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Abstract—We present a decentralized framework for
carrying out Distributed Key Generation (DKG) pro-
tocols useful for blockchain applications like Threshold
Signatures on elliptic curves. In particular, we implement
Pedersen’s DKG protocol using Tendermint as the underly-
ing Byzantine-Fault-Tolerant inter-node atomic broadcast
channel.

I. INTRODUCTION

Blockchains are authenticated stateful systems that
use cryptographic signatures for executing transactions.
Most blockchains support some specific cryptographic
signature scheme that allows end-users to sign and
broadcast transactions to a peer-to-peer network. The
ability of multiple parties to share a single private key for
authentication in blockchain systems arises from multi-
ple fronts: increased key-management security for end-
users and institutional parties, and the existence of newer
technologies like decentralized blockchain oracles.

These use cases with multiple parties sharing a sin-
gle private key can be achieved via a cryptographic
technique called Secret Sharing [1], in which a dealer
distributes shares of a single private key among a set
of n parties using information-theoretic properties of
polynomials on finite fields and allowing any subset of
t < n parties to reconstruct the key. This allows the
instantiation of Threshold Signature schemes in which
any subset of t < n parties are able to generate a
signature as if it was produced by using the original
master secret key. The secret-sharing approach however,
provides only a centralized solution: there needs to be
a trusted dealer who has full knowledge of the private
key.

In order to generate a shared private key without
ever having to trust a single party, a Distributed Key
Generation protocol is needed. At their core, DKG
protocols provide a way to generate a private-public
master key pair that is shared in a threshold manner
among n parties. That is, any subset of parties of size
t < n are able to recover n. Most DKG protocols need

the primitive of a “broadcast channel”, a medium of
inter-node communication that allows nodes to reliably
“publish” a set of values needed to identify dishonest
parties. Assuming the existance of a reliable broadcast
channel has made most work on DKG protocols remain
in the theoretical domain.

In this paper we present an implementation of a DKG
protocol that uses the Tendermint [8] consensus proto-
col as the underlying abstraction of a Byzantine-fault-
tolerant broadcast channel, thus providing a primitive
for instantiating Threshold Signature schemes suitable
for blockchain applications.

II. SYSTEM MODEL

Let {P1, . . . , Pn} be a set of n computer nodes, where
up to t < n/3 are dishonest, and which are connected
by a complete network of private, authenticated, point-
to-point channels.

∆ Synchrony Model. We assume a partially syn-
chronous communication model. That is, the compu-
tation proceeds in synchronized rounds and messages
are received by their recipients within an specified time
bound ∆. In addition, we assume the parties possess syn-
chronized clocks, and they start executing any protocol
within ∆ time from each other.

PKI. We assume the existence of a public key infras-
tructure by which every party Pi has a public key known
to all other parties. This could be achieved, for instance,
by having the parties register and publish their keys on
a blockchain.

Setup. Let G be a group of prime order q with
generator g ∈ G for which the discrete-log assumption
[4] holds, and let Zq denote its corresponding scalar field.
We assume q and G are known to all parties.

III. BYZANTINE BROADCAST

A broadcast channel is an abstraction of a consensus
protocol, an instance of the well-known problem of
Byzantine Agreement, which is itself an instance of
the BFT-SMR consensus problem. Byzantine Agreement
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protocols in the partially synchronous setting operate
with at most f corrupt parties and can withstand f < n/3
corruptions, which is optimal. Any such protocol satisfies
the following properties:

• Agreement. All honest parties output the same
value.

• Liveness. All honest parties output some value.
• Validity. If the sender is honest, then all honest

parties output the value the sender broadcasted.

A. Tendermint

We use the Tendermint [8] consensus protocol to
instantiate a Byzantine Broadcast channel among nodes,
providing the basis for inter-node communication based
on the need of an atomic-broadcast abstraction for our
DKG protocol. Tendermint is a leader-based protocol in-
spired by the PBFT [7] state-machine-replication (SMR)
protocol, proceeding in rounds. However, unlike PBFT,
Tendermint is easier to understand thanks to its single
mode of execution: the protocol proceeds equally each
round regardless of leader corruption.

Tendermint provides exactly the Byzantine-fault-
tolerant abstraction needed for building the DKG broad-
cast channel, satisfying all of the agreement, liveness
and validity properties under the f < n/3 assumption
of faulty processes. The open-source Go implementation
of Tendermint uses threshold signatures, which allow
it to achieve a performance of O(n) communication
complexity both in the presence of honest and faulty
leaders.

IV. DISTRIBUTED KEY GENERATION

A. Shamir’s Secret Sharing Scheme

Sharmir’s scheme is a 2-tuple of algorithms (Gsh, Csh)
(generate, combine) that form a t-out-of-n secret sharing
scheme over Zq defined as follows:

• Gsh(n, t, α): choose random c1, . . . , ct
R←− Zq and

let f : Zq → Zq be the secret polynomial defined
as

f(x) := α+ c1x+ c2x
2 + · · ·+ ctx

t ∈ Zq[x].

Note that f(0) = α and f is of degree at most t. For
i = 1, . . . , N compute the shares αi ← f(i) ∈ Zq

and output {αi}i∈[n].
• Csh(T, {αj}j∈T ): interpolate the polynomial f from

the t+1 points {(j, αj)}j∈T and output α := f(0).

B. Feldman’s Verifiable Secret Sharing Scheme

Verifiable secret sharing schemes extend secret sharing
schemes by allowing the recipients of shares to verify the
validity of their shares and to filter out incorrect shares
submitted by dishonest parties in the reconstruction
phase.

Feldman’s scheme [2] (GF, CF, EF, VF) (generate,
combine, encrypt, verify) is a t-out-of-n verifiable secret
sharing scheme over Zq defined as follows:

• (GF, CF) := (Gsh, Csh).
• EF(α): For the coefficients (α, c1, . . . , ct) ∈ Zt+1

q of
the secret polynomial f from algorithm GF, output
the verification values C := (Ck)k∈{0}∪[t] defined
as Ck ← gck ∈ G.

• VF(C, i, αi): Let F : Zq → G be the public
polynomial defined as

F (x) :=

t∏
k=0

Cxk

k .

Output 1 if F (i) = gαi and 0 otherwise.

C. Pedersen’s DKG Protocol

Definition IV.1 (Pedersen’s DKG). Pedersen’s DKG
protocol [3] is a (n, t)-DKG protocol GDKG-P defined
as follows:

1) Sharing Phase. Each party Pi acts as a dealer
during one of n parallel executions of Feldman’s
VSS scheme. That is, each party Pi chooses a
random αi0

R←− Zq and computes the shares
(αi1, . . . , αin)← GF(n, t, αi0) and the public val-
ues (Ci0, . . . , Cit) ← EF(αi0), which define Pi’s
secret and public polynomials fi : Zq → Zq and
Fi : Zq → G. Then, Pi sends αij directly to each
Pj and broadcasts the values Ci := (Cik)k∈{0}∪[t].

2) Verification Phase. Every Pj verifies the shares
he received by computing VF(Ci, j, αij) for i =
1, . . . , n. For each failed verification at index i, Pj

broadcasts (complaint, i).
3) Dispute Phase. For each party Pj complaining

against Pi, party Pi broadcasts (dispute, j, αij),
thus revealing share αij . Each other Pk then in-
dependently verifies the validity of this share by
computing VF(Ci, j, αij). If verification fails, then
party Pi is marked disqualified.

4) Key Derivation Phase. Let QUAL be defined as
the set of non-disqualified parties, and let f :=∑

i∈QUAL fi and F :=
∏

i∈QUAL Fi define the shared
private and public polynomials. Then:



The master secret key (not computed by anyone)
is defined as

α :=
∑

i∈QUAL
αi0 =

∑
i∈QUAL

fi(0) = f(0). (1)

The master public key y = gα is computed by
every party via

gα =
∏

i∈QUAL
gαi0 =

∏
i∈QUAL

gfi(0) = F (0). (2)

Each party computes their share αi of α by

αi :=
∑

j∈QUAL
sji =

∑
j∈QUAL

fj(i) = f(i). (3)

Each party computes the public-key share gαi of
every other party Pi via

gαi :=
∏

j∈QUAL
gsji =

∏
j∈QUAL

Fj(i) = F (i). (4)

Note that α = f(0) can be recovered by any t+1-
sized subset of honest parties by interpolating the
t-degree polynomial f with t+1 shares αi = f(i).

V. IMPLEMENTATION

The nodes in our network are implemented as NodeJS
servers written in TypeScript. We found this stack ap-
pealing because of NodeJS’s event-driven approach to
server-side applications. Nodes communicate via the
gRPC open-source RPC framework by implementing
gRPC servers and clients with a minimal interface.

Our development environment includes Tendermint
Core’s Go implementation, which uses the ABCI RPC-
based interface to interact with the underlying consensus
engine, also built using gRPC.

For the elliptic curve and cryptographic primitives we
used the MCL pairing-based cryptography library and its
WebAssembly interface compatible with NodeJS. This
provided the basic elliptic-curve primitives for multipli-
cation and exponentiation over the BN-254 [5] elliptic
curve.

A master script instantiates all nodes, generating for
each a public-private key pair sk

R←− Zq, pk ← gsk.
Then the script spawns independent child node processes
that execute the protocol in isolated threads. Each node
is assigned an ID and and an HTTP port on the same
machine, and is given information about each other
nodes’ IDs and ports. Figures 1 and 2 provide example
logs of simulations where all parties are honest and
where one process is faulty, respectively, demonstrating
that our implementation follows the expected behaviour
in both cases.

Fig. 1. Example run with n = 3 and t = 2, when all nodes are
honest and follow the protocol. Note that each node agrees on the
set of qualified parties QUAL, as well as the value of the master
public key mpk.

VI. CONCLUSION

Distributed key generation protocols provide a useful
cryptographic primitive for building decentralized ap-
plications built on top of threshold signature schemes.
We implemented a self-sufficient implementation of Ped-
ersen’s DKG protocol for elliptic curve cryptosystems
with the aid of Tendermint as a Byzantine-fault-tolerant
atomic broadcast channel. Future research includes test-
ing the scalability of our implementation as a function
of n and t, as well as the number of dishonest parties
participating in the DKG protocol.
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