DNSZoo: Replicated DNS Cache Service backed by
ZooKeeper-based Membership Management

Haishan Gao Timothy Gu Zhongyang Liu
hsgao@stanford.edu timothygu@stanford.edu jerrylzy@stanford.edu
Stanford University Stanford University Stanford University
Stanford, CA, USA Stanford, CA, USA Stanford, CA, USA
ABSTRACT In this paper, we present DNSZoo, a distributed Do-

We design and implement a distributed DNS cache service with replicated
cache in a hierarchical structure. Our system demonstrates high availability,
horizontal scalability, and robustness to withstand server node failures. It
supports instant server membership management to add and remove nodes
dynamically. We propose a tailored design of load balancing strategy and
consensus protocol in our system that relaxes the consistency requirement
to achieve high availability and partition tolerance. The system is deployed
and fully tested on Amazon EC2. We measure its latency, throughput and
ability to tolerate node failures and validate it outperforms Google DNS
service (8.8.8.8) on the latency metric in a local area network environment.

1 INTRODUCTION

The Domain Name System (DNS) is a naming data-
base system used to translate human readable internet
domain names into Internet Protocol (IP) addresses.
DNS serves as an indispensable entry point to modern
network architecture. Its services need to be highly ac-
curate and widely available to enable users worldwide
to access online contents and email services. DNS ser-
vice outage leads to the total inability for regular users
to reach any websites and high latency of DNS service
will also impact user experience in participating in web
activities. Furthermore, the DNS architecture needs to
be able to extend its scale to cope with the growing
traffic of web usage nowadays.

A widely adopted design to satisfy high availability
and scalability is to maintain multiple servers to answer
to the domains in the same hash range. Hence, a re-
quest routing and load balancing algorithm is needed to
deliver user queries evenly to the servers. A consensus
protocol is needed to ensure the eventual consistency
of the cached records over the servers. Though the re-
quirements and functionalities of the DNS server have
been well understood, the design of its underlying al-
gorithms and policies has been an active research area
[1, 4, 6, 16] for different use cases with varying geo-
graphic proximity and content delivery specialities.

For normal users, public DNS services, such as Cloud-
flare, Google, OpenDNS, etc., are more than enough.
However, when we develop large-scale distributed sys-
tems that heavily utilize DNS services, such as web
crawlers, we cannot afford to use public DNS directly
due to lack of latency guarantees and the threat of
getting throttled or even banned. Therefore, a custom
internal DNS caching service like ours comes in handy
to address those two serious concerns.

main Name System with high availability, scalability
and non-Byzantine fault tolerance. Its key design is to
use ZooKeeper for server membership management, as
well as tailored request routing and consensus proto-
cols to provide high availability. Based on the overall
requirements, we propose and design two variants of
DNSZoo, DNSZoo-CH (using Consistent Hashing) and
DNSZoo-R (using Raft-backed storage). Both variants
implemented are available in open-source code. We de-
ploy and measure the performance of DNSZoo-CH on
Amazon EC2.

2 BACKGROUND

2.1 Domain Name System

DNS [13, 14] is a global distributed system for storing
information about domain names. DNS supports a wide
variety of information, but of particular interest to us
is the A record which contains mappings between a
domain and IPv4 addresses, and the CNAME record
which defines an alias for another domain name. For
this project we consider only A and CNAME records,
since they are essential for browsing the World Wide
Web.

DNS contains an astoundingly large number of do-
main names (on the order of hundreds of millions in
registered domains alone, not including subdomains).
However, a small number of them (typically those corre-
sponding to popular websites) are accessed with dispro-
portionate frequency. Prior studies [5, 9] conclude that
locality of reference effectively predicts future queries,
which supports the use of caches containing recently
and frequently fetched records. To support caching,
each DNS record contains a Time-To-Live (TTL) field
defining the time span for which the record can be used
(typically on the order of minutes to hours). We use
the TTL field to determine the length of time we are
allowed to cache a particular record - or if we should
attempt to cache it at all.

2.2 Consistent Hashing

Consistent Hashing [10, 17] is a mechanism to evenly
distribute work across a set of servers, while also al-
lowing adding or removing servers. In the context of
DNSZoo-CH, each node serves as the secondary cache
for a range of potential hash values, and Consistent

Hashing allows easy discovery of the responsible server
for a particular query.

To maintain a high cache hit rate through reconfig-
uration, for each update to the server set, we wish to
minimize the number of changes to the hash ranges.
We specifically use Consistent Hashing with Bounded
Loads [12], which guarantees an expected constant
number of DNS query ownership changes.

2.3 Raft

Raft [15] is a consensus protocol implementing a repli-
cated state machine. Raft uses a strong leader, where all
proposals must be sent to the leader and then broadcast
to individual nodes. In DNSZoo-R, we work around this
potential bottleneck by allowing lock-free reads and
only use Raft for cache broadcasting.

2.4 ZooKeeper

ZooKeeper [8] is an open-source coordination service
commonly used in the industry. We use ZooKeeper for
various control operations such as service discovery
and leader election that require linearizability guaran-
tees. While we could have implemented similar func-
tionality using Raft ourselves, we note that our usage
of ZooKeeper does not fall on the critical path of DNS
queries. Additionally, the client library provides a con-
venient event-driven API (e.g., watches [8]) that make
implementing a number of synchronization primitives
much easier than manually with Raft. Finally, since
our usage of ZooKeeper is confined to a module sepa-
rate from actual handling DNS queries, it is relatively
easy to switch to a different coordination system (e.g.,

Chubby [3]) as needed.

3 DESIGN

3.1 Overall Architecture

The overall architecture of DNSZoo is depicted in Fig-
ure la. It consists of three layers: the load balancer
layer, the level 1 (L1) cache layer and the level 2 (L2)
cache layer. The load balancer evenly distributes client
requests to a group of servers that run our DNS ser-
vice. The L1 layer is a small LFU cache local to each
node that ideally contains popular DNS requests from
all hash ranges. The L2 layer is a much larger cache
partitioned by the request’s hash value.

In case of a L1 cache miss, we partition the queries
using its hash value and send it off to a designated
L2 node. DNSZoo-CH uses Consistent Hashing to di-
vide up requests into buckets of server nodes, while
DNSZoo-R uses a fixed set of Raft clusters as buckets.
Membership in Consistent Hashing and Raft clusters
is stored in ZooKeeper. The L2 cache is a replicated
LRU cache in DNSZo0o-CH and a Raft-based key-value
store in DNSZoo-R.

Haishan Gao, Timothy Gu, and Zhongyang Liu

Now, we will walk through how a DNS request is
served, which is shown in Figure 1a. First, the client
will send a request r to the load balancer (step 1) which
will distribute the request to one of the healthy servers
(step 2). Assuming node n received r, it will then check
if r hash exists in the L1 cache. If cache hit, n will im-
mediately return the result of r; otherwise it will check
the node(s) responsible for r and forwards r to node
m that covers the hash range r (step 3).! Node m will
check its L2 cache and return the result immediately
to node n when there is a cache hit; otherwise, it will
query an external DNS service, such as Cloudflare, to
get and store the result (step 4) and then gossip it to a
few other nodes in the same hash range (step 5). The
result will then go from node m to n (step 6), the load
balancer (step 7) and finally the client (step 8).

3.2 Intra-node Organization

We divide the tasks within a single server node into
two logical planes, as shown in Figure 1b.

The Control Plane is responsible for keeping the server
membership up to date. Upon node startup, it communi-
cates with the ZooKeeper ensemble to create ephemeral
znodes that notify other nodes of its existence. It then
reads the content of the directory containing
the ephemeral znodes to learn about other nodes in the
system and to set up the bucketing strategy. In partic-
ular, it calls the getChildren() ZooKeeper API with
the “watch” flag set to true, so that we receive future
updates of the server membership.

The Control Plane exposes server membership infor-
mation to the Data Plane, so that the lookup servers
can accurately identify the L2 nodes to send a query to
in case of a L1 cache miss.

The Data Plane handles the actual DNS queries it-
self. It includes two servers, an Internal Server that
exposes a gRPC service for inter-node communication,
as well as an External Server that handles external DNS
queries from the load balancer. Examples of inter-node
communication include L2 queries, gossiped new cache
entries (in DNSZoo-CH only), and Raft proposals and
heartbeats (in DNSZoo-R only). The Data Plane also in-
cludes the L1 and L2 caches. The External Server makes
use of and updates both L1 and L2 caches, while the
Internal Server only accesses the L2 cache.

In our implementation, each plane runs within its
own goroutine (a lightweight threading construct in
the Go programming language [7]). However, the Con-
trol Plane goroutine is only actively running code at
node startup, during server reconfigurations, and very
occasionally through heartbeat messages. So the major-
ity of CPU time is spent in the Data Plane applications
as desired.

!If n happens to cover the hash range of r, then we set m = n.

DNSZoo: Replicated DNS Cache Service backed by ZooKeeper-based Membership Management

VPC)
) e Ty External DNS
g},/' (e.g., Cloudflare)
£ OO
- . 11 N .
// < .

ZooKeeper

: 6/
Ensemble . 173

. /1

. /1

N !

“Server
Nodes

8 I 1 —> DNS traffic

——> gRPC traffic
Client

(a) Overall Architecture

4

L > node change events

ZooKeeper

Ensemble Server Node

X ~

ZooKeeper
Client

/Contml Plane

server membership

A0
Internal L2 External

Server Server

L2 requests

new cache entries
Raft messages

Data Plane
@PC) o J
DNS packets

Load Balancer

(b) Internal Organization

Figure 1: Design of DNSZoo

The separation of two planes has served us well. The
well-defined and rigid interface between the two planes
was beneficial for parallelizing our development pro-
cess. It also effectively encapsulates the recovery mech-
anism, so that we may easily swap out ZooKeeper for
another synchronization system as need be.

3.3 Distributing Queries to Nodes

In both variants of DNSZoo, we rely on hashing to dis-
tribute DNS queries roughly uniformly among a set of
buckets. However, the number of such buckets as well
as the assignment of server nodes to each bucket consti-
tute the most significant difference between DNSZoo-
CH and DNSZoo-R.

Hashing the query. We have three requirements
in determining an appropriate hash function for DNS
queries:

(1) Speed. Since DNSZoo is designed to have low
latency and high throughput, the time it takes to
hash a DNS query must be very short compared
to completing a DNS request.

(2) Quality. We rely on the hash function to distrib-
ute DNS queries evenly between buckets to re-
duce tail latency.

(3) Hash-flooding attack resistance. It must be dif-
ficult to discover DNS queries that hash to the
same bucket with high probability. If not, an ad-
versary could flood DNSZoo with such queries,
potentially overwhelming the nodes dedicated
to that bucket [11].

On the other hand, we do not need certain crypto-
graphic properties like one-wayness.

We chose SipHash [2] as it satisfies all our require-
ments. Our implementation currently hardcodes the
hash key, but a future version of DNSZoo will store

the hash key on ZooKeeper and rotate it periodically
to better resist hash-flooding attacks.

We currently hash both the query type and query
domain name together as it gives a better distribution
for different queries. However, it is possible that storing
different records for the same domain on the same node
may improve locality. More work is needed to ascertain
the tradeoffs of this alternative approach.

Bucketing in DNSZoo-CH. In DNSZoo-CH, we use
Consistent Hashing to map nodes to buckets, where
each bucket is a hash range. Each node is assigned a
fixed number of hash ranges, so the number of unique
buckets increases along with the number of nodes. Con-
versely, each hash range is the responsibility of the top
Q nodes in the Consistent Hashing ring rather than
just the top node. When one node updates its L2 cache
in response to an incoming query, it gossips the new
cache content to other nodes for the same hash range.
Since the server membership set is stored in ZooKeeper
and watched by all nodes, every update to the mem-
bership set is quickly known to every other node in
the same order, so all nodes should have the same idea
what the Consistent Hashing ring looks like at almost
all times.

Bucketing in DNSZoo-R. In DNSZoo-R, we use
the most significant n bits of the SipHash to map nodes
to buckets where n is a configurable number. More
buckets should correspond to better load distribution
on a large number of nodes. In this design, we imple-
ment a bucket management service, Hash Cluster Man-
ager, based on ZooKeeper for routing, load balancing
and fault tolerance. The Hash Cluster Manager (HCM)
will use ZooKeeper to elect a leader that assigns avail-
able hash buckets to available nodes. When a server
dies, ZooKeeper will notify the leader about its death,

who will in turn run the rebalancing algorithm to as-
sign the new unassigned buckets to other servers. Each
server monitors a pre-configured path on ZooKeeper
and watches for potential assignments. All assignments
are watched by all nodes so each server knows which
node(s) to talk to when receiving an out-of-range DNS
request that results in an L1 cache miss.

Each bucket corresponds to a multi-node Raft key-
value store cluster that ensures fault tolerance and even-
tual consistency. Intra-server communication, includ-
ing joining/exiting clusters and looking up cache values,
is taken care of by gRPC.

4 IMPLEMENTATION

Both variants of DNSZoo are written exclusively in Go.
Our entire service has over 5000 lines of Go code *. The
load balancing layer utilizes the AWS application load
balancer, and the L1 layer is a simple LFU cache with
a configurable size. Both layers are shared among the
two difference approaches, so we will only discuss the
L2 layer of DNSZoo-CH and DNSZoo-R.

4.1 DNSZoo-CH

For DNSZoo-CH, we have two key components — Con-
sistent Hashing Membership Manager and the cache
service.

Consistent Hashing Membership Manager. The
consistent hashing membership manager shares a pre-
configured ZooKeeper path /chmembership for mem-
bership management. Each node creates an ephemeral
node with its node ID as the name and the gRPC service
address as the value. All nodes monitor this path and
adjust their hash ring accordingly. We do not need a
leader in this case, and all functioning nodes operate
independently and identically for membership changes.

Cache Service. The cache service is our L2 layer and
consists of several small components — the LRU cache
and the Consistent Hashing ring. The LRU cache has a
configurable size and serves as our implementation for
the L2 cache. For the Consistent Hashing ring, we ini-
tialize the ring on all nodes with the same configurable
partition counts, replication factor, and load factor, the
last of which is a feature from the consistent hashing
library we use that can distribute a node’s hash range
to other nodes to alleviate hot spot and load pressure.

4.2 DNSZoo-R

For DNSZoo-R, we also have two key components
- Hash Cluster Manager (HCM) and Raft Key-Value
Store.

Hash Cluster Manager (HCM). The HCM leader
has two main features:

2Link to the repo: https://github.com/TimothyGu/stanford-cs244B-project

Haishan Gao, Timothy Gu, and Zhongyang Liu

(1) Leader election. The HCM monitor group mem-
bership changes using ZooKeeper watches. When
a node joins, it will create an ephemeral znode
with the sequential flag on with the format nodeid_
seqnum, and the content of which is that node’s
gRPC address. The leader will be the one with the
smallest sequence number. Fach node will watch
the node with the largest sequence number j
smaller than its own i: max;.; n; where n is the
name of a node. When node n has the smallest
sequence number i, it becomes the leader.

(2) Hash bucket management. The leader assigns
available buckets to nodes that are below the
designated load factor (number of Raft clusters
it belongs to) and write the assignment to a per-
sistent node-to-cluster znode in ZooKeeper.’
Each node (including the leader) monitors its
own node-to-cluster znode. When it sees changes,
it will exit or join the Raft clusters corresponding
to removed or added buckets. It will acknowl-
edge an assignment by creating an ephemeral
znode with its own node ID under /dnsserver/
cluster2node/<clusterid>. All nodes will mon-
itor all cluster-to-node mappings to find out which
node(s) to send to. We choose a random node
from a Raft cluster to distribute loads within a
fixed hash range in this case.

Raft Key-Value Store (Raft KVStore). The Raft KV-
Store is a distributed key-value store with eventual
consistency guarantees. All nodes can respond to read
and write requests, and only write requests require con-
sensus. Therefore, you may get staled data when you
query the wrong nodes, but it is very fast as all read
requests are local, which satisfies our requirements
for a highly available DNS service. The Raft protocol
will commit a write or a delete request after reaching
consensus, and individual KVStore will be able to read
from Raft’s committed log entries and apply them to
the local map.

The Raft KVStore provides two gRPC APIs:

(1) Cache : (CacheRequest) — CacheReply
This API provides a way to specify whether it
is a lookup, store or delete request and return
results as soon as results are read from the local
cache or update requests have been appended to
the Raft log entries.

(2) ConfChange : (raftpb.ConfChange) — Empty
This API allows individual nodes to join or exit
a Raft cluster.

3We encountered a deadlock issue from the go-zookeeper library when adding multiple
watches as sometimes it does not send events through the watch channels and resulting
in the leader not getting notifications of children changes from the watch. This is not
present in the DNSZoo-CH implementation as we only have one watch for the entire
service.

https://github.com/TimothyGu/stanford-cs244B-project

DNSZoo: Replicated DNS Cache Service backed by ZooKeeper-based Membership Management

4.3 Key Libraries Used

For Consistent Hashing, we utilize buraksezer’s con-
sistent library.* For Raft, we use etcd.io’s implemen-
tation and base our key—value store heavily on their
Raft kvstore example.’ For ZooKeeper, we choose go-
zookeeper’s library.® For DNS queries, we use miekg’s
DNS library.”

5 EVALUATION

We deployed DNSZoo-CH on five t2.micro instances
on Amazon EC2. Each instance has 1 CPU core and
1 GiB of RAM. Our ZooKeeper ensemble consists of a
single t3a.medium EC2 instance with 1 CPU core and
4 GiB of RAM. We did not use multiple instances for
ZooKeeper because our service uses ZooKeeper as an
existing solution (black box) and we can easily deploy
and configure multiple instances when needed. All EC2
instances reside in the same Availability Zone.

The testing setup is as following: we curate a list of
active servers on ZooKeeper, start an EC2 instance as
the client, and randomly choose a server from the list
to send test requests to. In the future, we can use AWS
application load balancer to distribute traffic across the
available servers.

5.1 Latency

To measure the latency performance of the system, we
generate random DNS queries using the top-100000-
domains® database. We randomly select 2k unique do-
main names from the database. We set a popular do-
main ratio parameter p% to generate 10k requests with
1 — p% of the domain names making up p% of the re-
quests and the rest 1 — p%, to test if our system can
demonstrate better performance when handling pop-
ular domain name requests. We define the latency as
the interval between the time when the client sends
the request and the time when it receives the response.
We compare the performance with public DNS ser-
vice providers such as Google (8.8.8.8) and Cloudflare
(1.1.1.1).

We also measure the node-to-node (intra EC2) and
node-to-external (EC2 to the internet) latencies using
ping 1000 on an EC2 instance (Table 1), which should
be the best-case scenario for latencies.

Avg Latency 99.9™ Percentile

Node-to-node 0.5ms 3.2ms
Node-to-external 1.6ms 20.4ms

Table 1: Latency Summary

“https://github.com/buraksezer/consistent
Shttps://github.com/etcd-io/eted/tree/main/contrib/raftexample
®https://github.com/go-zookeeper/zk
"https://github.com/miekg/dns
8https://github.com/zer0h/top-1000000-domains

From Figure 2a, we can see that by increasing the
percentage of popular domains in our testing queries,
the latencies comes down. This is expected because
a higher ratio of popular domains better utilize our
hierarchical caching structure. The average latencies
are higher because of the 99th percentile latencies are
higher, which is observed in public DNS services as well.
This indicates that public offerings also cache popular
domains. We can also see that in terms of the average
latency, DNSZoo-CH performs quite a bit better than
Google’s public DNS service, especially when queries
do not contain a lot of popular domains. While Cloud-
flare is consistently quick, it is no match for DNSZoo-
CH. In terms of the 99th percentile latency, we can see
that DNSZoo-CH still leads, especially when the popu-
lar domain ratio is low. This indicates that our caching
service is highly available, performing what we want
it to do.

5.2 Throughput and Scalability

We measure the throughput performance by sending
a large number of requests to our system until the
number of requests it can answer to in ten seconds
reach a plateau. We then record the plateau number
as its throughput. To issue a large number of queries,
we start hundreds of go routines on the testing server,
each of which sends requests sequentially using domain
names from the top-100000-domains database.

To measure the scalability of our system, we obtain
its throughput with varying numbers of server nodes
registered in ZooKeeper.

The result in Figure 2b validates our design assump-
tion and an almost-linear horizontal scalability of our
system.

5.3 Fault Tolerance

To measure the system’s ability to tolerate server fail-
ures, we set up a test server that continuously sends
requests of the number of the maximum throughput.
Our system initially has four nodes. After the through-
put number stabilizes, we shutdown two server nodes
sequentially with an interval of about 10 seconds. We
then bring back the two nodes in the same order. We
monitor the system’s throughput during the entire time
frame and the result is recorded in Figure 2c.

The result proves that our system can withstand server
failures. When the failure happens, our system will un-
dergo a temporary drop of the throughput, but it can
quickly recover to its maximum throughput prior to the
failures. The reason why the throughput increases after
the second server may be due to a consolidation of hash
ranges on the surviving two nodes, which increases
cache rate.

https://github.com/buraksezer/consistent
https://github.com/etcd-io/etcd/tree/main/contrib/raftexample
https://github.com/go-zookeeper/zk
https://github.com/miekg/dns
https://github.com/zer0h/top-1000000-domains

Average Latency

A Cloundflare(1.1.1.1) & Google(3.8.88) A DMSZoo-CH

20.00
15.00
10.00
5.00
0.00

Latency (ms)

06 0.7 0e 0.8

Popular Domain Ratio

A

Latency (ms)

Haishan Gao, Timothy Gu, and Zhongyang Liu

99th Percentile Latency

Cloundflare(1.1.1.1) & Google(3.8.8.8) & DMNSZoo-CH

200.00
160.00
120.00
80.00
40.00
0.00

0.6 07 08 [R:]

Popular Domain Ratio

(a) DNS Providers Latency Performance, 90th and 99th Percentile

Horizontal Scaling
20000

15000
10000

5000

Throughput (#regyestise)

1 2 3 4 5

Mumber of Server Modes

(b) DNSZoo-CH Throughput and Scalabil-

ity

Maximum Throughput

9000

server_0} server_1! serter_0
8000 down; down

setver_1
i back

7000 \/&\,\/“‘v\v‘

w\ NN
o

6000

5000

Time Elapsed

(c) DNSZoo-CH Fault Tolerance

Figure 2: Various evaluation figures

6 FUTURE WORK

We propose two different DNS server architecture de-
signs, DNSZoo-CH and DNSZoo-R in this paper and
deploy DNSZoo-CH on AWS EC2 and measure its per-
formance. However, due to a deadlock issue from the
go-zookeeper library, our DNSZoo-R design cannot
fully function and thus cannot be tested, even though
we expect it to perform better than DNSZoo-CH. We
would like to try to fix the deadlock issue from the ZK
library, completing the implementation and compare
its performance with DNSZoo-CH.

In our current setup, users needs to obtain a list of
available servers and manually round robin requests to
those servers to mimick the behavior of a load balancer.
We can easily use an AWS Load Balancer ° to take
care of this issue. We also need to integrate health
monitoring of nodes into the load balancer to promptly
remove slow, unresponsive or dead nodes from the
AWS LB.

We introduce various parameters we can tune to
further optimize the system performance:

e L1 and L2 in-memory cache size: Increasing the
size of L1 cache will benefit read requests for
popular domains but also increase the overhead
of managing expired records in L1 cache.

e Partition count, replication factor and bounded
load multiplier in the Consistent Hashing con-
figuration.

“https://docs.aws.amazon.com/elasticloadbalancing/ and https://aws.amazon.com/
blogs/aws/new-application-load-balancing-via-ip-address-to-aws-on-premises-
resources/

We have validated the system performance on AWS
EC2 to simulate a local area network. We are also inter-
ested in testing our system in a broader environment
where server nodes are geographically dispersed and
compare their performances.

7 CONCLUSION

We manage to create a DNS caching service, DNS-
Zoo, that consistently beats public offerings both in
throughput and latency. DNSZoo also demonstrates
almost-linear horizontal scalability and fault tolerance.
We manage to design two completely different design
approaches and succeed in completing one while the
other one is blocked by a bug in the library we use.
DNSZoo not only provides better throughput and la-
tency than public DNS offerings, but also addresses the
threat of getting throttled or banned by a public DNS
service. Therefore, we believe DNSZoo will provide
significant value frequent DNS querying is needed in
a data center, for example, by web crawlers, and the
design ideas of both DNSZoo-CH and DNSZoo-R can
be used in other applications. For example, consistent
hashing can be used to distribute a search engine’s in-
dexing workload, and the Hash Cluster Manager can
be tweaked to manage Kafka partitions in a distributed
service.

REFERENCES

[1] Nur Zaimah Ahmad, Megat F. Zuhairi, Hassan Dao, and Eiad Yafi. 2020. DNS
Server Caching and Forwarding with Load Balance. In 2020 14" International
Conference on Ubiquitous Information Management and Communication (IMCOM).
1-5. https://doi.org/10.1109/IMCOM48794.2020.9001768

[2] Jean-Philippe Aumasson and Daniel J. Bernstein. 2012. SipHash: A Fast Short-
Input PRF. In Progress in Cryptology — INDOCRYPT 2012, Steven Galbraith and
Mridul Nandi (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 489-508.

https://docs.aws.amazon.com/elasticloadbalancing/
https://aws.amazon.com/blogs/aws/new-application-load-balancing-via-ip-address-to-aws-on-premises-resources/
https://aws.amazon.com/blogs/aws/new-application-load-balancing-via-ip-address-to-aws-on-premises-resources/
https://aws.amazon.com/blogs/aws/new-application-load-balancing-via-ip-address-to-aws-on-premises-resources/
https://doi.org/10.1109/IMCOM48794.2020.9001768

DNSZoo: Replicated DNS Cache Service backed by ZooKeeper-based Membership Management

Mike Burrows. 2006. The Chubby Lock Service for Loosely-Coupled Distributed
Systems. In Proceedings of the 7th Symposium on Operating Systems Design and
Implementation (OSDI ‘06) (Seattle, USA). USENIX Association, USA, 335-350.
Valeria Cardellini, Michele Colajanni, and Philip S. Yu. 1999. Redirection algo-
rithms for load sharing in distributed Web-server systems. In Proceedings of the
19" IEEE International Conference on Distributed Computing Systems. 528-535.
https://doi.org/10.1109/ICDCS.1999.776555

Peter B. Danzig, Katia Obraczka, and Anant Kumar. 1992. An Analysis of
Wide-Area Name Server Traffic: A Study of the Internet Domain Name Sys-
tem. SIGCOMM Comput. Commun. Rev. 22, 4 (Oct. 1992), 281-292. https:
//doi.org/10.1145/144191.144301

Michael J. Freedman, Eric Freudenthal, and David Mazieres. 2004. Democratiz-
ing Content Publication with Coral. In Proceedings of the First Symposium on
Networked Systems Design and Implementation (NSDI ‘04). San Francisco, USA.
Google. 2022. The Go Programming Language Specification. https://go.dev/ref/
spec Version of March 10, 2022.

Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and Benjamin Reed. 2010.
ZooKeeper: Wait-free Coordination for Internet-scale Systems. In Proceedings
of the 2010 USENIX Annual Technical Conference (USENIX ATC ‘10). USENIX
Association, Boston, USA, 145-158. https://www.usenix.org/conference/usenix-
atc-10/zookeeper-wait-free- coordination-internet-scale-systems

Jaeyeon Jung, Emil Sit, Hari Balakrishnan, and Robert Morris. 2002. DNS Per-
formance and the Effectiveness of Caching. IEEE/ACM Trans. Netw. 10, 5 (Oct.
2002), 589-603. https://doi.org/10.1109/TNET.2002.803905

David Karger, Eric Lehman, Tom Leighton, Rina Panigrahy, Matthew Levine, and
Daniel Lewin. 1997. Consistent Hashing and Random Trees: Distributed Caching

[16

(17]

Protocols for Relieving Hot Spots on the World Wide Web. In Proceedings of
the Twenty-Ninth Annual ACM Symposium on Theory of Computing (STOC ‘97)
(El Paso, Texas, USA). Association for Computing Machinery, New York, USA,
654-663. https://doi.org/10.1145/258533.258660

Alexander Klink and Julian Wilde. 2011. Efficient Denial of Service Attacks
on Web Application Platforms. In 28" Chaos Communication Congress. Berlin,
Germany.

Vahab S. Mirrokni, Mikkel Thorup, and Morteza Zadimoghaddam. 2016. Consis-
tent Hashing with Bounded Loads. arXiv:1608.01350 [cs.DS] https://arxiv.org/
abs/1608.01350

P. V. Mockapetris. 1987. Domain Names — Concepts and Facilities. RFC 1034.
https://doi.org/10.17487/RFC1034

P.V. Mockapetris. 1987. Domain Names - Implementation and Specification.
RFC 1035. https://doi.org/10.17487/RFC1035

Diego Ongaro and John Ousterhout. 2014. In Search of an Understandable Con-
sensus Algorithm. In Proceedings of the 2014 USENIX Annual Technical Conference
(USENIX ATC ‘14). USENIX Association, Philadelphia, USA, 305-319. https:
//www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
Michael Rabinovich, Zhen Xiao, and Amit Aggarwal. 2004. Computing on the
edge: A platform for replicating internet applications. In Web content caching
and distribution. Springer, 57-77.

Ton Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Bal-
akrishnan. 2001. Chord: A Scalable Peer-to-Peer Lookup Service for Internet
Applications. SIGCOMM Comput. Commun. Rev. 31, 4 (Oct. 2001), 149-160.
https://doi.org/10.1145/964723.383071

https://doi.org/10.1109/ICDCS.1999.776555
https://doi.org/10.1145/144191.144301
https://doi.org/10.1145/144191.144301
https://go.dev/ref/spec
https://go.dev/ref/spec
https://www.usenix.org/conference/usenix-atc-10/zookeeper-wait-free-coordination-internet-scale-systems
https://www.usenix.org/conference/usenix-atc-10/zookeeper-wait-free-coordination-internet-scale-systems
https://doi.org/10.1109/TNET.2002.803905
https://doi.org/10.1145/258533.258660
https://arxiv.org/abs/1608.01350
https://arxiv.org/abs/1608.01350
https://arxiv.org/abs/1608.01350
https://doi.org/10.17487/RFC1034
https://doi.org/10.17487/RFC1035
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
https://doi.org/10.1145/964723.383071

	Abstract
	1 Introduction
	2 Background
	2.1 Domain Name System
	2.2 Consistent Hashing
	2.3 Raft
	2.4 ZooKeeper

	3 Design
	3.1 Overall Architecture
	3.2 Intra-node Organization
	3.3 Distributing Queries to Nodes

	4 Implementation
	4.1 DNSZoo-CH
	4.2 DNSZoo-R
	4.3 Key Libraries Used

	5 Evaluation
	5.1 Latency
	5.2 Throughput and Scalability
	5.3 Fault Tolerance

	6 Future Work
	7 Conclusion
	References

