
Distributed Dual-Resolution 3D Scene Representations

Colton Stearns, Ian Huang, Congyue Deng, Archit Sharma
{coltongs, ianhuang, congyue, architsh}@stanford.edu

Abstract

We address the problem of autonomous 3D mapping via
a group of autonomous agents. Given n autonomous agents
that continuously perceive the surrounding environment, we
propose Discern3D (Distributed Scene Representation in
3D), a protocol for creating a course scene representation
for autonomous navigation in addition to a fine scene rep-
resentation for HD mapping. Discern3D is designed to (1)
be highly available for navigation, (2) reduce network traf-
fic between agents, and (3) be fault tolerant to agent failure
and network partition. In contrast to classical distributed
storage and replicated state machines, Discern3D leverages
the structure inherent in 3D data to increase availability
and reduce network traffic. We introduce a new consistency
model which we call eventual geometric consistency; we ar-
gue that this weaker consistency guarantee is sufficient for
online 3D scene representation.

1. Introduction

In recent years, high quality 3D scene reconstruction and
mapping has been used for a variety of applications, includ-
ing HD mappings of cities for autonomous vehicles, recon-
naissance of disaster-stricken sites, creating digital twins
for construction, and collecting 3D data for training neu-
ral networks. Inspired by recent advances in computer vi-
sion, many researchers are attempting to automate the pro-
cess of 3D scene reconstruction and mapping with fleets of
robots [3, 16]. As two motivating examples, fleets of au-
tonomous vehicles simultaneously navigate and update 3D
city maps, and unmanned aerial vehicles (UAVs) are popu-
lar tools for scanning and reconstructing remote areas.

A distinct challenge in using fleets of autonomous agents
for 3D mapping is the low reliability in agent communica-
tion and liveness. Inter-agent communication is often es-
sential for safe planning. However, the real-world naviga-
tion of affordable robots through cluttered areas results in
frequent network delays, network partitions, and agent fail-
ures. A thorough distributed protocol is necessary to ensure
both availability and fault-tolerant replication of data across
agents.

Given n agents, a replicated state machine with a con-
sensus protocol [4, 11, 18] guarantees fault-tolerance for up
to ⌊n/2⌋ agent failures, in addition to ensure that all agents
path-plan with the same 3D information. However, guar-
anteeing strong consistency across all agents jeopardizes
availability and could lead to unsafe planning. Furthermore,
storing all data on all n agents is often unnecessary. Repli-
cated storage systems [9, 12, 24] can provide the greater
flexibility to clone data on and communicate data to appro-
priate subsets of agents. However, replicated storage sys-
tems often provide atomic or linearizable consistency guar-
antees and allow data in the form of an arbitrary file system
or SQL table. Such features are unnecessary for 3D data,
adding complexity and overhead. Finally, distributed key-
value storage systems [6] can offer highly available replica-
tion. While these systems are a reasonable choice for 3D
scene replication, their system design is often optimized for
a very large number of agents storing many small-sized key-
value pairs. In distributed scene representations, there often
exist fewer agents that each scan and store dense 3D data.

In this work, we propose Discern3D (Distributed Scene
Representation in 3D), a protocol for distributed 3D scene
sharing and replication in the face of unreliable network
and unpredictable agent liveness. Discern3D disentangles
3D data sharing from data replication. Specifically, Dis-
cern3D uses a highly available low-resolution coarse scene
representation for sharing data essential for agent naviga-
tion. Then, to provide fault-tolerance of the 3D mapping,
Discern3D replicates a high-resolution fine scene represen-
tation on a subset of agents. In addition, Discern3D makes
use of a new consistency model which we denote even-
tual geometric consistency. Unlike traditional data types,
3D information is order-invariant with respect to when it is
received and may be redundant in the underlying geomet-
ric information. Eventual geometric consistency uses these
characteristics by weakening constraints on transaction or-
dering (and some transactions altogether) while still provid-
ing eventual convergence of the replicated 3D information.

In summary, we contribute: (i) a novel protocol for dis-
tributed 3D scene representation, (ii) a new consistency
model for geometric data, and (iii) experimental analysis
of our protocol on many example shapes, under different



network conditions, and with different replication require-
ments.

2. Background

In this section, we provide additional background of
multi-agent logic 3D scene representations. We assume the
reader is familiar with distributed storage protocols.

Cooperative multi-agent planning. Distributed proto-
cols for cooperative planning are of great interest in safe
robot-fleet navigation [20, 25, 28]. The goal of coopera-
tive robot planning is to efficiently share information to im-
prove agent planning with respect to a global environment.
In distributed SLAM, agents transmit sensor readings with
for localizing into an common reference frame [10]. In
distributed path planning, agents are tasked with simulta-
neously routing to many target destinations; many works
have focused on extend classic single-agent heuristics to the
distributed setting [17, 21, 22]. Beyond SLAM and plan-
ning, recent works address the problem of forming agent
coalitions in a distributed manner, targeting agent collabo-
ration [1, 2, 15, 19]. In contrast to multi-agent planning, we
focus on the less-studied upstream task of shared 3D scene
reconstruction. We assume a known the global reference
frame and a downstream path planning module.

HD mapping. High definition (HD) mapping is gain-
ing increasing attention in 3D navigation which provides
high quality maps with both global accuracy and local ac-
curacy. Key to the acquisition of HD maps is the coor-
dination between an array of sensors where the construc-
tion of an appropriate distributed systems can be of great
help. Many works have been studying the distribution of
HD maps to individual agents [5, 13, 14, 26, 27]. [14] im-
proves transmission efficiency by leveraging multiple com-
munication schemes. [5, 26] adopts named data networking
(NDN) to support agent mobility. [13] introduces a fast con-
tent delivery mechanism using multiple data sources and a
probabilistic handover strategy. RLSS [27] attempts to find
the best agent or nearby tower for querying an existing HD
map. On the other hand, works are also done on bringing
more intricate geometric data into distributed HD maps. [8]
builds a TSDF scene representation by fusing a collection
of local sub-maps kept by each agent and [7] further intro-
duces decentralization. However, to the best of knowledge,
we are the first to consider significant network unreliability
and agent failure under more realistic assumptions.

3. Scene Representation

Discern3D is a protocol for fault tolerant and highly ef-
ficient distributed scene representation across n agents that
actively perceive the surrounding 3D environment. Specif-
ically, Discern3D addresses the task of high-fidelity au-
tonomous scene acquisition, which is at the core of many

tasks such as urban HD mapping, construction surveillance,
topographic surveying, machine-learning training data, and
more. In high-fidelity autonomous scene acquisition, agents
simultaneously (1) acquire high-fidelity 3D information and
(2) use acquired scene information for downstream naviga-
tion, i.e. to avoid obstacles and to plan appropriate scanning
routes. To improve the efficiency of scene representation,
Discern3D makes use of a dual-resolution scene represen-
tation (both low resolution and high resolution), where the
low-resolution scene is used for navigation.

As Discern3D addresses the use case of robot fleets for
3D mapping, the protocol is motivated by many task-based
assumptions. First, Discern3D assumes reasonable net-
work connectivity between agents, and no network con-
nectivity with an external or centralized server. Addition-
ally, while we assume reasonable inter-agent connection,
we also assume that the network bandwidth will observe
throughput limitations and can easily become a bottleneck.
As a motivating example, a modern Lidar scanner acquires
megabytes of 3D data per second per agent. In addition to
throughput limits, we also assume that network partitions
and agent failure are very common. We argue this a reason-
able assumption given the complexity of real-world envi-
ronments. Finally, we assume that high-availability of scene
data is essential for safe navigation. Given these assump-
tions, we build Discern3D to value availability of the neces-
sary 3D scene information, fault tolerance towards network
partition and agent failure, network efficiency (i.e. minimiz-
ing network load).

3.1. Scene Voxel Representation

We represent a 3D scene as a coarse voxel grid, i.e.
a grid of evenly spaced cubes marked with xyz coordi-
nates. We note that such a grid can always exist by using
global (lat, lon, z) coordinates in the locally planar refer-
ence frame and that voxel size can vary depending on ap-
plication. As time progresses, voxels are populated with
fine-grained 3D data in the form of a second voxel grid that
lies within the original voxel. Concretely, in addition to
it’s xyz coordinate in 3D space, a voxel is associated with
an append-only file that grows as agents acquire more and
more fine-grained 3D information. Thus, each voxel can be
viewed as a primitive data “chunk”. Moving forward, we
refer to these append-only files as voxel files.

In contrast to more general distributed storage systems,
Discern3D only handles the storage of a voxel grid across
all agents. Because it specializes in this single datatype, it
is able to leverage the following property:

Property. The sequence of data within a voxel file is order-
invariant. Also, adding data to a sequence results in having
weakly more 3D information. Therefore, updating a voxel
file will NEVER have negative consequences.



This suggests that commonly-desired guarantees such as
linearizability and atomicity are of little importance for our
3D scene representation. Furthermore, it suggests that our
voxel-files do not need traditional consistency guarantees;
instead, we are satisfied with an order-invariant consistency
that only ensures underlying geometric equivalence.

3.2. Voxel Partitioning and Replication

We represent our scene as a grid of high-resolution
voxel-files that are replicated on autonomous agents. To
achieve fault tolerance to agent failure without significant
network overhead, we replicate voxel-files across a subset
of K agents.

Instead of using methods such as consistent hashing [6]
to statically assign each voxel to a subset of K agents for
replication, we propose that the assignment be done dynam-
ically given the locations and trajectories of each agent. At
every timestep, each agent maintains a dynamic preference
list mapping from each voxel ID to a subset of all agents.
Setting agent preferences dynamically allows us to lower
the network load, as we will analyze in Section 4.5.

In order to ensure eventual consensus on which K agents
replicate a voxel, the dynamic preference-list must converge
to a globally-accepted total ordering. to reach total ordering
in Discern3D, we use timestamps of initial data acquisition
in addition to a gossiping protocol. We will further discuss
this is Sec. 4.3.3.

3.3. Low Resolution Representation

While the high-resolution storage strategy in Sec. 3.2 is
an efficient and fault-tolerant storage scheme, it overlooks
the fact that all agents need high availability of scene in-
formation for downstream navigation. Noting that modern
3D vision methods inherently operate on lower-resolution
or abstracted scene representations, we use a low-resolution
scene representation to address this need. Concretely, Dis-
cern3D uses the abstracted low-resolution voxel-grid as a
light-weight scene representation to be replicated across all
agents. While this low-resolution representation can be any
arbitrary 3D representation, we choose to use the original
coarse-resolution voxel grid in our implementation.

4. Agent Coordination
In this section, we cover the symmetric protocol de-

ployed on each agent in a fleet of robots.

4.1. Agent Behavior and State

At any given timestamp, every agent scans a part of the
3D environment. Each scan is decomposed into data chunks
belonging to a set of low-resolution voxels, and each low-
resolution voxel is assigned a separate preference list of the
K agents that should store the data. Depending on whether

the agent is or is not one of the K storing agents, it either
transmits data to the other K−1 agents and keeps a copy for
itself or transmits to the K appropriate agents and deletes
the copy.

In addition to transmitting high-resolution data, the agent
must have a refreshed version of the low-resolution (coarse)
representation of the entire scene; this is crucial for down-
stream tasks like navigation.

In order to carry out the above actions, each agent stores
the following in memory:

1. R: the preference list, where R[C, i], for some coarse
voxel id C and agent i would give the timestamp when
agent i first attained data from voxel C. R[C, i] is ini-
tialized to positive infinity at start time.

2. D: a database of high-resolution data per voxel.

3. F : a temporary storage space of voxel data that is at-
tained by an agent, but is not yet clear if the agent is
the end-destination for the data.

4. L: a low resolution voxel representation of the high-
resolution data.

4.2. Agent RPC’s

Discern3D is a symmetric protocol consisting of the fol-
lowing remote procedure calls:

1. GET: retrieves the coarse representation stored at an
agent at a queried coarse voxel ID.

2. GET ALL: retrieves the coarse representation stored at
an agent across all coarse voxels ID’s.

3. GET PREFERENCE LIST: retrieves the preference
list of a remote agent at its reference timestamp.

4. UPDATE: sends a remote agent a set of high-resolution
scans.

4.3. Agent Implementation

An agent concurrently scans, stores, shares and updates
information. To achieve this, we implement the following
procedures as concurrent threads running at fixed frequen-
cies.

4.3.1 High-Resolution (Fine) Representation Update

The agent constantly scans the environment. Let CID be
the coarse voxel ID, PID be the packet ID, X be the high-
resolution voxel data, and t be a timestamp of the time of
scan. Whenever the agent acquires (CID, PID, X, t), it en-
queues it onto a packet queue Q. The same is done when
the agent receives (CID, PID, X, t) from any other agent
through calls of the UPDATE RPC; however, in this case t
is the time of message receipt and not of the original scan.
As such, the elements on the data queue grows both from



the scans acquired by the native agent as well as from mes-
sages sent by other agents. When Q is not empty, the fine
representation update procedure is triggered. This proce-
dure:

1. Dequeues a data tuple from Q.

2. Compares the timestamp t of the dequeued data tuple
with the timestamp in the current preference-list value
at R[CID, i] (where i is the agent’s own index). If t
indicates is a lower value than that recorded in R, then
(CID, t, i) is added to G, the gossip Queue (used in
section 4.3.3).

3. Transfers the fine representation X to temporary stor-
age F within the the agent’s memory for CID.

4. It keeps X in F until conditions allow for 1) packet
replication to other agents (by calling the UPDATE
RPC’s) or 2) transferal of X from the temporary stor-
age to the final storage in D.

The decision to move the data off of temporary storage F
is made based on R. If an agent, through looking at the
timestamps in R, decides with certainty that it is not the
first K (when sorting agents by ascending timestamps for
that voxel id), it will attempt to send the data to the first
K agents. Otherwise, it keeps the data in temporary stor-
age F until the timestamps in R indicates that it has to be
one of the top K. Regardless of its own placement in R,
the agent will keep the data in temporary storage F until it
receives acknowledgement of transmission from all K top
agents (perhaps including itself).

4.3.2 Low-Resolution (Coarse) Reprentation Update

A coarse representation is attained at a fixed frequency
by calling the GET ALL RPC. This simply aggregates the
coarse voxels stored at each agent with its own, by taking a
boolean OR on its own L and the L of another agent. Even
though our current implementation does not use it, we addi-
tionally note that a user could create more intricate logic for
the coarse representation updates using the GET RPC (e.g.
only get data along a planned trajectory).

4.3.3 Preference-List Gossiping Update

Ensuring that agents have an updated and synchronized ver-
sion of the preference list R is at the core of Discern3D’s
efficiency. For instance, for newly attained voxel data, R
informs agents of whether to store it or pass it to another
agent.

We implement gossiping between agents to reach even-
tual consistency on the preference list R. A thread iter-
atively calls the GET PREFERENCE LIST RPC on other
agents, and merges their preference lists into R. The

merging of R is done by the timestamp of R[CID, i] and
R′[CID, i], where R′ is the preference list of another agent.
Effectively, R[CID, i] := min(R[CID, i], R′[CID, i]).
Since R stores timestamps (for which we can establish total
ordering), gossiping and merging preference lists provides
eventual consistency of R.

In addition to updating R via the
GET PREFERENCE LIST call, the gossip procedure
actively updates R with values dequeued from G, a queue
that records all newly attained timesteps of data.

4.4. Consistency Model

Discern3D guarantees a type of eventual consistency
which we denote eventual geometric consistency. Specifi-
cally, Discern3D guarantees eventual geometric consistency
for all high-resolution data replicated across the subset of K
agents in addition to the fully-replicated coarse scene rep-
resentation. In contrast to other (stronger) forms of con-
sistency such as eventual consistency, causal consistency,
strong consistency, and others [23], eventual geometric con-
sistency guarantees that, as t → ∞, a sequence of append-
operations will be equivalent up to a permutation in the or-
der.

Discern3D makes use of a total ordering on timestamps
of the preference list to ensure eventual geometric consis-
tency. That is, by dynamically setting preference-lists based
on loosely synchronized timestamps, the ordering of all
preference lists is guaranteed to converge. Due to the global
convergence of which K agents receive data, we can guar-
antee that all data will eventually reach each agent (even if
the order of transmission is unknown).

4.5. Network Load with a Dynamic Preference-List

Assume we have N agents, and a requirement that each
scan needs to be duplicated on K agents. Assume that there
are V coarse voxels and for a sufficient quality of the scan,
our system needs M scans of each of the voxels. For com-
parison, we consider a static preference list, where instead
of using a dynamic list, we pre-allocate K agents per voxel.

In expectation, the following number of data packets will
be sent over the network:

VMK

(
N − 1

N

)
In contrast, with our dynamic assignment based on which
agents have scanned the region, the total number of data
packets sent over the network is:

V (min(M,K)(max(M,K)− 1))

As such, the number of data packets removed from the total
network traffic, in expectation, is:

V

(
N min(M,K)−MK

N

)



Figure 1. Twenty seconds of scanning a sphere using the Dis-
cern3D protocol with differing numbers of agents, N , and varying
replication requirements, K. We appropriately observe agent col-
ors mixing as we require a higher number of replicas. We addition-
ally observe clear edges where the 3x3 coarse voxel-grid partitions
the sphere.

This shows great utility in our dynamic preference list when
the total number of coarse voxels V is large, and when the
number of agents N is far greater than M and K. Con-
cretely, dynamic preference lists can save significant net-
work traffic over static lists when there is a need to scan a
large area with a large number of agents (i.e. the scan qual-
ity may be high s.t. M is small and the reliability of agents
is decently high s.t. K is small).

5. Experiments
5.1. System Behavior in Reliable Conditions

Although Discern3D is designed for conditions with net-
work partitions and agent failure, we first verify its efficient
behavior in the “ideal case”, i.e. without network parti-
tions or agent failure. As a toy example of the protocol,
we scan a sphere with varying numbers of agents and vary-
ing replication requirements for the high-resolution repre-
sentation. For visual clarity, we set an extremely coarse 3x3
grid as the low-resolution representation. We showcase Dis-
cern3D’s high-resolution representation after 20 seconds in
Fig. 1. As depicted, the trivial case of K = 1 replication
yields a simple square-like partition of the data across each
agent. As the data is replicated across more agents (greater
K), we observe mixed colors in addition to heterogeneous
specs where the data is not yet fully replicated.

In addition to the sphere, we test Discern3D on a variety
of 3D objects. Fig. 4 illustrates the scanning of an airplane
and car over time. As depicted, continuing to scan the ob-
ject results in convergence of the coarse representation and
appropriate replication of fine representation

5.2. System behavior under network partitions

Network partitions is especially important for our use-
case, as agents navigating the real world environments may

Figure 2. Coarse (low-resolution) data acquisition rate affected
by network partitions. We show the number of coarse voxels at-
tained by all agents for two different conditions: 5 agents in the
absence of network partitions (purple), and 5 agents in the pres-
ence of network partitions refreshed at 0.1 Hz (cyan). This shows
that the availability of coarse representation is more robust to net-
work partitions, unlike the high-resolution representation shown
in Figure 3. Time in log-scale to magnify the difference between
the two conditions.

Figure 3. High-resolution data acquisition rate with (orange)
and without (blue) network partitions. Unlike the coarse repre-
sentation (Figure 2), the fine representation here is less robust to
network partitions.

naturally suffer from partitions given how pairwise signals
between agents may be completely blocked by the object
being scanned as well as the surrounding environment.

To investigate the behavior of our system under different
network partitions, we assume that the network can have up
to P partitions at any point in time. Each partition is al-
lowed to communicate with one another (e.g. for sending
and receiving point packets or allocation rosters), but no in-
formation can be transmitted between groups. We assume
that the sampled partition at each step is independent of that
of the previous step. During our experiments, the frequency
at which the network is re-partitioned is a hyperparameter
that indicates the length of partitions. In practice, this fre-
quency can vary drastically. The lower the frequency, the
longer network partitions may last, which can hinder gos-



1.5s 3s 4.5s 7s 10s

Figure 4. Two examples of the fine representation (upper row) and coarse representation (bottom row) produced by the Discern3D protocol.
Points in the fine representation are colored by the agent(s) that store the data. We visualize the coarse representation of a single agent.
Both representations monotonically grow as more data is scanned.

siping, as well as data replication to the top K agents.
Figures 2 and 3 show the behavior of the system with 5

agents, K = 2, with the network partition refresh rate at
0.1 Hz. Figure 2 shows that across the 5 different agents in
two different situations, the rate at which coarse representa-
tions is being acquired of the world is approximately same.
However, this is not the case for high-resolution represen-
tations, as can be seen in Figure 3. This is expected, and
justifies why agents should maintain data of the world rep-
resented at two different resolutions. The data which needs
to be highly available is the coarse representation, as it may
be important for mission critical time-sensitive tasks like
navigation. The design of our protocol for syncing coarse
representations across agents allows for some robustness to
network partitions.

Figure 5 shows the behavior of the system under differ-
ent time duration of each network partition, controlled by
the network partition refresh rate. For a system of 5 agents,
with K = 2, a doubling in the network partition duration
from 0.1 Hz to 0.05 Hz decreases the rate of high-resolution
data collection by less than that factor. The 5x increase in
network partition duration (from 0.1 Hz to 0.02 Hz) simi-
larly does not lead to a 5x decrease in data collection rate.
This shows that because of the gossiping protocol for the
preference list allows the rate of data collection to decrease
sub-linearly to the length of the network partitions, which
is a desirable property to have. In the presence of intensely
long network partitions (0.01 Hz), however, the agents may
plateau in the amount of data collected for the first 100
seconds before the next network partition refresh happens
(which, likely allows any agent to fall into a group with a
different set of agents, allowing the gossiping and data repli-

Figure 5. Effect of network re-partition frequency on high-
resolution data acquisition rate. Lower network re-partition fre-
quencies adversely affect the rate at which fine-grained voxels are
accumulated in the shared high-resolution representation.

cation to continue). A version of this behavior can also be
seen for the 0.02 Hz and 0.05 Hz lines in Figure 5.

6. Limitations

Discern3D is a first step toward robust distributed scene
representation in the face of network uncertainty and agent
failure. In future works, we hope to build a more scalable
protocol for syncing preference lists (gossiping has many
drawbacks). In addition, we are interested in extending the
low-resolution scene protocol to go beyond simple queries
of surrounding agents.



References
[1] Manoj Agarwal, Nitin Agrawal, Shikhar Sharma, Lovekesh

Vig, and Naveen Kumar. Parallel multi-objective multi-robot
coalition formation. Expert Syst. Appl., 42:7797–7811, 2015.
2

[2] Manoj Agarwal, Lovekesh Vig, and Naveen Kumar. Multi-
objective robot coalition formation for non-additive environ-
ments. In ICIRA, 2011. 2

[3] Siddharth Agarwal, Ankit Vora, Gaurav Pandey, Wayne
Williams, Helen Kourous, and James R. McBride. Ford
multi-av seasonal dataset. CoRR, abs/2003.07969, 2020. 1

[4] Miguel Castro and Barbara Liskov. Practical byzantine fault
tolerance. In Proceedings of the Third Symposium on Oper-
ating Systems Design and Implementation, OSDI ’99, page
173–186, USA, 1999. USENIX Association. 1

[5] Rodolfo WL Coutinho, Azzedine Boukerche, and Anto-
nio AF Loureiro. Design guidelines for information-centric
connected and autonomous vehicles. IEEE Communications
Magazine, 56(10):85–91, 2018. 2

[6] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gu-
navardhan Kakulapati, Avinash Lakshman, Alex Pilchin,
Swaminathan Sivasubramanian, Peter Vosshall, and Werner
Vogels. Dynamo: Amazon’s highly available key-value
store. ACM SIGOPS operating systems review, 41(6):205–
220, 2007. 1, 3

[7] Rodolphe Dubois, Alexandre Eudes, Julien Moras, and Vin-
cent Frémont. Dense decentralized multi-robot slam based
on locally consistent tsdf submaps. In 2020 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems
(IROS), pages 4862–4869. IEEE, 2020. 2

[8] Thibaud Duhautbout, Julien Moras, and Julien Marzat. Dis-
tributed 3d tsdf manifold mapping for multi-robot systems.
In 2019 European Conference on Mobile Robots (ECMR),
pages 1–8. IEEE, 2019. 2

[9] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung.
The google file system. In Proceedings of the Nineteenth
ACM Symposium on Operating Systems Principles, SOSP
’03, page 29–43, New York, NY, USA, 2003. Association
for Computing Machinery. 1

[10] Andrés Jiménez, Vicente Garcı́a Dı́az, Ruben Gonzalez Cre-
spo, and Sandro Castro. Decentralized on-line simultaneous
localization and mapping for multi-agent systems. Sensors,
18:1–16, 08 2018. 2

[11] Leslie Lamport. The part-time parliament. In Concurrency:
the Works of Leslie Lamport, pages 277–317. 2019. 1

[12] Barbara Liskov, Sanjay Ghemawat, Robert Gruber, Paul
Johnson, Liuba Shrira, and Michael Williams. Replication
in the harp file system. ACM SIGOPS Operating Systems
Review, 25(5):226–238, 1991. 1

[13] Jialun Lu, Wang Yang, and Fan Wu. High definition map dis-
tribution in named data networking based vanets. In 2020 3rd
International Conference on Hot Information-Centric Net-
working (HotICN), pages 129–134. IEEE, 2020. 2

[14] Guiyang Luo, Quan Yuan, Haibo Zhou, Nan Cheng, Zhihan
Liu, Fangchun Yang, and Xuemin Sherman Shen. Coopera-
tive vehicular content distribution in edge computing assisted
5g-vanet. China Communications, 15(7):1–17, 2018. 2

[15] Petra Mazdin and Bernhard Rinner. Distributed and
communication-aware coalition formation and task assign-
ment in multi-robot systems. IEEE Access, 9:35088–35100,
2021. 2

[16] Francesco Nex and Fabio Remondino. Uav for 3d mapping
applications: A review. Applied Geomatics, 6, 03 2014. 1

[17] Raz Nissim and Ronen I. Brafman. Multi-agent a* for paral-
lel and distributed systems. In AAMAS, 2012. 2

[18] Diego Ongaro and John Ousterhout. In search of an un-
derstandable consensus algorithm. In 2014 USENIX An-
nual Technical Conference (Usenix ATC 14), pages 305–319,
2014. 1

[19] Amit Rauniyar and Pranab K. Muhuri. Multi-robot coalition
formation and task allocation using immigrant based adap-
tive genetic algorithms. 2020. 2

[20] Yara Rizk, Mariette Awad, and Edward W. Tunstel. Cooper-
ative heterogeneous multi-robot systems. ACM Computing
Surveys (CSUR), 52:1 – 31, 2019. 2

[21] Michal Stolba, Daniel Fiser, and Antonı́n Komenda. Admis-
sible landmark heuristic for multi-agent planning. In ICAPS,
2015. 2

[22] Michal Stolba and Antonı́n Komenda. The madla planner:
Multi-agent planning by combination of distributed and local
heuristic search. Artif. Intell., 252:175–210, 2017. 2

[23] Doug Terry. Replicated data consistency explained through
baseball. Commun. ACM, 56(12):82–89, dec 2013. 4

[24] Alexandre Verbitski, Anurag Gupta, Debanjan Saha, Murali
Brahmadesam, Kamal Gupta, Raman Mittal, Sailesh Krish-
namurthy, Sandor Maurice, Tengiz Kharatishvili, and Xi-
aofeng Bao. Amazon aurora: Design considerations for high
throughput cloud-native relational databases. In SIGMOD
2017, 2017. 1

[25] Janardan Kumar Verma and Virender Ranga. Multi-robot co-
ordination analysis, taxonomy, challenges and future scope.
Journal of Intelligent & Robotic Systems, 102, 2021. 2

[26] Jingjing Wang, Chunxiao Jiang, Zhu Han, Yong Ren, and
Lajos Hanzo. Internet of vehicles: Sensing-aided transporta-
tion information collection and diffusion. IEEE Transactions
on Vehicular Technology, 67(5):3813–3825, 2018. 2

[27] Fan Wu, Wang Yang, Jialun Lu, Feng Lyu, Ju Ren, and
Yaoxue Zhang. Rlss: A reinforcement learning scheme for
hd map data source selection in vehicular ndn. IEEE Internet
of Things Journal, 2021. 2

[28] Zhi Yan, Nicolas Jouandeau, and Arab Ali Chérif. A sur-
vey and analysis of multi-robot coordination. International
Journal of Advanced Robotic Systems, 10, 2013. 2


	. Introduction
	. Background
	. Scene Representation
	. Scene Voxel Representation
	. Voxel Partitioning and Replication
	. Low Resolution Representation

	. Agent Coordination
	. Agent Behavior and State
	. Agent RPC's
	. Agent Implementation
	High-Resolution (Fine) Representation Update
	Low-Resolution (Coarse) Reprentation Update
	Preference-List Gossiping Update

	. Consistency Model
	. Network Load with a Dynamic Preference-List

	. Experiments
	. System Behavior in Reliable Conditions
	. System behavior under network partitions

	. Limitations

