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Abstract
Latency profiling in distributed systems is critical for site

reliability, service robustness, and fairness. However, tradi-
tional latency profiling techniques have high overhead and
collect data aggregates that usually monitor a specific ser-
vice at a single node. Critical path tracing can be applied
to diagnose performance issues faster with minimal disrup-
tions in large scale distributed services foregoing complex
and invasive infrastructure.

We implement Distributed Critical Path Tracing (DCPT)
as a low latency and request-conscious form of latency trac-
ing. Our implementation is based in XDR [2] and exposes a
minimally-invasive API for performance tracing. We test our
implementation with simulated workloads and analyze time
and space overheads in extreme circumstances.

1 Introduction

Modern computing services are served on large and com-
plex distributed system topologies with hundreds of nodes
and many parallel links between them. These large networks
make latency profiling obscure due to the large volume of
RPCs servicing requests. Service providers find themselves
employing tens of engineers for monitoring the performance
of these services. These performance engineering teams typ-
ically use a combination of telemetry, instrumentation, and
distributed tracing to form some heuristic of overall system
health (latency and load). Common profiling techniques are
either service-node local (instrumenting machines or logging
RPC boundaries), or request local (distributed tracing). How-
ever, we find both of these techniques do not present action-
able outputs for a performance engineer.

Throughout this paper, we consider techniques as either
request facing (information clients issuing calls can directly
see) and node facing (information local to servers that admin-
istrators can see). Section 2 introduces some related works
and preliminary work on Critical Path Tracing. Sections 3
and 4 introduce the implementation of DCPT on XDR. And
Section 5 presents overhead evaluation.

1.1 Background
1.1.1 Instrumentation

Traditional performance instrumentation systems are usually
node facing and involve some form of server level tracing
through either RPC telemetry or hardware profilers [4]. Avail-
able distributed tracing infrastructure generated traces are
typically collected by a background performance daemon that
collects performance counters and coalesces RPC traces to ex-
port them to a health check in a periodic schedule. These tech-
niques produce actionable performance information hours,
but at best it will be after an event has occurred. Since the
traces need to be stored on servers and be retrieved at a later
time, there is a certain space constraint to the size of the traces
in instrumentation, typically forcing systems to sample traces
and aggregate them. Here, we easily lose information about
the 99th percentile of request latencies.

1.1.2 Distributed Tracing

Modern distributed tracing methods such as Dapper [7] col-
lect all the RPCs of a particular request to paint a full picture
of all the sub-components involved in the request. They can
be request facing and return specific information tagged along
packets to system administrators or performance teams if they
send special requests. However, these traces record all out-
bound RPC calls and all inbound RPC replies. Additionally,
most of these sub-components are not the central bottleneck
for a response. Modern computing centers have an extremely
high degree of parallelism and request response is solely de-
termined by the slowest component. Hence, many engineers
have to look at these logs of traces for a while before finding
even the first three nodes of the critical path.

2 Related Work

We are implementing the Distributed Critical Path scheme
inspired by [1]. Most large distributed services use some form
of health check or telemetry to monitor request load balancing.

1



For example, Amazon has their own Cloud Watch Service [6]
and Google has Dapper [7]. Although these works are related,
performance monitoring infrastructure is typically in-house
with particular performance feature depending on the service
type.

2.1 Dapper
The closest neighbor to DCPT is the Google distributed trac-
ing Dapper [7]. It is a Low Overhead distributed out-of-band
trace collection infrastructure used to trace individual requests
through a distributed system to highlight latency bottlenecks.
The trace is stored in local log files, collected later and trans-
ported to a central repository.

Dapper is a request facing infrastructure. The request is-
suer can find the characteristics of the request they sent by
querying for the trace upon completion. Most users can tag a
request, have it monitored, then find the trace on a central big
table. It also has low overhead and a transparent API - most
engineers don’t need to know it exists to properly interact
with its services. The key differences between Dapper and
DCPT are the following:

First, DCPT uses in-band trace collection where the trace
tree is sent back in the RPC response body. Second, the vol-
ume of information captured in the traces. In a sense, Dap-
per contains all the information DCPT would contain. How-
ever, the engineer would need to look through all the RPC
links to find the critical path, which slows down performance
pin-pointing. Moreover, Dapper is implemented with a back-
ground Daemon on Dapper-enabled machines to feed infor-
mation to a centralized set of Dapper collectors and a big table
to store the data. This information can take time to surface
and the engineer will have to wait. We hope with the reduction
in size of traces (by about a log factor), DCPT can omit the
background daemon and centralized trace collector.

2.2 X-Trace
For node local profiling techniques, some techniques in X-
Trace [3] are popular choices. X-Trace is a network trac-
ing framework that focuses on recording the path a request
takes through the sub-components of the network stack across
multiple applications inside a specific server that abides to
administrative boundaries. It implements an in-band trace col-
lection strategy by constructing the trace by flowing along the
data-path through the whole network stack. DCPT differs by
constructing paths across RPC protocol boundary and tracing
across the server tier nodes. X-Trace stores the trace path
out-of-band within the node itself under the control of the
administrator, whereas DCPT attaches the trace path to the
response RPC body and propagates it across the nodes until
the specific request is completed.

Although X-Trace is used in many scenarios, it only pro-
vides the path data. This means other monitoring tools will

Figure 1: An example implementation of CPT in a three
layer network topology divided into tiers serving a request a
single client. Each node takes the next tier’s returned paths
and latency, then propagates up the argmax plus its own time.
The final returned path for the client here is S0/S11/S22.

be needed for latency info to find the bottleneck for a specific
request within the trace. Since it stores traces within individ-
ual node, more engineering effort is required to pull out the
traces of each request and start putting the pieces together
across nodes to construct critical path.

3 Methods

We define a network topology as T = (G,E), where G rep-
resents the set of nodes in our topology and E is the set of
communication channels. We track the Critical Path per-node
by propagating back only the argmax of the downstream paths
for each level in our tier system. For example, in Figure 1, we
show a top-down tiered server with |G|= 6 and |E|= 6. The
critical path here has size ⌈log2(6)⌉= 3 which is the size of
the deepest path.

Let St,s be a server s at a tier t. St,s will return a path pt,s
with:

pt,s = St,s ⊕ argmax
p∈{pt−1,s′ |s′∈next tier}

time(p)

We use ⊕ here to denote path concatenation. With this, we
construct a critical path for some node St,s using the critical
path of the children servers (in the next tier). Finally, St,s
will propagate back a tracing tuple (pt,s, time(pt,s)) where
time(pt,s) is taken independently of any children times to
account for computation time spent in St,s.

The beauty of the node-wise argmax is that the overall path
we receive at the client response includes every critical latency
edge for the request. Hence, if we improve any channel e ∈
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Figure 2: An example implementation of tracing around a
critical path within a single node.

p0,0, we will see at least some improvement in the maximum
latency.

4 Implementation

We implemented DCPT on top of xdrpp, a C++ RPC library
created by David Mazières [5]. xdrpp is built with XDR [2],
which is used to encode data and communicate between multi-
ple machines . We add new fields to the RPC message, modify
the xdrpp stack, and minimally require a few variables at the
top level server client implementation. We also implemented
a Distributed Tracing Profiler (DPerf) for comparison using
the same stack as DCPT.

4.1 Modification to RPC Packets
4.1.1 RPC Call Requests

We add a new field to the RPC Call request that tracks the
mode the client requests, namely a TraceMode. This is re-
flected in the RPC signature for the tiering server that is ex-
posed to the top layer as an API.

RPCinvoke(args, cb_func, trace_mode)

where trace_mode is an optional flag that enables DCPT
tracing for the particular request. We trace this flag throughout
our servers using a field in the RPC call header:

hdr.body.cbody().trace_mode = trace_mode;

Incoming packets with trace_mode specified will re-
ceive a reply with the associated trace. To initially set the
trace_mode, the client can issue command line args: “-t”
and “–tracing” for DCPT, whereas "-d" and "–distributed"
to specify DPerf. By default, tracing is turned off. There
are three possible TraceModes: {OFF, TRACING, DIS-
TRIBUTED_TRACING}. Example usage is:

./async_client [-t | -d] key value

./async_client [--tracing | --
distributed] k v

Unless an RPC is specifically targeted, most functions will
not be traced.

4.1.2 RPC Reply Responses

We added two new fields to successful RPC reply responses: a
variable-sized path field and a time variable indicating request
completion. These fields track the current state of our trace.
In particular, when a request is completed at some node B, we
need to forward the current tracing state up to parent node A.
Note that node B must account for tracing information from
its children nodes to have an accurate DCPT at its node-level.

We store the end time using a CycleTimer, a processor
cycle-counter borrowed from CS149 that tracks time. We
compute the difference (in seconds) between the time an
RPC Call request is dispatched and when the reply callback
is called. This tracks the total time it took for the request to
complete, which can be relayed to parent nodes.

4.2 Modification to xdrpp stack
xdrpp registers a server to an asynchronous RPC TCP listener
when a server is spawned up in order to process RPC requests
as the server receives them. When a request is dispatched, we
modify the session associated with the dispatched request to
include the node name and the trace mode. We modify the
server type such that it includes a node name on the instance
itself. The trace mode exists as a global variable per node
instance, which is initialized on dispatch by reading the RPC
Call request.

Recall that timing is captured from the moment an RPC call
request is made and when the reply callback is called. We ac-
complish this by overloading reply_cb::operator(),
with our tracing functionality. This functionality includes cal-
culating the time as detailed above, and constructing the path
for this node. This operator overload was used by xdrpp to
send replies back to the client, which is the exact endpoint
our tracing requires.

When a reply is sent, we extract our tracing data through
a global tracing variable, which is a pair of path and time.
This node-instance variable gets modified each time reply
callbacks are accessed via operator() so that each node has
enough information for its current tracing state. At this step,
we have enough information to properly forward a reply to
the parent node with the original XDR reply fields and our
own fields, namely path and time.

4.2.1 Asynchronous Requests

Our tracing implementation supports asynchronous RPC re-
quests. To calculate the critical path of a particular transaction,
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we only record the critical path up to the point of issuing a
reply. This is because the end client only cares about the la-
tency of a response. Hence, we would only need to trace the
critical path of the set of callbacks directly considered for a
response.

We reflect this in our tiering system by using a blocking
counter at each tier server to wait for all lower tier server
responses (we consider all replies). All requests are still asyn-
chronous and can be executed in parallel. However, we need
to wait for a response from all of them. Then, we take the
argmax of children servers’ times and reply with our critical
path.

4.2.2 Server Client Synchronization

Each node instance also has a mutex associated with its trac-
ing state. When a node calls reply_cb::operator(),
we create a critical section around our tracing logic. Global
variables are used to track the tracing state, such as max path
constructed from the child nodes and times associated with
the paths. Some internal structures that store tracing informa-
tion involve maps from xids to time and xids to path. This
mutex protects the maps from being overwritten as well as
modifying the per-node tracing state.

Generally, bottlenecks are introduced with synchronization
(especially for performance tracing). However, DCPT can
make use of service internal synchronization. In our case of a
distributed key value store, we need to use a mutex to coalesce
responses anyway, hence, the overhead should be reasonable.

4.3 Server Types
Our tier server model contains two kinds of servers: Tiering
servers and Data servers.

4.3.1 Tiering Server

The responsibility of the tiering server is to connect other
servers and create a topology through a tiering system. Our
tiering system is set up with the following command:

./tiering_server offset [offsets ...]

Note that offest and offsets are unique offsets from
a base port, namely 30428, for API simplicity reasons. The
tiering server first opens a TCP listening socket by binding
to a unique port (30428 + offset), allowing it to receive
dispatch messages from the parent servers. It also opens TCP
connect sockets for the children servers (with ports 30428
+ offsets) in order to forward requests onto them during
the bring-up phase. Both the listening socket and the connect
sockets remain open until the tiering server is terminated.

Each tiering server has a unique_id string that is based
on the unique port it listen on. Our tracing implementation
uses this id during the reply phase when constructing the
distributed or critical path.

4.3.2 Data Server

The responsibility of the data server is to complete the RPC
request and reply to the client. This server is set up with the
following command, where offset specifies a unique port
offset from our base port:

./async_server offset

Recall that we use a tiering server to create our network
topology. In particular, this means that the client of a data
server is a tiering server. Once the reply is constructed from
the data server, it gets propagated up along the parent tier
servers until it reaches the original, non-tiering-server client.
Our tracing implementation calculates the critical path(s) at
each node along the reply’s propagation upwards. Each tier
looks at the path and time fields specified in the reply, and
modifies it according to our tracing specifications to construct
a new trace, which is continually propagated up the network
topology. The client base API looks like this:

void async_base(args, cb_func, trace_mode)

Where trace status is traced by the same field in the RPC call
packet:

hdr.body.cbody().trace_mode = trace_mode;

4.4 Tier Server Model
For simplicity, we have three tiers of servers in our implemen-
tation (see figure 1). Tier 1 contains a single tiering server that
receives clients’ requests and forwards them to tier 2 tiering
servers. Each Tier 2 server receives the data request from tier
1 server and forwards the data request to tier 3 data servers.
These data servers process the RPC request and construct
a reply. Note that this server also contributes to the tracing
information we collect.

When the reply is completed, it is sent to the client, which
is a tier 2 tiering server. This tiering server looks inside the
RPC reply and extracts the tracing information in order to
compute the critical path for its current node. Note that this
node’s critical path will be dependent on all children servers it
is connected to. For example, S11 will observe the tracing in-
formation of S21,S22 to determine which tracing information
to append to, such as the critical path. This process repeats
for the transition to Tier 1 and the client tier as well. When
the client receives the reply, it will also receive the tracing
information.

5 Evaluations

We primarily compare our DCPT implementation against a
control system with no profiling and DPerf (also implemented
in xdrpp using a similar method). We first evaluated the qual-
ity of a critical path in the same 3-tier key value store served
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Figure 3: A hidden critical path (red line) on a single threaded
node. Server s22 is represented with the blue box and its com-
putation at time t is denoted as st

22 to represent the calculation
of another node’s request (dotted blue line). The critical path
response is handled at time t +1 denoted by st+1

22 .

on the original implementation of xdrpp. We then moved
to scaled evaluation on a chained server architecture and a
fanned tiering architecture of size 10, 100 and 1000 in order
to measure metrics such as latency (Figure 4).

5.1 Testing Infrastructure
We ran all of our tests on a single AWS EC2 g4dn instance
with 4 vcpus spawning the chained server and fanned servers
in Figure 4. Each node is serviced on a thread, so we effec-
tively made 1000 threads to simulate 1000 nodes on AWS.
Our synthetic work load is a set of 10 kvputs and simulated
wait times in each of the nodes. For statistical accuracy, all of
our evaluations are done across 10 kv_put requests and we
report the average.

5.2 3-Tier-Implementation
To demonstrate an interesting path and show our implementa-
tion extracts a critical path from a meaningful topology, we
first implemented the 3-Tier server as show in Figure 1. We
simulated a key value store workload with end nodes s21,s23
taking a 1 second delay for a computation (sleep for 1 second)
and s22 taking a longer 3 second sleep. All the servers are
single threaded.

We found an interesting path on the 3-tier where two paral-
lel computations were forced to execute sequentially (since
our servers were single threaded) and it created the critical
path (Figure 3). Specifically, our critical path returned the
following:

critical path: "Server0_[6.016368s]
/Server11_[6.015887s]/Server22_[6.015142s]/"

(a) Fanned server topology

(b) Chained server topology.

Figure 4: Two evaluation server types for overhead of DCPT
and DPerf. Red lines show tracing directions (for both DPerf
and DCPT).

In this scenario, the Distributed tracing would return every
RPC issued and the end engineer can repiece together the
3-nodes. However, we see this is slow and unscalable if we
have more than 3 nodes. Worse, from the perspective of each
node, computation is fine. s22 does not care that the request
took 6s because it was always serving some request (at time
t and t + 1, s22 was never idle and the CPU functioned as
normal). Hence, this makes it extremely hard for server facing
traces to show the response to this request was slow due to
congestion at s22. If the request is a common, the performance
team could infer workload imbalance if server s22 is always
at full CPU utilization. But requests like the one in red can be
rare and will be hard to discover.

5.3 Performance

Figure 5: Latency overhead of DCPT vs Distributed Profiling
and an untraced control on the chained server architecture.

5



3 nodes 10
nodes

100
nodes

1000
nodes

DCPT Chain 0.99x 0.99x 1.03x 1.18x
DPerf Chain 1x 0.99x 1.03x 1.21x
DCPT Fan 1.6x 1.09x 1.15x 1.21x
DPerf Fan 1x 0.99x 1.26x 1.5x

Table 1: Average timing overheads by multiplier for DCPT
and Distributed Profiling. We don’t really see very significant
overheads on chained architecture until about 1000 nodes
which has around 20% overhead. On the fanned architecture,
we see large overhead due to computation from 3 nodes and
on.

5.3.1 Latency Overhead

Since we are implementing a tracing method, overhead is
extremely important. To simulate a workload where trac-
ing information could lead to congestion, we implemented a
chained server (Figure 4) to incur overhead. The log latencies
are shown in figure 5 and the average overhead latency are
show in Table 1 as a multiplier. Our implementation starts
suffering significant overhead at the 1000-node chained struc-
ture. At 1000 nodes, we see the trace starts becoming like
20k bytes long (our per-node trace is roughly 20 bytes long).
This is quite long and we see a near 18% latency overhead
for DCPT. Since we implemented DPerf to track mainly in-
ternal RPC’s, it returns a similarly sized trace (since there is
only one path in the chain). But it has a higher overhead for
accounting for each local node.

Performance on the Fanned server topology highlights both
the cost of DCPT on small topologies and DPerf on larger
topologies. The network time for the Fan architecture was on
the order of hundreds of microseconds since the architecture
is shallow (two hops). Hence, the actual computation of a
critical path within each node could become a bottleneck.
However, we see the DPerf performs worse at scale after
the network topology contains more than 100 nodes. This is
intuitive since the size of a DPerf trace for n = 1000 includes
all the paths (roughly 20 k bytes) and DCPT only returns a
path with 40 bytes (critical path here has two servers since
the whole topology has two hops.). In general, we can expect
DCPT to return a trace on the order O(log(|E|)) since the
critical path would hopefully not include every possible edge
or cycles.

5.3.2 Space Overhead

Both our DCPT and DPerf implementation save no extra
overhead within nodes (except for entries in a global map on
memory, which is recaimed on server shut down. The main
space constraint is within the XDR packets containing the
traces. In the chain implementation, DCPT generates a trace

the size of O(n), a constant addition per node in the n sized
critical path. DPerf generates a trace size of size O(n), but
with a larger constant since each node also attaches its own
local trace. This is expected since the workload is on a single
chain.

However, in the fan-out architecture, DCPT only generates
a trace of size O(1) since the critical path only has 2 servers,
but DPerf generates a trace of size O(n), one for each node.
In this scenario, DCPT is better in space.

6 Conclusions and Future Work

We implemented DCPT and a DPerf system on XDR to trace
per-request critical paths from a relatively new paper ( [1]
was published in March 2022). We saw a clear advantage
against traditional DPerf for request facing traces, both in
terms of trace size and latency scaling. Moreover, DCPT is
workload sensitive since it can adaptively adjust sampling fre-
quency via optional parameters in RPC call signature. DCPT
acts as a transparent performance monitoring layer that the
application programmer can ignore until they need action-
able performance information. Then DCPT can provide a
quick and actionable critical path trace. This should expedite
Performance Engineering work and help scale large products.

One potential future direction is making DCPT compatible
with a background daemon for data collection. If a service
has a small number of nodes, but each RPC contains a critical
path greater than length 1k (this can happen if an RPC loops
over all nodes in a cluster several times), then the critical
path traces themselves become a bottleneck and would need
to be offloaded in the background. Hence, making DCPT
compatible with logging and tracing infrastructure is a good
future direction.
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