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Abstract

The COVID-19 pandemic reinforced the need for pub-
licly available, robust, and secure contact tracing sys-
tems. These systems provide vital information to both
users and public health officials, which helps slow down
the spread of infectious diseases. However, the rise in
prominence of these systems has also spurred necessary
conversation surrounding the privacy of users, verifiabil-
ity of results, and the danger of false sources of panic.
We present Choo-choo, a trustworthy contact tracing sys-
tem that aims to mitigate many shortcomings of modern
contact tracing systems.

1 Introduction

COVID-19 continues to be the largest public health cri-
sis in modern history. At the start of this pandemic, it
became evident that the world was vastly underprepared
for a global phenomenon of this magnitude. As scien-
tists and medical experts explored methods of mitigation
before vaccines became widely available, contact tracing
technology came to the forefront as a powerful tool for
users to be informed of potential exposures and for public
health officials to detect large outbreaks. That said, this
technology was met with substantial skepticism and con-
cern amongst individuals aiming to safeguard their pri-
vacy and avoid false sources of panic [2]. Technologists
were met with the challenge of balancing personal pri-
vacy and accuracy so individuals would be incentivized
to use the contact tracing system for the greater good.

Several contact tracing systems came to fruition dur-
ing this time, each with its own strengths and weak-
nesses. We outline some of the most notable protocols of
these systems in Section 2. As we explored these systems
and what they offered the public, we felt as though there
was opportunity for improvement in both areas of privacy
and accuracy. Specifically, we focused our efforts in im-
proving the verification of test results and studying the

potential implications of negative test results. We there-
fore present Choo-choo, a trustworthy contact tracing
system. Choo-choo focuses on giving users a risk level,
rather than a binary offering of “you have/have not been
exposed.” We do so by factoring in negative test results
collected by others who were exposed in the same event
the user was. Additionally, Choo-choo further verifies
the validity of test results using a Public Key Infrastruc-
ture, so a valid test result is required to report a positive
or negative result to the system. Lastly, Choo-choo aims
to protect against some scenarios of collusion amongst
malicious users by employing cryptography techniques.

This paper provides a survey of current contact-tracing
protocols in Section 2, which also details aspects of the
Apple-Google Protocol from which we took significant
inspiration. In Section 3 we outline our security goals
and threat model. Section 4 details the system design
decisions we made, and Section 5 provides some basic
experimentation results that verify the validity of the ap-
proach. Lastly, Section 7 concludes.

2 Background

In this section, we detail prior work in the area of contact
tracing systems.

2.1 Survey of contact tracing protocols
Contact tracing protocols take many factors into consid-
eration. For instance, proximity measurement, access
control, data storage, and encryption all come into play
when designing a contact tracing protocol [2]. Further-
more, some protocols are designed to be peer-to-peer
enabled, whereas others operate with the presence of a
central server. The following are some notable contact
tracing protocols paired with some of their pros and cons
[2]:

QUEST - This centralized protocol uses WiFi. It



only accepts reports from authorities, and has relatively
low battery consumption. Data is stored both on devices
and server.

BlueTrace - This centralized protocol uses Blue-
tooth. It only accepts reports from authorities, and has
relatively low battery consumption. Data is stored only
on devices.

Recover - This centralized protocol uses GPS and
Bluetooth. It only accepts reports from authorities, and
has relatively low battery consumption. Data is stored
only on server.

Each of these protocols has tradeoffs in the areas
of privacy, efficiency, and security. They have varying
levels of popularity and usage.

2.2 Apple-Google Protocol

We modeled much of Choo-choo’s design after the
Apple-Google Protocol [1]. We specifically chose this
protocol due to its robustness and privacy-centric tactics.

Particularly, we were drawn to the fact that the Apple-
Google Protocol does not store private user data in the
clear but rather requires an anonymous identifier to deter-
mine exposures [1]. To illustrate the importance of this
fact, consider if we were to naively construct a contact-
tracing system. Perhaps the easiest way of doing this
would be to have a high-capacity central server. Users
would consistently ping this server at regular intervals,
say every 5 minutes or so, with the user’s id and loca-
tion. When a user reports a positive case to the server,
the server would perform some cross-section calculation
to determine which users were exposed by the positive-
case individual and inform those users accordingly. Ig-
noring the absurd amount of data the server would have
to keep track of in this approach, the idea that a central
single server would contain such highly sensitive data is
very concerning. If an attacker managed to hack into
this server, they would be able to track individuals and
infer even further personal information like home loca-
tions. The Apple-Google Protocol addresses this prob-
lem head-on and uses a methodology that does not track
location in this manner nor tie a user’s identity to the
data it generates [1]. This approach is further explained
in Section 4.

Additionally, we chose the Apple-Google protocol as
our main model since the contact tracing process occurs
locally on a user’s phone [1]. This allows for a more
even distribution of power in the system; if the server did
the contact tracing process, and was hacked, an attacker
could determine a plethora of information. In addition,
with the user performing this calculation locally on their

phone, we avoid the infrastructure and risk of having to
transfer this information over a network.

3 Goals and Problem Statement

In this section, we present the threat model and security
goals of the Choo-choo system.

3.1 Threat Model
Clients in our system are semi-trusted: all security prop-
erties of our system holds in the face of an individual ma-
licious client, but we acknowledge potential attack sce-
narios when malicious clients collude. We will address
the impact of malicious collusion in Section 3.2.

The central server is trusted for availability. Failures
will compromise the system’s liveness, but the privacy of
the clients will always be preserved. We consider fault-
recovery an orthogonal problem to our system goals. To
protect against benign failures, the server could imple-
ment a state-replication protocol on top of our central
server.

The testing authority server is required to be com-
pletely trusted. We require this server to always abide
to our protocol to guarantee the integrity of the system.

3.2 Security Goals
We describe Choo-choo as a trustworthy contact tracing
system. We define trustworthy to be a state when the
following properties of correctness, privacy and integrity
are satisfied.

Correctness. The scheme is correct when all servers
execute the protocol faithfully, and if both of the follow-
ing conditions are satisfied:

• all verifiable test results and the correct correspond-
ing client devices are binding, and

• the positive and negative cases based on which a
client’s risk level is computed match the positive
and negative reports from the client’s contacts.

Since we rely on all servers for availability, correct-
ness of the system need only hold when all servers are
running the protocol correctly.

Privacy. The system preserves user privacy in the fol-
lowing aspects:

• The servers cannot infer the users’ geographical lo-
cations or the users’ contacts from the information
the server receives.

• The users cannot discover the identities of the re-
porting users.
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Figure 1: Choo-choo daily and report flows.

• The users can discover where they are in contact
with the reported cases, but not the complete trajec-
tory of the reporting users.

Admittedly, the user will be able to discover the iden-
tity of a reporting user if the reporting user is the only
person that the user has been in contact with at a specific
time and location. We don’t consider this a privacy con-
cern. If the reporting user wants to hide their test infor-
mation from the other user, they can simply don’t report;
otherwise if the reporting user wants people they have
been in contact with to be notified, even without our sys-
tem they would want to notify the single person they’ve
been in contact with.

Integrity. The system has integrity even in the face of
attackers that:

• report dishonest results (including faking non-
existent results and modifying their own results) or

• intercept other users’ testing results from a testing
authority server in order to impersonate an honest
user.

Liveness is naturally preserved in the face of these attack
scenarios as the system detects this malicious behavior
and discards the confounding reports.

It should be noted that in order to preserve privacy,
no information related to a person’s real identity, such as
contact information, personal identification number etc.,
is stored or used anywhere in the system. In other words,
the current system identifies a user by the users’ exposure
keys (explained in more details in Section 4.2) which are
non-binding to the user’s real identity.

This results in a caveat: our system does not protect
against all collusion among malicious users. The follow-
ing attack may undermine the correctness of our system:
If malicious user Alice tests positive and malicious user
Bob tests negative, they can exchange both their expo-
sure keys and the signed testing result they receive in-
dependently from a testing authority server, while still

passing our verification scheme. The impact of this is
no worse than the impact of a false positive report in the
current Apple-Google contact tracing protocol, and we
consider it an acceptable trade-off with the privacy guar-
antees of our system. Future work may consider using
zero knowledge proofs to provably bind a user’s regis-
tered real identity information with exposure keys while
not revealing the real identity information.

4 System Design

In this section, we describe the Choo-choo system design
and discuss implementation details.

4.1 Architecture
Choo-choo has three main parties: the client, the central
server, and the authentication server. Figure 1 shows the
basic channels of communication between these entities.
Note that we use client and app interchangeably in the
sections below.

On a daily basis, the client generates an exposure key
that is unique to them. The user maintains a running set
of their own exposure keys from the last 5 days. From
this exposure key, we generate a token every 10 minutes.
This is done using cryptographic primitives, which we
discuss in greater detail in the next subsection. As users
go about their daily lives, tokens are exchanged via Blue-
tooth when users come into close proximity. These are
stored locally on user devices. We maintain a running set
of tokens collected in the last 5 days, sorted by day. With
this in mind, we present two flows: the report flow and
the daily flow.

The report flow begins with user action outside of the
system. That is, a user needs to register to take a test at a
Choo-choo compatible testing authority. On the day the
user sends the test specimen, the Choo-choo app would
send the user’s exposure keys in the past three days (in-
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cluding the day of the test) to the testing authority server.
After the user has completed the test, the user’s Choo-
choo app client polls daily for the result from the test-
ing authority server and sends the exposure key of that
day. For testing purposes, we have developed a simple
and lightweight testing authority server. In a real-world
setting, the testing authority server would be a hospital
or clinic’s own server, which would be set up to com-
municate with the Choo-choo client. Once the result is
available, the Choo-choo app receives the result, and the
user determines whether they have tested positive or neg-
ative. The user has the option to report either result. If
the user does so, the test result, alongside the user’s ex-
posure keys from the last 5 days, are sent to the central
server.

Once the keys and result have been received, the server
performs a cryptographic validity scheme to ensure the
validity of the digital signature on the result. It does so
by using the testing authority’s publicly available pub-
lic key. More detail on this cryptography is detailed in
the next subsection. After the result has been verified,
the server stores each of the user’s exposure keys in files
corresponding to the day the exposure key was gener-
ated. Every day has two associated files: one for positive
reports and one for negative reports.

The daily flow consists of the client polling the cen-
tral server for exposure keys corresponding to positive
and negative reports filed for the day before. This flow is
how a user determines if they have been exposed, so that
the risk level can be adjusted accordingly. Once the client
receives the batch of exposure keys, it again performs a
set of cryptographic functions to convert those keys back
into tokens (again, refer to the next subsection for more
details). If any of the tokens corresponding to positive
reports match any of the tokens the client collected for
the corresponding day, an exposure has been detected.
The risk level is adjusted to convey to the user that their
risk has increased. If any of the tokens corresponding to
negative reports match any of the tokens the client col-
lected for the corresponding day, and an exposure was
detected during that same event, the risk level is adjusted
to convey to the user that their risk is still significant, but
not the highest it can be. In other words, negative reports
corresponding to exposure events is meant to convey to
the user that another user who was exposed at the same
event has since tested negative, so perhaps the disease
was not spread.

4.2 Cryptography Flow

The system relies on cryptographic primitives to generate
reproducible tokens that enable clients to “rediscover”
their contacts with the reporting users and to provably
bind a user’s test result to the user’s “live” exposure keys.

We will analyze in this section how our composition of
primitives work to satisfy our security goals.

Rediscover Contacts. The ability to rediscover con-
tacts on clients’ local devices is based on the repro-
ducible token generation process (Algorithm 1).

We followed the Apple-Google protocol’s token gen-
eration process, starting from generating a 16-byte ex-
posure key for each client device using a cryptographic
random number generator on a daily basis. A token key
for the same day is derived using HKDF, a key derivation
function based on HMAC message authentication code,
in preparation for generating tokens to be exchanged via
Bluetooth. We used HKDF on top of HMAC-SHA256
which is robust against dictionary and brute force attacks.
Then, a token is the ciphertext from encrypting time in-
terval metadata using the token key and is generated per
10 minutes and constantly exchanged with nearby client
devices through Bluetooth payload.

The series of cryptographic primitives incorporates
sufficient entropy such that the tokens cannot be corre-
lated to the exposure keys. The tokens are also collision
resistant, meaning that it is proven hard to generate two
identical tokens from different exposure keys. Hence, a
token can be considered as a unique identifier for one
party during a 10-min contact.

Each day, the client polls the central server and gets
back the “live” exposure keys of reporting users. We de-
fine “live” exposure keys to be exposure keys over the
last 5 days, determined by the active transmission pe-
riod of COVID-19. After running HKDF to reproduce
the token key corresponding to each exposure key, the
client can further regenerate the tokens related to the ex-
posure key (and thus the reporting user) by calling the
AES function on all time intervals over the past 5 days.
A set intersection is then performed to count how much
overlap there is between the client’s locally stored tokens
and the regenerated tokens. The intersection set identi-
fies “rediscovers”) the client’s contact with the reporting
user and we deduce more contextual information about
the contact events from locally stored information and
compute the user’s risk level (explained in Section 4.3).

Generate Verifiable Test Results. We engage the
testing authority to generate test results that are verifi-
able, tamper resistant and binding to the test-takers’ ex-
posure keys, which are the only identifiers of users in
our system. This approach allows our system to be more
trustworthy than the Apple-Google protocol in that our
scheme is able to prevent the majority of false positive
reports.

The scheme (Algorithm 2) takes advantage of existing
digital signature schemes so that only the testing author-
ity can generate signatures that are verifiable and will be
accepted by the system. Each testing authority holds a
keypair (skta, pkta).
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Suppose the user takes the test on day i, sends expo-
sure keys between day i− 2 and day i when they start
the test and continuously sends exposure keys daily un-
til they receive the test result on day i+ 2. To generate
the verifiable test result, signing is performed twice. The
first time, the testing authority uses skta to sign a concate-
nation of all exposure keys it received from the user. The
result signature is used as a sequence number (seqk) for
this test event. While digital signature schemes are not
pseudorandom and leak distribution information about
the signer, the signer (i.e. testing authority) identity and
reporting exposure keys are all public in our system so
we are not leaking additional information to a potential
attacker. The second time, the testing authority appends
its id, used later in verification to retrieve the testing au-
thority’s public key, seqk, and test result, signs the ap-
pended message and appends the signature to make the
complete verifiable test result.

Verify Test Results. When a user reports their test re-
sults, the user sends all live exposure keys along with the
verifiable test result (VTR) they receive from the testing
authority server.

The central server just follows the existing digital sig-
nature verification scheme to verify test results and filter
maliciously-crafted ones. Similar to the signing process,
verification is performed twice: the first time it verifies
the sequence number in the VTR is a valid signature of
the sequence of exposure keys; the second time it verifies
the testing authority’s signature on the entire test result
so that the test result body cannot be mutated. All user
reports that don’t pass the verification tests are discarded.

This scheme is also naturally robust against replay at-
tacks. Only “live” exposure keys can generate effective
tokens that users receive and store, and old test results,
though with a valid second signature, doesn’t contain a
valid sequence number that is binding to the “live” expo-
sure keys.

Algorithm 1 Generate Tokens
ExpKeyi←CRNG(16)
TokenKeyi←HKDF(ExpKeyi,salt,“RPIINFO”,16)
Metadata j← “RPIINFO”||Interval j||Padding
Tokeni, j← AES128(TokenKeyi,Metadata j)

Algorithm 2 Generate Signed Test Result
ExpKeys← ExpKeyi−2||...||ExpKeyi||...||ExpKeyi+2
Seqi← Sign(skta,ExpKeys)
Msg← IDta||Seqi||Resulti
Sig← Sign(skta,Msg)
SignedTestResult = Msg||Sig

Figure 2: Signed Test Result

4.3 Risk Level Evaluation

Choo-choo provides risk level evaluation based on the
exposures it determines. To evaluate the risk level of ex-
posure, we consider 4 factors: number of positive tokens,
number of negative tokens, GPS location of local device,
Bluetooth Received Signal Strength Indicator (RSSI).

Through the daily flow, the client will receive exposure
keys corresponding to both negative and positive reports
from the central server. After regenerating the tokens and
comparing with the locally stored tokens, the client can
determine how many positive cases it has come into con-
tact with. Our system also makes use of the exposure
keys corresponding to negative reports. If we determine
an exposure to a positive case, but other users report neg-
ative in the same exposure instance, we can have more
confidence that our risk of having contracted COVID is
lower.

For each client, when it exchanges cryptography to-
kens with nearby clients, it also collects its GPS location
and peer device’s RSSI information. When it receives
a cryptography token from a peer, the client records its
current GPS location. The GPS location is used to notify
users the high risk locations that they have contact with
another positive case. The user could recall whether they
wear a mask in that location and the distance between
themselves and other people, then test accordingly. The
GPS information also helps decide the co-occurrence of
positive and negative cases in same physical location.
For Bluetooth RSSI, it is the strength of the beacon’s
signal as seen on the receiving device. The RSSI sig-
nal strength depends on distance and broadcasting power
value. With this RSSI value, we can infer the distance
between the current client and the peer. If we receive
several positive reports with strong Bluetooth signal, we
can infer that we have had close contact with those pos-
itive cases and the risk of getting COVID is relatively
high. If there are interference between two clients, it will
also reflected by the RSSI value.

For our Choo-choo implementation, we use a naive
linear model to evaluate the risk score, and consider the
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effectiveness of distance inferred by RSSI. The algorithm
is shown in “Algorithm 3”. The basic assumption of our
risk score model is that 5 negative cases around a pos-
itive case is sufficient to indicate the virus is no longer
contagious. Some parameters in our risk score model are
derived from [3].

Algorithm 3 Calculate Risk Score s
Require: 0≤ s≤ 100, RSSI, positive and negtive report

score← 0
for Positive Case Report do

dist← α ∗10−RSSI/4

if dist < 1 then
score += 20∗ (1+12.8%)

else
score += 20∗ (1+2.6%)

end if
end for
for Negative Case Report do

if Same GPS location with any positive case then
dist← α ∗10−RSSI/4

if dist < 1 then
score -= 4∗ (1+12.8%)

else
score -= 4∗ (1+2.6%)

end if
end if

end for

Our current risk score model is simple and heuristic.
However, we believe Choo-choo’s data can be used in
a more powerful way when paired with medical domain
knowledge. For example, an epidemiologist could pro-
pose a more professional model to predict the risk level
based on this data.

5 Experiments

We conducted experiments using several devices to il-
lustrate Choo-choo’s functionality. We built and ran our
client on iOS devices, specifically iPhone and iPad. The
testing authority server and central server ran on AWS in-
stances. To test the whole system with multiple clients,
we employed several iOS devices in the same location
and ran the Choo-choo system on them.

We also conducted end-to-end experiments to show
the effectiveness of our cryptography flows and risk
score model. Table 1 illustrates the risk score trends
between 3 clients, if one or two of them report positive
test result. We keep the distance the same for these two
clients and read the risk score reported by Choo-choo.

To better understand how negative report cases influ-
ence Choo-choo’s risk score, we mimic a typical scenario

Test Situation RSSI Positive
Cases

Risk
Score

In same room, dis-
tance 1m

−51 1 26

In same room, dis-
tance 1m

−51 2 51

Through glass wall,
distance 1m

−65 1 20

Through hard wall,
distance 1m

−72 1 20

Table 1: Testing different physical layouts

Figure 3: Risk Score trends

to show how the system works. We put 11 devices to-
gether (the distance between each devices being less than
1 meter) and read the risk score reported by Choo-choo.
We tested 3 different scenarios and report the first de-
vice’s risk score: There are 0, 3, 5 clients reporting they
are negative as seen in Figure 3. If more people report
they tested negative, other clients might drop from “high
risk” to “medium risk”. This change indicates that the
client has relatively low risk to be infected by COVID.

6 Conclusions

In this paper, we proposed and implemented Choo-choo:
a trustworthy and practical contact tracing system that
factors in negative test results and exploits cryptographic
primitives to prevent false positive reports.

We employ a reliable distributed protocol that involves
three kinds of parties and supports multiple clients, mod-
eled after the Apple-Google protocol. We defined our
threat model and proposed our security goals to achieve
trustworthiness: Correctness, Privacy, and Integrity. We
further illustrate our cryptography flow that realizes our
security goals, including the token generation and the
server-side verification process of reported results. Fi-
nally, we evaluate the effectiveness and reliability of
Choo-choo. Our experiments show that our system pro-
vides a reliable indicator of exposure risk and also sup-
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ports a large number of clients.
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