
DENSE: A Decentralized Exposure
Notification Spreader for Densely Populated

Settings
Ruslan AlJabari
Nathan Bhak
Jerry Chen
Ryan Guan

Stanford University

ABSTRACT
DENSE is a mobile-phone-based contact tracing pro-
tocol that uses a fully decentralized architecture (rare
among existing contact-tracing systems) and preserves
privacy. Devices in close proximity pair with one an-
other using Bluetooth Low Energy, logging their recent
encounters and forwarding infectious disease notifica-
tions to other nearby devices. We hypothesize that this
system would work effectively in densely populated
settings like college campuses, where most in-person
interactions will occur in similar locations.

1 INTRODUCTION
Contact tracing and exposure notification systems are
important public health measures in the face of wide-
spread infectious diseases. In order to quickly notify
people who may have come into contact with some-
one infected, most of these systems use a central server
or set of servers to store user data, which can lead
to concerns about user privacy. With DENSE, we ex-
plore a completely decentralized model for transmit-
ting COVID-19 exposure notifications. Instead of com-
municating with a central server, in DENSE’s peer-
to-peer/gossiping protocol, users continuously adver-
tise COVID-positive notifications they receive from
nearby users. If the network of users is densely con-
nected enough, eventually any user will receive a no-
tification from any other user. We hypothesize that
this model would be successful in densely populated
settings such as college campuses, where people are
frequently in close proximity to each other, and where
COVID-positive peoplemay remain near COVID-negative

people after testing positive, and we propose that this
model will function even as people join and leave the
network at arbitrary times.We implemented the DENSE
protocol for iOS and evaluated its performance on a
small network.

2 RELATEDWORK
DENSE takes inspiration from various contact tracing
protocols implemented and used during the COVID-19
pandemic.
The PEPP-PT and BlueTrace protocols involve com-

municating a user’s full encounter logs to a central
server, owned by a health authority, if they have tested
positive. The health authority server can decrypt infor-
mation in the logs to reveal each user’s server-issued
identifier (for PEPP-PT) or unique static ID and phone
number (for BlueTrace).[2] [3] These systems send full
logs of encounters to a central server, even a trusted
one, raising privacy concerns. DENSE uses some similar
ideas to PEPP-PT to preserve user privacy: using ran-
dom and changing identifiers, storing most encounter
logs on-device to avoid data leaks, and periodically
clearing encounter logs.
The DP-3T protocol is a protocol designed with data

privacy as a first consideration. [7] Although it still
utilizes a central server to relay messages, DP-3T only
trusts the server to not tamper with exposure events (i.e.
not creating fake or removing real exposures) but no-
tably does not trust the server with user privacy. Rather
than upload a full log of encounter, positive users will
only send a representation of their own ephemeral iden-
tifier that the server will relay to other devices, which



Ruslan AlJabari, Nathan Bhak, Jerry Chen, and Ryan Guan

reconstruct the real ephemeral ID offline. A similar
protocol is implemented by Apple and Google in their
mobile devices. [1] Even though the server does not pro-
cess logs in these protocols, a central health authority
still carries the risk of observance of message relays; an
attacker that can assume control of the central server
can track individuals based on the identifiers that are
observed.
While these protocols notify users if they have been

potentially exposed to a positive case, another contact
tracing system known asNOVID alerts users towhether
they came in contact with a positive case or were in
close proximity to someone who themselves were at
some point in contact with a positive case. [6] By deter-
mining degrees between users in their physical interac-
tion networks, NOVID aims to notify individuals about
exposure risk before exposure occurs. To facilitate this,
a central server stores information about individuals’
interaction networks, requiring additional trust in the
server to protect private user data.
DENSE’s fully decentralized model is likely less ef-

ficient at transmitting exposure notification messages
than the aforementioned centralized systems. Evenwith
a dense network (e.g. a single college dorm rather than
a whole college campus), messages may take several
peer-to-peer hops to reach all intended recipients. A
longer identifier lifetime than existing systems also re-
sults in more possible vulnerability to eavesdropping
and tracking. However, this decentralized model for ex-
posure notification eliminates any concerns from client
communication with and data processing on a central
server, in addition to being theoretically interesting.

3 DENSE NETWORK STRUCTURE
AND PROTOCOL

DENSE users within 100 meters of each other are able to
exchangemessages using Bluetooth Low Energy, a wire-
less communication medium that uses little power.[4]
Periodically, while the app is open, users scan for other
users using the same service; at all other times, users’
devices advertise their presence on Bluetooth. Once a
connection has been established, messages can be read
from and written to between devices.
These messages can be categorized into two types.

First, users exchange RSA public keys with other users
and record these encounters, in order to determine

whose infection notifications they should pay atten-
tion to. Second, if a user knows they have COVID, they
can broadcast an infection notification message includ-
ing their own key as an identifier. Only users who had
previously come into contact with the infected user,
i.e. those who needs to know about someone’s infec-
tion, will be able to decrypt and verify this message. By-
standers who cannot decrypt infection notifications still
forward them through the network. Then, in a densely
connected network, these messages should reach all
intended recipients.
In this section, we describe these messages’ struc-

ture, the maintenance of associated logs, the process
of rotating keys/identifiers, and some properties of the
protocol overall.

3.1 Pairing messages for encounter
logging

3.1.1 Description of protocol. A user generates a 4096-
bit RSA key pair upon entering the DENSE system. In
order to exchange public keys, users broadcast their
unencrypted DENSE public key through a value on the
device readable to anyone who can open a Bluetooth
connection with them. Users broadcast their keys rather
than a pseudonymous identifier because the DENSE
system lacks a centralized infrastructure to map keys
with identifiers. Instead, in DENSE, public keys serve as
the temporary pseudonymous identifiers used by other
exposure notification systems.
When a user discovers a DENSE key broadcast, they

record the reported public key, mapped to the time they
received the message, in their encounter log. This pro-
cess of logging constitutes a “pairing". If the received
public key is already in the user’s encounter log, the
time associated with it will be overwritten with the
time the new message was received; for infection noti-
fication purposes, only the most recent encounter time
is necessary.
To reduce memory footprint, the encounter log is

routinely “garbage-collected". Each day, the encounter
log is scanned and entries more than 14 days old are
cleared automatically. This constant is similar to that in
related work, because an encounter from over 2 weeks
ago is likely no longer relevant for the purposes of
contact tracing.
To preserve privacy, keys/identifiers are rotated peri-

odically. Once a user has been advertising one public



DENSE: A Decentralized Exposure Notification Spreader

key for at least 7 days, they generate a new key pair and
begin to share the new public key. Incoming messages
for the next 7 days should be decrypted with either the
previous private key or new private key, so that any
encounters from before the key rotation are adequately
captured.
Finally, we do not include responses or acknowledg-

ment messages in this part of the protocol because
a Bluetooth connection already requires a two-sided
agreement on the connection.

3.2 Infection notification messages
3.2.1 Description of protocol for senders. A user who
has tested positive for COVID periodically advertises
DENSE infection notificationmessages through a distinct
value on device. Each message contains an unencrypted
header identifying it as an infection notification and
including the time that the message was sent. The re-
maining content — the public key of the infected user
in addition to a duplicate of the time — is symmetri-
cally encrypted with a randomly generated secret key.
The secret key is attached as multiple copies encrypted
with each of the RSA public keys listed in the infected
user’s encounter logs at the time of sending. Lastly, the
encrypted content is digitally signed with the infected
user’s RSA private key using RSASSA-PSS. The charac-
teristic value that advertises the infection notification is
the same no matter if the user was originally sending or
forwarding the message. Then, receiving users should
be able to find out who was infected only by decrypting
and verifying the message, and a receiving user can
do this iff their public key was in the infected user’s
encounter logs.[5]

3.2.2 Description of protocol for receivers. Receivers of
relevant infection notification messages will broadcast
the message to nearby users through the same charac-
teristic value, and will notify the user if the infection
notification message is intended for them.
First, steps are taken to prevent forwarding fraudu-

lent messages. If the time in the header is over a week
ago, the message is discarded as irrelevant to contact
tracing. Next, the receiver attempts to decrypt the body
of the message using their own private key. If the de-
cryption is successful, themessagewas intended for this
receiver. However, if the body’s time does not match
the header time, or the signature is not verified by the

public key included in the body, the message is dis-
carded as it was tampered with. If not, the message is a
legitimate notification of infection: DENSE should alert
the user along with the last time they were in contact
with the infected person, if the public key exists in their
encounter logs.
Finally, if the message was not discarded from the

above steps, the receiver stores the encrypted message
in a received infection notifications log, so that it can
be broadcasted unchanged to other nearby users. As
in the encounter log, we periodically compare each
notification’s timestamp with a standardized time-to-
live (e.g. 7 days), removing it from the log if necessary.

3.2.3 Discussion. If keys function theoretically as pseudony-
mous identifiers, why take the extra step of encrypting
and signing the infected user’s public key? This step
is taken for two reasons. First, although public keys
are pseudonymous identifiers, bystanders ought not to
know the public key of someone infected if they have
not been in contact. Second, this can prevent pseudo-
replay attacks where a malicious user edits the times-
tamp on a stale request to fool legitimate users into
thinking that they have had a recent COVID-positive
encounter with another legitimate user who actually
tested positive for COVID in the past.

3.3 Properties of DENSE
Desirable theoretical properties of a contact-tracing
system include privacy preservation, robustness in the
face of malicious users (such as those seeking to forge
other users’ messages), and actual effectiveness at com-
municating exposure notifications. We discuss the first
two.

3.3.1 Privacy. One issue with any system that tracks
users’ encounters or broadcasts information about users
is compromising user privacy. DENSE attempts to evade
this issue by avoiding the concentration of data in any
central server, clearing logged data frequently, and us-
ing only pseudonymous, temporary identifiers.
While the information stored by the app itself only in-

cludes the most recent encounter time, a malicious user
who can intercept Bluetooth messages will be able to de-
termine, for example, which users (public keys) visited
a certain area at which times. While Bluetooth connec-
tions are established 1:1, legitimate users will actively
seek out Bluetooth connections to share their keys and



Ruslan AlJabari, Nathan Bhak, Jerry Chen, and Ryan Guan

any other messages, so a malicious user would not even
have to finagle becoming a person-in-the-middle to find
a legitimate user’s key.
However, we believe that this situation does not present

a privacy/tracking issue because users periodically ro-
tate the key they advertise. At worst, a single user’s
general location could be identified for no more than
a week, if the malicious user was able to follow them
around or plant Bluetooth devices in multiple locations.
In addition, this user would not be easily identifiable,
because users share no personally identifying informa-
tion through DENSE, including exact GPS information,
phone number, or name.

3.3.2 Malicious user tolerance. In the previous section,
we considered amalicious eavesdropper onDENSEmes-
sages. Now we consider an attacker who sends DENSE
messages with the aim of disrupting the system.
Because there is no way of authenticating a public

key broadcast, an attacker could share a public key that
does not belong to them. However, a legitimate user
listening will do nothing but log the key, and will only
send a message in response if they report an infection.
If a legitimate listener did send an infection notification,
it would not be decipherable by the attacker, and they
would already sent a message anyway, so the attacker’s
actions could not result in a legitimate user sending
additional messages.
A malicious user might also attempt to forge an in-

fection notification message with a fraudulent public
key, but this message will not cause an alert for anyone
who hasn’t logged this key. Replicating a legitimate
public key message will cause it to be discarded if the
timestamp was altered or more than 7 days old.
In sum, existing attack vectors are to overwhelm

someone’s logs with key advertisements from multi-
ple fraudulent public keys, or overwhelm the network
with repeated non-duplicate infection notification mes-
sages.1 With no client-server communications — only
client-client communications where we must trust on
first use — we believe there are limited ways to guard
against these network-flooding attacks.

1In this latter case, a user who receives a false alert will likely take
steps to protect their own health. We think this would actually be a
good outcome in themiddle of a public health crisis that necessitates
contact tracing.

4 IMPLEMENTATION AND
EVALUATION

We implemented the coremessage-generating andmessage-
passing features of DENSE for iOS using React Native,
relying on the hybrid-crypto-js library for crypto-
graphic primitives.
To describe how we evaluated the system, we must

describe the constraints of Bluetooth Low Energy. Blue-
tooth in general categorizes devices into “centrals", which
scan their surroundings for other devices, and “periph-
erals", which advertise their presence. (Phones are able
to serve as either, allowing for the shifting between
roles in our description of the protocol.) Each device
advertises certain “services" — bundles of data storage
and features. Services operate using multiple “charac-
teristics", which are readable and writeable values along
with security properties and configuration information.
For example, BlueTrace has established its own service
for communicating information between phones. [3]
[4]
Ideally, to implement DENSE over Bluetooth, we

would create a unique BLE service for DENSE. Mes-
saging would proceed by phones switching between
central and peripheral roles and reading from/writing
to each other’s characteristics in order to communicate,
as described.
However, we could not find a publicly available and

free way to allow a phone to advertise a new service,
and the phones we used to test DENSE advertised ex-
isting services that had single characteristics that were
either read-only or write-only. As a result, we could
not test DENSE using only our phones. We also could
not use emulators because Bluetooth capabilities are
not enabled. In order to evaluate and demo the system,
our only feasible option was to set up a laptop as a
Bluetooth peripheral advertising a unique service, and
communicate between phones by having each phone
write to characteristics from this service on the laptop,
rather than to the other phone.
In this setting, we found that two phones acting as

Bluetooth central devices could successfully communi-
cate pairing messages and infection notifications. Be-
cause we used the laptop only to mediate Bluetooth
communications, we believe this demonstration shows
that our methods are sound, in allowing messages to be
communicated and decrypted correctly. Unfortunately,
however, we did not think that this format would be



DENSE: A Decentralized Exposure Notification Spreader

suitable for a larger-scale implementation or evaluation,
because DENSE was designed to be a decentralized,
phone-to-phone protocol and it would be irrelevant to
evaluate the effect of network conditions or a larger
network when a laptop would have to be used as a
central intermediary.

5 CONCLUSIONS AND FUTURE
WORK

DENSE allows users to transmit COVID exposure noti-
fications with no central server or authority involved.
Even though the lack of a central server necessitates
that users share more with each other over the net-
work, we believe user privacy is still achieved — even
in the face of a malicious user able to intercept and
send messages — by frequently rotating publicly trans-
mitted keys and not distributing personally identifying
information.
One future design idea that would allow for more

user choice is to enable users to choose privacy lev-
els of an infection notification. In order to share more
details about their exposure to an infected individual,
such as the location of the encounter, we could imple-
ment mechanisms to mark certain contacts as “trusted",
allowing them to decrypt and view more information
from the exposure message than others that receive
the notification. The tradeoff is that more personally
identifying information must be revealed — both to de-
termine whether to trust another user and to provide
more information about the encounter.
Most importantly, we did not undertake larger-scale

evaluations of DENSE in real settings due to the difficul-
ties mentioned in the evaluation section. As a result, we
do not know whether the network-flooding protocol is
sufficient to enable tracing at scale, nor if the conditions
needed to share keys sufficiently approximates condi-
tions that would result in a close contact. In addition,
DENSE only uses Bluetooth, like similar digital con-
tact tracing protocols. We did not explore transmitting
messages or logging encounters via other mediums,
such as identifying nearby users by their connected
Wi-Fi hotspot. A more elaborate implementation and
further evaluation would demonstrate additional room
for growth.

ACKNOWLEDGMENTS
We would like to thank CS244B course staff, Professor
David Mazières and Geet Sethi, for providing feedback
on our project during its development.

REFERENCES
[1] 2020. Exposure Notification Bluetooth Specification. https:

//www.apple.com/covid19/contacttracing
[2] 2020. Pan-European Privacy-Preserving Proximity Tracing:

High-Level Overview. (2020). https://github.com/pepp-
pt/pepp-pt-documentation/blob/master/PEPP-PT-high-level-
overview.pdf

[3] Jason Bay, Joel Kek, Alvin Tan, Chai Sheng Hau, Lai Yongquan,
Janice Tan, and Tang Anh Quy. 2020. BlueTrace: A privacy-
preserving protocol for community-driven contact tracing
across borders. Government Technology Agency-Singapore, Tech.
Rep 18 (2020). https://bluetrace.io/static/bluetrace_whitepaper-
938063656596c104632def383eb33b3c.pdf

[4] Robin Heydon and Nick Hunn. 2012. Bluetooth Low Energy.
CSR Presentation, Bluetooth SIG (2012). https://www.bluetooth.
org/DocMan/handlers/DownloadDoc.ashx

[5] IEEE. 2000. IEEE Standard Specifications for Public-Key Cryp-
tography. IEEE Std 1363-2000 (2000), 1–228. https://doi.org/10.
1109/IEEESTD.2000.92292

[6] Po-Shen Loh. 2020. Flipping the Perspective in Contact Tracing.
https://doi.org/10.48550/ARXIV.2010.03806

[7] Carmela Troncoso, Mathias Payer, Jean-Pierre Hubaux, Mar-
cel Salathé, James Larus, Edouard Bugnion, Wouter Lueks,
Theresa Stadler, Apostolos Pyrgelis, Daniele Antonioli, Lu-
dovic Barman, Sylvain Chatel, Kenneth Paterson, Srdjan Čap-
kun, David Basin, Jan Beutel, Dennis Jackson, Marc Roeschlin,
Patrick Leu, Bart Preneel, Nigel Smart, Aysajan Abidin,
Seda Gürses, Michael Veale, Cas Cremers, Michael Backes,
Nils Ole Tippenhauer, Reuben Binns, Ciro Cattuto, Alain Bar-
rat, Dario Fiore, Manuel Barbosa, Rui Oliveira, and José Pereira.
2020. Decentralized Privacy-Preserving Proximity Tracing.
arXiv:2005.12273 [cs.CR]

https://www.apple.com/covid19/contacttracing
https://www.apple.com/covid19/contacttracing
https://github.com/pepp-pt/pepp-pt-documentation/blob/master/PEPP-PT-high-level-overview.pdf
https://github.com/pepp-pt/pepp-pt-documentation/blob/master/PEPP-PT-high-level-overview.pdf
https://github.com/pepp-pt/pepp-pt-documentation/blob/master/PEPP-PT-high-level-overview.pdf
https://bluetrace.io/static/bluetrace_whitepaper-938063656596c104632def383eb33b3c.pdf
https://bluetrace.io/static/bluetrace_whitepaper-938063656596c104632def383eb33b3c.pdf
https://www.bluetooth.org/DocMan/handlers/DownloadDoc.ashx
https://www.bluetooth.org/DocMan/handlers/DownloadDoc.ashx
https://doi.org/10.1109/IEEESTD.2000.92292
https://doi.org/10.1109/IEEESTD.2000.92292
https://doi.org/10.48550/ARXIV.2010.03806
https://arxiv.org/abs/2005.12273

	Abstract
	1 Introduction
	2 Related Work
	3 DENSE Network Structure and Protocol
	3.1 Pairing messages for encounter logging
	3.2 Infection notification messages
	3.3 Properties of DENSE

	4 Implementation and Evaluation
	5 Conclusions and Future Work
	Acknowledgments
	References

