximity, bandwidth, longevity in the
network, exit policies, and other metrics. [4]

For our design and threat model, we note six observa-
tions about Tor’s directory service:

• Tor uses a well-established, relatively complex pro-
tocol to generate network state; for deployability,
we propose to add to, rather than replace, it.

• Network state reconciliation occurs every hour, sug-
gesting, for our system, infrequent updates.

• The data we wish to append to a log is relatively
large: 400-500KB per directory.

• With 10 authorities and a majority-vote system,
compromise of just 6 servers leads to full system
compromise.

• Directory authorities service client requests inde-
pendently; without a public log, nothing forces con-
sistent state.

• Given a manipulated directory containing signifi-
cant malicious relays, perhaps with inflated metrics,
a client could easily build a circuit of entirely com-
promised nodes.

2.2 Threat Model

The key adversary we design for is a committed,
well-resourced attacker who aims to compromise the
anonymity and integrity of Tor (or a similar service).
The attacker is able to compromise six out of ten di-
rectory authorities, signing and sending arbitrary state

1https://en.wikipedia.org/wiki/Tor_(network);
https://blog.torproject.org/
introducing-bastet-our-new-directory-authority/

2https://metrics.torproject.org/collector.html

and inducing clients to forward traffic through malicious
relays. To evade detection, the attacker targets specific
clients while maintaining normal operation for others.

We also consider an adversary able to compromise
our logging utility. We use a Byzantine-Fault-Tolerant
protocol that maintains liveness and integrity if at most
f out of N = 2 f + 1 nodes are compromised. If > f
nodes are compromised, we prefer denial-of-service to
undetectable compromise.

In each of these scenarios, our system aims to force
transparency and consistency. An attacker should be
forced to share consistent state with all users. And, an at-
tack should be retroactively transparent: in other words,
attackers should not be able to send malicious informa-
tion to a user, that will be accepted by that user, without
a public record of doing so.

2.3 Streamlet

The nodes in our system use partially-synchronous
Streamlet [5] to come to consensus on a growing log,
stored as a closed-membership blockchain. We briefly
describe Streamlet here.

Streamlet takes application data as "transactions" and
outputs a unique, finalized blockchain encapsulating
these transactions. Along with data, each block includes
a hash of the parent block, the epoch in which the block
was proposed and voted on, and data. Note that, assum-
ing a collision-resistant hash, each block implies the
blocks that preceded it.

Streamlet nodes proceed in synchronized epochs and
use a propose-vote system to append blocks. In epoch e,
each node independently computes the "epoch leader"
based on a deterministic hash of e. The leader proposes
a block that extends from a longest notarized chain (see
below) and encapsulates transactions received by the
application. Remaining nodes vote for the block if and
only if (1) it originates from the epoch leader, (2) it
extends a longest notarized chain, and (3) the node has
not yet voted in epoch e. In our system, nodes also vote
for blocks if and only if the encapsulated transactions
conform to an application-specific "contract". Proposals
and votes are cryptographic signatures on the data.

Nodes broadcast proposals and votes to all other
nodes. Further, each node forwards all new messages
received to all other nodes. This "implicit echoing as-
sumption" significantly increases network load, but it
offers the protocol stronger guarantees and provability.

2

https://en.wikipedia.org/wiki/Tor_(network)
https://blog.torproject.org/introducing-bastet-our-new-directory-authority/
https://blog.torproject.org/introducing-bastet-our-new-directory-authority/
https://metrics.torproject.org/collector.html


Each instance considers a block "notarized" when
signed by at least 2N/3 out of N nodes. On observing
three adjacent blocks in a notarized blockchain with
consecutive epoch numbers, a node finalizes the second
of three blocks, along with its prefix chain. Streamlet
guarantees liveness (continued operation) and integrity
(all functioning nodes agree on finalized blocks) in the
presence of ≥ 2N/3 honest and functioning nodes.

Note that our use of Streamlet implies three assump-
tions. First, we guarantee integrity and liveness if and
only if, for a group of N = 2 f +1 nodes, up to f nodes
are corrupted. We assume that corrupted notes may ex-
hibit arbitrary behavior (Byzantine faults). Second, we
assume a partially synchronous setting. Given that the
network we design for is the global Internet, we believe
this to be reasonable with a well-tuned RTT estimate.
Finally, to guarantee liveness, we require clocks to have
bounded drift significantly smaller than epoch time (5.2).

3 System Design

3.1 Overview and API

A directory application interacts with our utility in three
ways: (1) Propose data to append, (2) Request the
most recent finalized data, and (3) Request the entire
finalized log. Using Streamlet, the utility guarantees
that finalized directories are consistent across function-
ing nodes and appended to the internal append-only
log (blockchain). Clients Request finalized blocks and
chains from logging nodes to validate data sent by the
directory service.

When initialized, authorities would negotiate a mutual
validation scheme with the logging service (e.g., signa-
ture checks). Similarly, clients would need to be shipped
with the capacity to validate log data (e.g., public keys).

Finally, our utility publishes "checkpoints" – either
the most recently finalized block or its hash – on a config-
urable interval to a public, append-only log. Assuming a
collision-resistant hash, this "checkpoint" uniquely deter-
mines its entire prefix chain: if our service were compro-
mised, it could not retroactively modify the log before
the last checkpoint without detection. In our proof-of-
concept implementation, this "log" is simply a shared
file, and we push an entire block. In the future, we imag-
ine this as a public blockchain (5.7). Clients require an
additional API to access and validate public logs, which
we omit from our initial implementation.

3.2 Components

Internally, we implement four key modules: Blocks,
Chains, and Blockchain Management; Messages; Net-
work Stack; and Streamlet Instances.

Each Block contains the epoch in which it was pro-
posed and voted on, a hash of the block, a hash of its
parent block, and raw data. Blocks are appended to
Chains, accepted if they correctly extend the chain. The
Blockchain Manager tracks and finalizes longest nota-
rized chains.

Nodes send and receive Messages – Propose, Vote,
and message types for communicating with the applica-
tion.

Our Network Stack triggers events when messages
are received and broadcasts messages when requested
by Streamlet. In our implementation, the network stack
wraps a LibP2P open-source flooding protocol [1, 10]
over a virtual local network and encrypted transport layer.
For sending larger messages to the application, we use
point-to-point messages.

The majority of our logic is in the StreamletInstance.
Each instance tracks epochs, sends proposals and
votes, determines thresholds for notarization, logs fi-
nalized data, and exchanges messages with the appli-
cation. The StreamletInstance is event-driven: an
epoch timer triggers leader selection and proposals, and
NetworkStack events trigger echoing and votes. In-
stances are initialized with the public keys of peers. Each
instance encapsulates a BlockchainManager, which
it forwards notarized blocks to and retrieves finalized
chains from.

4 Evaluation

We now present and evaluate our proof-of-concept im-
plementation of our Streamlet-based logging utility. The
code is available on GitHub.3.

We evaluate N Streamlet nodes running on a single
machine (though the implementation would also work
across several machines on a virtual local network). A
brief initialization period loads each node with the oth-
ers’ IP addresses and public keys. In a separate pro-
cess, an application generates network directories, mod-
eled off of Tor’s [2], flooding this data to all Streamlet

3https://github.com/ardenma/
streamlet-transparency-logging

3

https://github.com/ardenma/streamlet-transparency-logging
https://github.com/ardenma/streamlet-transparency-logging


Figure 1: Epochs that were able to finalize blocks, as a percentage of optimal, based on data size, epoch length, and
number of nodes. Longer epoch times, smaller data, and fewer nodes lead to more consistent finalization.

nodes. Nodes run Streamlet, over a LibP2P-based net-
work stack [1]. We model the "public log" as a shared
file, which nodes append to at each epoch.

4.1 Performance: Finalization

The core metric we consider is: given an epoch time,
number of nodes, block size, and available transaction
data, in what fraction of epochs is our log able to finalize
blocks? Since the network directory application cannot
share data with a client until it is finalized on the log,
finalization is critical to the performance of the applica-
tion. In other words, we consider latency and throughput
a function of epoch length, and we aim to make our
epoch length as short as possible.

We measure the epochs that were able to finalize
blocks as a percentage of optimal. For X epochs, X −1
is optimal: finalization can begin at the second epoch,
when there are at most three blocks in the chain (the gen-
esis block with epoch 0, the block appended at epoch 1,
and the block appended at epoch 2). If each subsequent
epoch successfully notarizes a block, then X −1 epochs
are able to finalize blocks.

Figure 1 shows the results of running these skews on
a single m6a.4xlarge on AWS with 16 vCPUs and 64GB
of memory. To test how node count affected finalization,
we started each "node" in a separate process and ex-
changed messages using our network stack, simulating
inter-machine communication. As expected, finalization
becomes more challenging with shorter epochs, more
nodes, and, to some extent, larger data. In cases with
low finalization, we observe that blocks are still nota-
rized, but message echoes continuing from epoch i−1

preempt proposals and votes in epoch i – preventing 3
consecutive epochs from notarizing blocks.

To apply for our use case, our implementation should
mimic the timescale of Tor’s network directory service.
Testing our proof-of-concept implementation locally, we
were able to achieve near-perfect block-per-epoch final-
ization of a realistic network directory (500KB) across
8 streamlet nodes in 20 minutes by using 25-second
epochs and appending 10KB chunks. This throughput
is comparable to Tor’s timescale – and, with the opti-
mizations described in 3.2 and more CPU/RAM, has
significant potential to be improved.

4.2 Compromised Node Handling

We tested Streamlet’s performance with < 1/3 compro-
mised or malfunctioning nodes. We ran our implementa-
tion with 4 nodes – a scenario that offered consistently
perfect performance in the fully-functional case – and set
one node to behave maliciously. This node sent invalid
blocks, crashed, became out of sync with other nodes’
epochs, or failed to broadcast votes and proposals.

Scenarios affecting the voting process presented no
impact: nodes that failed to vote, sent invalid votes, sent
proposals as non-leaders, or failed to broadcast had no
impact. Situations in which the leader failed to propose,
whether due to crash or malicious behavior, decreased
finalization. As expected, the degree of performance
impact depended on leader selection: if the malicious
node is chosen as leader every third epoch, Streamlet
becomes unable to finalize blocks (5.3). Our examina-
tion shows that our design is resistant to compromised-
voting/wrongfully proposing nodes and was able to

4



seamlessly handle invalid message data.

5 Discussion and Future Work

5.1 Logging-as-a-Service

We chose to build our logging utility separate from Tor’s
directory consensus process, rather than as part of it. As
Hunt et. al. argue in [8], an independent service can scale
independently of the application to tune availability and
safety. We considered deployability and maintenance:
adding functionality alongside a well-established system
is easier than modifying it. And, maintaining a concep-
tual focus on a specific service mimics a control/data
plane separation (see, e.g., Aurora [9] and GFS [7]).

However, this separation means that our system adds
latency. In other words, appending occurs after consen-
sus on network state. To remove this overhead, one could
imagine a directory service that runs consensus on net-
work state and appends to a log as part of the same
protocol. We leave rigorous discussion of this tradeoff
to future work.

5.2 Message Size and Communication Com-
plexity

A key limitation of Streamlet is the complexity of net-
work communication: even under perfect operation, in an
optimized implementation, notarizing a single block re-
quires at least O(N2) messages for a system of N nodes.
For each block, (1) a leader broadcasts a proposal to
all nodes (O(N) messages; O(N· blocksize) bits); (2)
each node "echoes" this proposal to each other node
(O(N2) messages; O(N2· blocksize) bits); (3) each
node votes on the block and broadcasts its vote to all
other nodes (O(N) messages; O(N · votesize) bits),
and (4) each node forwards each vote it receives to each
other node (O(N2) messages; O(N2 · votesize) bits).
While the number of messages is unavoidable in Stream-
let, smaller messages can help.

Note that our gossip protocol also imposes a message
size limit. In our proof-of-concept, we limit the block
size submitted by the application; it appends one realistic
Tor directory across 20 transactions. To exchange chains,
we use point-to-point messages over raw TCP sockets.

As future work, we suggest intentionally decreasing
message size. Aside from using a different consensus
protocol, we imagine two approaches to this: changing

how Streamlet stores data or changing how the directory
shares data.

First, we considered, but were not able to implement,
a collision-resistant hash solution: each Streamlet node
could receive an identical directory from the applica-
tion, independently compute the block to append, and
exchange the block metadata – block hash, parent hash,
epoch number, etc., without flooding and echoing direc-
tory data. Nodes locally validate proposals and votes.
Larger data could still be exchanged, in a different thread,
over point-to-point messages.

Second, one could imagine the application sending
data more similar to Tor’s directory caching specification
[2]. In this, directories are sent in the form of "updates"
– i.e., changes from the last directory – rather than full
directories. Adopting this compressed data format is
likely to considerably cut down on size.

5.3 Clock Synchronization

We considered a rigorous timing protocol to be beyond
the scope of our project. In our proof-of-concept, we
synchronize epochs by assuming relatively long epoch
times, bounded and predictable clock drift, and relatively
short uptime. We recommend two alternatives for future
work: either a timing protocol to drive epoch transitions
(e.g., Tor finds NTP to be sufficient for their epoch times),
or migration to a consensus protocol that does not rely
on synchronized epochs (e.g., HotStuff [12]).

5.4 Finalization Requirements

When f malicious leaders are introduced, Streamlet may
become unable to consistently finalize blocks. This be-
comes less likely with more nodes; however, more nodes
add communication complexity that, in turn, leads to
less reliable finalization (5.1, 4). If we consider practical
"liveness" for an application to be consistent block fi-
nalization, our system, as-is, cannot guarantee this "live-
ness" when nodes malfunction.

We chose Streamlet as a first step for our proof-of-
concept: it is intentionally simple, easy to prove, and
pedagogical. A true deployment using Streamlet would
require regular monitoring of the log: if the service is
consistently unable to finalize, it must be examined in-
correct or compromised behavior. A next-step implemen-
tation would replace Streamlet with a more practically
robust protocol, e.g., HotStuff [12].

5



5.5 Network Stack

Our network stack wraps a LibP2P [1] library. We chose
LibP2P because it offers an open-source implementa-
tion in Rust and an event-driven interface, we were able
to use a gossip protocol [10] that floods and echoes mes-
sages as required by Streamlet, and the library was de-
veloped for blockchain and other peer-to-peer consensus
applications.

Unfortunately, as we stress-tested our implementa-
tion, we identified an issue in libp2p: as network load,
number of peers, and duration of uptime increased, con-
nections became less reliable. Messages became more
delayed, and peers became more likely to disconnect
and reconnect, drop packets, or leave the network alto-
gether. We believe that this stems from two issues. First,
the protocol implementation we use – across all exam-
ples we tested – requires significant processing power
and memory. Second, we identified a bug in libp2p’s
peer maintenance protocol, which caused peers to er-
roneously time out; we submitted a report to the main-
tainers4 and intend to work on a fix after the quarter
ends.

As long as 2N/3 nodes remain operational and con-
nected, Streamlet continues to notarize and regularly
finalize blocks, though we do observe added latency and
retransmission (e.g., if an epoch leader temporarily goes
offline) and, if a node misses an epoch altogether, it is
unable to catch up (5.5).

As a whole, we believe that a network stack based
around libp2p may impose a bottleneck and uninten-
tional unreliability into our system.

5.6 Recovery and View Changes

We do not implement recovering a node from a crash
or, in some cases, an entirely missed epoch. The Stream-
let specification did not describe reliable and correct
recovery, though we assume implementing this would
involve a logging-and-reading approach. We also did not
implement adding or removing nodes from Streamlet,
which we argue is not common to our use case: because
clients must be shipped with a key for each nodes, it is
challenging and rare to add an additional node following
deployment.

4https://github.com/libp2p/rust-libp2p/issues/
2676

5.7 Smart Contracts and a Public Log

Our system assumes the a secure public log, where data
can be posted by our system, be queried by users, and
remain immutable. In our proof-of-concept, this "log"
is a file. In a rigorous implementation, this could be a
public blockchain (e.g., Ethereum [11]), though a Cer-
tificate Transparency system may also be feasible and
lower-cost.5 The desired behavior could be achieved
with a smart contract, initialized with the public keys of
each Streamlet node. The log should only accept data
with a threshold of signatures, and clients should expect
finalized data to be published regularly.

6 Conclusion

We describe and implement a distributed, transparent,
and reliable logging service designed for a privacy-first,
distributed network directory system modeled off of Tor.
Our implementation uses Streamlet to append network
directory data to an internal, permissioned blockchain;
pushes auditable "checkpoints" to a public log; and
shares finalized data with both clients and the direc-
tory application. We show that our proof-of-concept
implementation can operate at a time-scale similar to
Tor’s, and we describe optimizations that, we believe,
could reduce added latency significantly. We argue that
an append-only, publicly-auditable logging system adds
protection in the case of total directory compromise:
while it would not prevent the directory from manipu-
lating network state, it would force global consistency,
transparency, and retroactive auditability.

References

[1] Libp2p: An open source project from the ipfs com-
munity. https://libp2p.io. Accessed: 2022-
05-01.

[2] Tor directory protocol, version 3. https:
//gitweb.torproject.org/torspec.git/
tree/dir-spec.txt. Accessed: 2022-05-01.

[3] The tor project. https://www.torproject.org.
Accessed: 2022-05-01.

5Mozilla publishes hashes of binary releases to Certificate Trans-
parency logs: https://wiki.mozilla.org/Security/Binary_
Transparency.

6

https://github.com/libp2p/rust-libp2p/issues/2676
https://github.com/libp2p/rust-libp2p/issues/2676
https://libp2p.io
https://gitweb.torproject.org/torspec.git/tree/dir-spec.txt
https://gitweb.torproject.org/torspec.git/tree/dir-spec.txt
https://gitweb.torproject.org/torspec.git/tree/dir-spec.txt
https://www.torproject.org
https://wiki.mozilla.org/Security/Binary_Transparency
https://wiki.mozilla.org/Security/Binary_Transparency


[4] Tor protocol specification. https:
//github.com/torproject/torspec/blob/
main/tor-spec.txt. Accessed: 2022-05-01.

[5] Benjamin Chan and Elaine Shi. Streamlet: Text-
book streamlined blockchain. In Proceedings of
the 2nd ACM Conference on Advances in Financial
Technologies, 2020.

[6] Roger Dingledine, Nick Mathewson, and Paul
Syverson. Tor: The second-generation onion router.
In Naval Research Lab, 2004.

[7] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak
Leung. The google file system. In Proceedings
of the 19th ACM Symposium on Operating Sys-
tems Principles, pages 20–43, Bolton Landing, NY,
2003.

[8] Patrick Hunt, Mahadev Konar, Flavio P. Junqueira,
and Benjamin Reed. Zookeeper: Wait-free coordi-
nation for internet-scale systems. In Proceedings of
the 2010 USENIX Conference on USENIX Annual
Technical Conference, USENIXATC’10, page 11,
USA, 2010. USENIX Association.

[9] Alexandre Verbitski, Anurag Gupta, Debanjan
Saha, Murali Brahmadesam, Kamal Gupta, Raman
Mittal, Sailesh Krishnamurthy, Sandor Maurice,
Tengiz Kharatishvili, and Xiaofeng Bao. Amazon
aurora: Design considerations for high through-
put cloud-native relational databases. In Pro-
ceedings of the 2017 ACM International Confer-
ence on Management of Data, SIGMOD ’17, page
1041–1052, New York, NY, USA, 2017. Associa-
tion for Computing Machinery.

[10] Dimitris Vyzovitis, Yusef Napora, Dirk Mc-
Cormick, David Dias, and Yiannis Psaras. Gos-
sipsub: Attack-resilient message propagation in
the filecoin and eth2.0 networks. In Computing
Research Repository (CoRR), 2020.

[11] Gavin Wood. Ethereum: A secure decentralised
generalised transaction ledger.

[12] Dahlia Yin, Maofan an Malkhi, Michael Reiter,
Guy Golan Gueta, and Ittai Abraham. Hotstuff: Bft
consensus in the lens of a blockchain. In Proceed-
ings of the 2019 ACM Symposium on Principles of
Distributed Computing, 2019.

7

https://github.com/torproject/torspec/blob/main/tor-spec.txt
https://github.com/torproject/torspec/blob/main/tor-spec.txt
https://github.com/torproject/torspec/blob/main/tor-spec.txt

	Introduction
	Background
	Tor's Directory Service
	Threat Model
	Streamlet

	System Design
	Overview and API
	Components

	Evaluation
	Performance: Finalization
	Compromised Node Handling

	Discussion and Future Work
	Logging-as-a-Service
	Message Size and Communication Complexity
	Clock Synchronization
	Finalization Requirements
	Network Stack
	Recovery and View Changes
	Smart Contracts and a Public Log

	Conclusion

