A Decentralized Distributed Key Generation Primitive
for Blockchain Applications

Daniel Marin

Abstract—We present a decentralized framework for
carrying out Distributed Key Generation (DKG) pro-
tocols useful for blockchain applications like Threshold
Signatures on elliptic curves. In particular, we implement
Pedersen’s DKG protocol using Tendermint as the underly-
ing Byzantine-Fault-Tolerant inter-node atomic broadcast
channel.

I. INTRODUCTION

Blockchains are authenticated stateful systems that
use cryptographic signatures for executing transactions.
Most blockchains support some specific cryptographic
signature scheme that allows end-users to sign and
broadcast transactions to a peer-to-peer network. The
ability of multiple parties to share a single private key for
authentication in blockchain systems arises from multi-
ple fronts: increased key-management security for end-
users and institutional parties, and the existence of newer
technologies like decentralized blockchain oracles.

These use cases with multiple parties sharing a sin-
gle private key can be achieved via a cryptographic
technique called Secret Sharing [1], in which a dealer
distributes shares of a single private key among a set
of n parties using information-theoretic properties of
polynomials on finite fields and allowing any subset of
t < n parties to reconstruct the key. This allows the
instantiation of Threshold Signature schemes in which
any subset of ¢ < n parties are able to generate a
signature as if it was produced by using the original
master secret key. The secret-sharing approach however,
provides only a centralized solution: there needs to be
a trusted dealer who has full knowledge of the private
key.

In order to generate a shared private key without
ever having to trust a single party, a Distributed Key
Generation protocol is needed. At their core, DKG
protocols provide a way to generate a private-public
master key pair that is shared in a threshold manner
among n parties. That is, any subset of parties of size
t < n are able to recover n. Most DKG protocols need

the primitive of a “broadcast channel”, a medium of
inter-node communication that allows nodes to reliably
“publish” a set of values needed to identify dishonest
parties. Assuming the existance of a reliable broadcast
channel has made most work on DKG protocols remain
in the theoretical domain.

In this paper we present an implementation of a DKG
protocol that uses the Tendermint [8] consensus proto-
col as the underlying abstraction of a Byzantine-fault-
tolerant broadcast channel, thus providing a primitive
for instantiating Threshold Signature schemes suitable
for blockchain applications.

II. SYSTEM MODEL

Let {Py,..., P,} be a set of n computer nodes, where
up to ¢t < n/3 are dishonest, and which are connected
by a complete network of private, authenticated, point-
to-point channels.

A Synchrony Model. We assume a partially syn-
chronous communication model. That is, the compu-
tation proceeds in synchronized rounds and messages
are received by their recipients within an specified time
bound A. In addition, we assume the parties possess syn-
chronized clocks, and they start executing any protocol
within A time from each other.

PKI. We assume the existence of a public key infras-
tructure by which every party P; has a public key known
to all other parties. This could be achieved, for instance,
by having the parties register and publish their keys on
a blockchain.

Setup. Let G be a group of prime order ¢ with
generator ¢ € G for which the discrete-log assumption
[4] holds, and let Z, denote its corresponding scalar field.
We assume ¢ and G are known to all parties.

III. BYZANTINE BROADCAST

A broadcast channel is an abstraction of a consensus
protocol, an instance of the well-known problem of
Byzantine Agreement, which is itself an instance of
the BFT-SMR consensus problem. Byzantine Agreement

protocols in the partially synchronous setting operate
with at most f corrupt parties and can withstand f < n/3
corruptions, which is optimal. Any such protocol satisfies
the following properties:

o Agreement. All honest parties output the same
value.

o Liveness. All honest parties output some value.

o Validity. If the sender is honest, then all honest
parties output the value the sender broadcasted.

A. Tendermint

We use the Tendermint [8] consensus protocol to
instantiate a Byzantine Broadcast channel among nodes,
providing the basis for inter-node communication based
on the need of an atomic-broadcast abstraction for our
DKG protocol. Tendermint is a leader-based protocol in-
spired by the PBFT [7] state-machine-replication (SMR)
protocol, proceeding in rounds. However, unlike PBFT,
Tendermint is easier to understand thanks to its single
mode of execution: the protocol proceeds equally each
round regardless of leader corruption.

Tendermint provides exactly the Byzantine-fault-
tolerant abstraction needed for building the DKG broad-
cast channel, satisfying all of the agreement, liveness
and validity properties under the f < n/3 assumption
of faulty processes. The open-source Go implementation
of Tendermint uses threshold signatures, which allow
it to achieve a performance of O(n) communication
complexity both in the presence of honest and faulty
leaders.

IV. DISTRIBUTED KEY GENERATION

A. Shamir’s Secret Sharing Scheme

Sharmir’s scheme is a 2-tuple of algorithms (Gg, Csp)
(generate, combine) that form a t-out-of-n secret sharing
scheme over Z, defined as follows:

e Gg(n,t,a): choose random cy, ..., ¢ %l Z4 and
let f : Zqy — Zq be the secret polynomial defined
as

f(@) = a+ciz+ca?® + -+t € Zyla].

Note that f(0) = « and f is of degree at most ¢. For
i =1,...,N compute the shares o; < f(i) € Z,
and output {a; }icp)-

o Cin(T,{c}jer): interpolate the polynomial f from
the ¢+ 1 points {(J, a;)}jer and output a := f(0).

B. Feldman’s Verifiable Secret Sharing Scheme

Verifiable secret sharing schemes extend secret sharing
schemes by allowing the recipients of shares to verify the
validity of their shares and to filter out incorrect shares
submitted by dishonest parties in the reconstruction
phase.

Feldman’s scheme [2] (G, Cr, Er, V&) (generate,
combine, encrypt, verify) is a t-out-of-n verifiable secret
sharing scheme over Z, defined as follows:

] (GF,CF) = (Gsh,C’S)

o Eg(a): For the coefficients (a,c1, ..., ¢;) € ZET of
the secret polynomial f from algorithm GF, output
the verification values C := (C)peqoyupy defined
as C < g% € G.

e Vr(C,i,q;): Let F :
polynomial defined as

Zq — G be the public

t
F(z) =[] ¢t
k=0

Output 1 if F(i) = g* and 0 otherwise.

C. Pedersen’s DKG Protocol

Definition IV.1 (Pedersen’s DKG). Pedersen’s DKG
protocol [3] is a (n,t)-DKG protocol Gpkgp defined
as follows:

1) Sharing Phase. Each party F; acts as a dealer
during one of n parallel executions of Feldman’s
VSS scheme. That is, each party F; chooses a

random oy <£ Zq and computes the shares
(1, - -+, un) < Gg(n,t, ;) and the public val-
ues (Cio,...,Ci) + Er(a), which define P;’s
secret and public polynomials f; : Z, — Z, and
F; : Zqy — G. Then, P; sends «; directly to each
Pj and broadcasts the values C; := (Cik)keforufy-

2) Verification Phase. Every P; verifies the shares
he received by computing Vi(C;, j, ;) for i =
1,...,n. For each failed verification at index ¢, P;
broadcasts (complaint,i).

3) Dispute Phase. For each party P; complaining
against P, party P; broadcasts (dispute, 7, ayj),
thus revealing share «;;. Each other P then in-
dependently verifies the validity of this share by
computing Vi(C;, j, a5). If verification fails, then
party P; is marked disqualified.

4) Key Derivation Phase. Let QUAL be defined as
the set of non-disqualified parties, and let f :=
> icouar, fi and F:= [[;couar, Fi define the shared
private and public polynomials. Then:

The master secret key (not computed by anyone)
is defined as

(67

The master public key y = ¢
every party via

is computed by

=11 ¢*»= II ¢"©=F0). @
iEQUAL iEQUAL
Each party computes their share «; of o by

JEQUAL JEQUAL

Each party computes the public-key share g% of
every other party P; via

g% =[] o= [FG)=F(@)

JEQUAL JEQUAL

4

Note that a = f(0) can be recovered by any ¢+ 1-
sized subset of honest parties by interpolating the
t-degree polynomial f with ¢+ 1 shares o;; = f(3).

V. IMPLEMENTATION

The nodes in our network are implemented as NodeJS
servers written in TypeScript. We found this stack ap-
pealing because of NodelS’s event-driven approach to
server-side applications. Nodes communicate via the
gRPC open-source RPC framework by implementing
gRPC servers and clients with a minimal interface.

Our development environment includes Tendermint
Core’s Go implementation, which uses the ABCI RPC-
based interface to interact with the underlying consensus
engine, also built using gRPC.

For the elliptic curve and cryptographic primitives we
used the MCL pairing-based cryptography library and its
WebAssembly interface compatible with NodeJS. This
provided the basic elliptic-curve primitives for multipli-
cation and exponentiation over the BN-254 [5] elliptic
curve.

A master script instantiates all nodes, generating for
each a public-private key pair sk il Lg, pk < g%,
Then the script spawns independent child node processes
that execute the protocol in isolated threads. Each node
is assigned an ID and and an HTTP port on the same
machine, and is given information about each other
nodes’ IDs and ports. Figures 1 and 2 provide example
logs of simulations where all parties are honest and
where one process is faulty, respectively, demonstrating
that our implementation follows the expected behaviour
in both cases.

: DDKGNode #0: Initiating DKG, n: 3, t: 2, sessionId:

1146427605, port: 50051, inde
server: 0.0.0.0:50051

: DDKGNode #0: starting server

: DDKGNode #1: Initiating DKG, n: 3, t: 2, sessionId:
server: 0.0.0.0:50052

: DDKGNode #1: starting server

: DDKGNode #2: Initiating DKG, n: 3, t: 2, sessionId:
server: 0.0.0.0:50053

: DDKGNode #2: starting server

: DDKGNode #0: executing sharing phase

: DDKGNode #1: executing sharing phase

: DDKGNode #2: executing sharing phase

: DDKGNode #0: server stopped

: DDKGNode #@: executing verfication phase

: DDKGNode #1: server stopped

: DDKGNode #1: executing verfication phase

: DDKGNode #2: server stopped

: DDKGNode #2:

: DDKGNode #0:

: DDKGNode #1:

: DDKGNode #2:

1146427605, port: 50052, inde

1146427605, port: 50053, inde

executing verfication phase
executing dispute phase
executing dispute phase
executing dispute phase

: DDKGNode #@: executing key derivation phase

: DDKGNode #1: executing key derivation phase

: DDKGNode #0: QUAL: 0,1,2, disqualified: , mpk: 1915425469364596918436926867868712
3167691820131383639761839924340382996209073,7228093807456524742291690269786848753011205
177052769838101850672555801788047 ,88944919549309975634777236246524963964765021008159686
74825876402132501656789, 144577503302839510451671679673599047758830953739705029458687462
85021585381900

: DDKGNode #1: QUAL: 0,1,2, disqualified: , mpk: 1915425469364596918436926867868712
3167691820131383639761839924340382996209073, 7228093807456524742291690269786848753011205
177052769838101850672555801788047 ,88944919549309975634777236246524963964765021008159686
74825876402132501656789, 144577503302839510451671679673599047758830953739705029458687462
85021585381900

: DDKGNode #2: executing key derivation phase

: DDKGNode #2: QUAL: 0,1,2, disqualified: , mpk: 1915425469364596918436926867868712
3167691820131383639761839924340382996209073,7228093807456524742291690269786848753011205
177052769838101850672555801788047 ,88944919549309975634777236246524963964765021008159686
74825876402132501656789, 144577503302839510451671679673599047758830953739705029458687462
85021585381900

Fig. 1. Example run with n = 3 and ¢ = 2, when all nodes are
honest and follow the protocol. Note that each node agrees on the
set of qualified parties QUAL, as well as the value of the master
public key mpk.

VI. CONCLUSION

Distributed key generation protocols provide a useful
cryptographic primitive for building decentralized ap-
plications built on top of threshold signature schemes.
We implemented a self-sufficient implementation of Ped-
ersen’s DKG protocol for elliptic curve cryptosystems
with the aid of Tendermint as a Byzantine-fault-tolerant
atomic broadcast channel. Future research includes test-
ing the scalability of our implementation as a function
of n and ¢, as well as the number of dishonest parties
participating in the DKG protocol.

REFERENCES

[1] A. Shamir, “How to share a secret,” Communications of the
ACM, vol. 22, no. 11, pp. 612-613, 1979

[2] P. Feldman, “A practical scheme for non-interactive verifiable
secret sharing,” in 28th Annual Symposium on Foundations of
Computer Science. IEEE, 1987, pp. 427-438.

[3] T. P. Pedersen, “A threshold cryptosystem without a trusted
party,” in Workshop on the Theory and Application of Crypto-
graphic Techniques. Springer, 1991, pp. 522-526.

[4] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin, “Secure dis-
tributed key generation for discrete-log based cryptosystems,”
in International Conference on the Theory and Applications of
Cryptographic Techniques. Springer, 1999, pp. 295-310.

[5] Barreto, Paulo S. L. M., and Michael Naehrig. Pairing-Friendly
Elliptic Curves of Prime Order. 133, 2005. ePrint IACR,
https://eprint.iacr.org/2005/133.

Initiating DK n: 3, t: 2, sessionId: 1300004652, port: 50051, index: @, ser

starting server
Initiating DKG, n: 3, t: 2, sessionId: 1300004652, port: 50052, index: 1, ser
0.0.0.0:50052

DDKGNode #1: starting server

DDKGNode #2: Initiating DKG, n: 3, t: 2, sessionId: 1300004652, port: 50053, index: 2, ser

0.0.0.0:50053

DDKGNode starting server

DDKGNode executing sharing phase

DDKGNode executing sharing phase

DDKGNode executing sharing phase

DDKGNode server stopped

DDKGNode executing verfication phase

DDKGNode server stopped

DDKGNode executing verfication phase

Received invalid share from node @
server stopped
executing verfication phase
executing dispute phase
Node 1 complained against me.
executing dispute phase
executing dispute phase
executing key derivation phase
Complaint from 1 verified against @

: DDKGNode #0: QUAL: 1,2, disqualified: @, mpk: 98415507673342273608698890946355465740590166
00849082431054037215639187804841,112211692265747715408667369893727260566749233520952452356523627
50743374314110,19402632557369091417500481023791112747068300444778431851822070294219967962067,971
0049432397219859627354527128038214456501822191209231784818534731036707314

DDKGNode #2: executing key derivation phase

DKGNode #2: Complaint from 1 verified against @

DDKGNode #2: QUAL: 1,2, disqualified: @, mpk: 98415507673342273608698890946355465740590166
00849082431054037215639187804841,112211692265747715408667369893727260566749233520952452356523627
50743374314110,19402632557369091417500481023791112747068300444778431851822070294219967962067, 971
0049432397219859627354527128038214456501822191209231784818534731036707314

: DDKGNode #1: executing key derivation phase

DKGNode #1: Complaint from 1 verified against @

DDKGNode #1: QUAL: 1,2, disqualified: @, mpk: 98415507673342273608698890946355465740590166
00849082431054037215639187804841,112211692265747715408667369893727260566749233520952452356523627
50743374314110,19402632557369091417500481023791112747068300444778431851822070294219967962067, 971
0049432397219859627354527128038214456501822191209231784818534731036707314

Fig. 2. Example run with n = 3 and ¢ = 2, with node O being faulty.
Note that each non-faulty node agrees on the set of qualified parties
QUAL = {1, 2}, the set of faulty parties ~QUAL = {0}, and the
value of the master public key mpk.

[6] Leslie Lamport, Robert E. Shostak, and Marshall C.
Pease. 1982. The Byzantine Generals Problem. ACM
Trans. Program. Lang. Syst. 4, 3 (1982), 382-401.
https://doi.org/10.1145/357172.357176

[7] Miguel Castro and Barbara Liskov. 1999. Practical Byzan-
tine Fault Tolerance. In Proceedings of the Third USENIX
Symposium on Operating Systems Design and Implementation
(OSDI), New Orleans, Louisiana, USA, February 22-25, 1999.
173-186. https://dl.acm.org/citation.cfm?id=296824

[8] Buchman, Ethan, Jac Kwon, and Zarko Milosevic. ”The latest
gossip on BFT consensus.” arXiv preprint arXiv:1807.04938
(2018).

