
FLADS: Federated Learning with an Asynchronous
Distributed System

Aman Bansal
Stanford University

aman0456@stanford.edu

Aditya Chandrasekar
Stanford University

adichand@stanford.edu

Gabriel Mudel
Stanford University

gmudel@stanford.edu

Abstract—As we go further into this century, the
questions surrounding data and privacy are going to
get more prominent and harder to answer. There has
already been substantial outcry regarding misuse of
private data by corporations around the world. This has
exacerbated the need for machine learning methods which
ensure data privacy. One of the major cause of such
concerns are the small devices that many individuals use
in their everyday lives. These devices can range from a
virtual assistant like Amazon’s Alexa to a self-driving car.
There are long-standing concerns around corporations
listening to your conversations and monetizing them,
all done in the name of improving their products. In
this paper, we introduce FLADS, a tool which combines
Federated Learning concepts with an Asynchronous
Distributed System to create a network of node which
don’t communicate with any centralized server. Rather,
they facilitate learning by sharing their data among
themselves. FLADS is novel in that it proposes a trade-off
between accuracy and training throughput by allowing for
stale gradients. It also combines the modules of federated
learning and distributed systems in a plug-and-play way;
any of the algorithms can be independently changed and
plugged to our implementation provided they follow the
interface. We also run experiments to quantify how well
FLADS performs and the trade-offs it offers. From the
experiments, we conclude that allowing for stale gradients
can improve overall model training throughput with only
marginal impacts to accuracy, and may even improve
accuracy in a very skewed data distribution.

I. INTRODUCTION

Currently, most of the smart devices that we use owe
their “intelligence" to the data that they collect and the
machine learning algorithm that they run to use that data
and learn from it, thereby improving future performance.
These products have immensely changed the way we live
our life for the better, but they have also come with a cost.
Almost all such products are owned and run by a central
entity which stores and has access to the data collected

by these products. It’s undeniable that advancements in
technologies such as autonomous vehicles would not have
occurred in lieu of abundantly available data. However,
the current setting of these products suffer from some
major drawbacks:

• The user data is accessible by the corporation which
can constitute violation of user privacy. This data
can further get leaked or hacked [1], leading to even
larger concerns.

• The whole system is dependent on a central power.
They can stop any particular user’s product from
improving by using data.

In this paper, we present FLADS, a tool that tackles
these drawbacks. The problem statement that FLADS
solves is as follows:

Problem Statement: Given some nodes (which
correspond to smart devices) that continuously collect
data and use it to perform model updates, ensure that
every node is able to learn from every node’s data while
following these restrictions:

• Fault Tolerant: No single point of power/failure.
• Privacy Preserving: No node shares its data with

any other node.
We first give related works in section II, design details

in section III, implementation details in section IV,
experiments in section IV, and then conclude in section
VI.

II. RELATED WORK

There’s a significant field of Machine Learning focused
on Distributed ML research [2], [3], [4]. This area of
research is focused on using multiple compute machines
to reduce the training time of a neural network. The
majority of works that we have found in our review
do not concern themselves with data safety and privacy
handling.



Federated Learning [5], [6], captures the idea of
training an ML in a private way on compute-constrained
machines such as mobile devices. These methods are
privacy-preserving but centralized – ultimately, data is
being sent back to a central server for training. We did
an extensive search for a federated learning paper [7]
with fault-tolerance as a design goal. During our search,
we found [8], a Learning algorithm designed to be robust
against byzantine faults. However, this assumption was
stronger than the environment we were designing for,
especially since Byzantine failure models can only handle
⌊n3 ⌋ failures in a n-node network.

III. DESIGN

We begin the description of FLADS’s design by
enumerating the different components that go into
building it. We first explain the design of a node and
then explain how that node interacts with other nodes to
form a working distributed system.

A. Node

A node is a symbolic representation of a smart device
as defined in the problem statement. We define its
properties below:

• It has a compute environment.
• It has a Deep Neural Network (DNN) which is used

for taking the “smart” action.
• It has the ability to collect data to perform DNN

training locally.
• It has a network card/interface for it to receive

and send messages over standard protocols like
TCP/UDP. This will be used to communicate with
other nodes in the system.

B. The Distributed System

Our system consists of a network of multiple such
nodes. All the nodes in the system are initialized so that
they have the same initial DNN state. The nodes then
perform DNN forward passes and communicate with each
other is to achieve the following goal:

Goal: Train the DNNs of all the nodes in the system
using data from as many nodes as possible and keep the
state of the DNN consistent across the nodes.

To ensure DNN model consistency across nodes,
FLADS uses a consensus protocol. We use a modified
version of the Zookeeper Atomic Broadcast Protocol
(ZAB) for this task. Our implementation of ZAB is
explained in Section IV. We now detail the high-level
functionality of our system:

Fig. 1. Summary of FLADS

1) All of the nodes perform a modified DNN training
with their own data. They choose a mini-batch and
use it to perform a forward and backward pass
over the DNN. The nodes then store the gradients
calculated after the backward pass but don’t update
their model with these gradients.

2) The gradients are then passed to the ZAB protocol
as a client request. The protocol, treating the
gradients as a client request, enforces a consensus
among all the nodes to agree on which order these
gradients should be applied in.

3) Every node now does a gradient descent with the
gradients in the consensus order.

4) After the gradient descent updates, the nodes
calculate the next set of gradients on the updated
DNN and return to step 1.

The process is summarized in Figure 1. The correctness
of this process follows from the total order guarantee
given by the ZAB protocol.

IV. IMPLEMENTATION

FLADS is implemented in a modular way. The ML
component is completely independent of the distributed
system component, allowing FLADS to have a plug-and-
play functionality. Any gradient-based algorithm can be
plugged into the rest of the system.

We start by discussing the implementation of individual
components and then describe how they are combined
together. The GitHub repository for our implementation
can be found here. We have implemented our code in
Go.

https://github.com/gmudel/CS244b-project


Fig. 2. Summary of ZAB Protocol [10]

A. Machine Learning Implementation

We used gotorch which extends support for PyTorch-
like Tensor operations. The DNN architecture used for this
project was a 3-layer feedforward multilayer perceptron
(MLP) trained with vanilla stochastic gradient descent
(SGD) on the well-known MNIST dataset. The manner in
which the DNN parameters are updated is a key difference
between our implementation and that of a “vanilla" DNN.
Where a vanilla, non-distributed DNN would perform
a gradient update immediately after each minibatch of
training, ours waits to achieve consensus among the nodes
before performing the update. The reason for this is
that we would like our models’ states to not diverge. If
more than a small amount of model divergence were to
occur, then the gradients from one model may hurt the
performance of another model.

B. System Implementation

We use an adaptation of the Zookeper Atomic
Broadcast (ZAB) protocol given in [9] for our distributed
system algorithm. Figure 2 summarizes the ZAB protocol
with all its phases.

While from a technical standpoint we implement
exactly the protocol given in [9], we made a few different
choices to tune the implementation for our use case.
Below, we give our implementation choices and the
reasoning for those choices.

• No Self Messages: Some ZAB implementations
assume that the leader node is also like a follower
node and also participates in all the protocol phases
as follower by sending messages to itself (also
shown in Figure 2). We have not treated leader
as a follower and we just adjust the message counts
by 1 when checking for quorum instead of sending
a self message.

• Next Leader Choice: The ZAB protocol leaves the
choice of next leader in case of a view change open
until all the nodes get the same next leader ID. We
set the next leader ID to be simply the node whose
ID is one greater than the former leader (modulo
the numer of nodes in the network). In failure cases,
we manually tell the crashed node who the current
leader is upon boot. A more sophisticated leader
election protocol is left to future work.

• Heartbeats: Each follower sends the leader a
heartbeat, and the leader broadcasts its heartbeat to
all followers over a separate UDP connection (Zab
messages are sent over TCP to preserve ordering).

We also had some optimizations that we had thought
of but did not include in our implementation.

• Send Model instead of Gradients: A single update
request can send multiple gradients from a client.
Instead of sending all of these gradients as part of
a new proposal, the leader could simply calculate
the final model state after applying these incoming
gradients and send a proposal with the new model
state. Since the size of the model and the size of
a single gradient are the same, sending the whole
model state in a proposal may be much more efficient
than sending multiple gradients.

• Batch Gradients: Instead of sending a request to
the leader as soon as the gradients are ready, wait
for GRAD_BATCH_SIZE gradients and send them
together to the leader. Combined with the above
optimization, this could significantly reduce network
congestion.

C. Combining the Two

Combining the Machine Learning (ML) and the
Distributed System (DS) modules may look like a simple
task but it poses an important question: when should we
run the next batch iteration in the DNN? We initially
planned to explore the following 3 ways of picking the
next batch iteration. We discuss our three implementations
in terms of gradient staleness, which refers to how old
the gradients with respect to the current state of SGD
training.

1) No Staleness: SGD is an inherently sequential
algorithm, so applying gradients out of order (i.e.
stale gradients) can lead the model states to diverge.
No staleness means that we only allow committing
gradients which have been calculated using the
current model’s weight. This is a very difficult
synchronization requirement to enforce - effectively
asking the ML module to continuously wait for the



Fig. 3. SmallNN Architecture

DS module - and will significantly hurt the training
efficiency.

2) Strong Staleness: Strong staleness means that
we’re allowing any gradient to be committed
independent of how many SGD epochs before they
were calculated. We expect the accuracy of this
variation to be very low since gradients older than
a certain number of batch iterations will essentially
be random noise. We do not include these in our
plots, but we conjecture that accuracy would tend
towards that of a model which guesses randomly.

3) Weak Staleness: Weak staleness means that we’re
allowing some stale gradients but not beyond a
certain number of batch iterations. We find that
this variation yields a reasonable trade-off between
accuracy and training time. This is the version we
have implemented.

V. EXPERIMENTS

We run experiments to focus on both the modules, ML
and DS.

A. Accuracy

The details of the experiments are:

• Dataset: MNIST (image size = 28*28 grayscale,
number of classes = 10)

• Model: A feedforward MLP with 2 hidden layers,
both with size 128. See Figure 3.

• Number of Nodes: 3
• Metric: Validation Accuracy vs. Epoch
• Dataset Split across nodes:

– Uniform: The dataset uniformly randomly
divided into 3 parts for each node, and

– Range-Partitioned: in which the dataset is
divided based on the target label - node 0 has
images with labels 0, 1, 2, and 3; node 1 has
4, 5, and 6; and node 2 has 7, 8, and 9. This
dataset is meant to simulate a scenario in which
our nodes have data from drastically different
distributions – a common setting in federated
learning.

• Experiment Plots:

– No staleness: Equivalent to training one node
with the data of all nodes. This is the theoretical
optimal performance.

– Weak staleness: Run using our Zab
implementation.

– Baseline: Each node trains on its own local
dataset with no communication.

The plots for the Uniform and Range-Partitioned data
split are given in Figures 4 and 5.

Fig. 4. Machine Learning Experiment Plot for Uniform Data Split



Fig. 5. Machine Learning Experiment Plot for Range-Partitioned
Data

Analysis: The plots are consistent with the general
trend that we expected them to follow:

• In Uniform split, ’no staleness’ performs better
than ’baseline’ because the latter doesn’t see the
whole data missing out on important features. ’Weak
staleness’ has lower accuracy than ’baseline’ because
of allowing stale gradients.

• In Range-Partitioned data, ’no staleness’ is the best
by a huge margin because it is not affected by the
range partition. ’Weak staleness’ becomes noticeably
better than baseline by the end of training because
its advantage of learning from other node’s data
exceeds the disadvantage of allowing stale data. We
also note the somewhat erratic behavior of training
performance and attribute this to stale gradients
being applied throughout the training process.

B. Network Communication Cost

In Figure 6, we plot the communication cost vs time
to get a better idea of the scale of cost and its trade-off
with accuracy. In this experiment:

• Uniform or Range-Partitioned will have identical
network costs.

• Baseline variation will have 0 communication cost
while no staleness and weak staleness will both
have the same cost but weak staleness will have
significantly more throughput.

Fig. 6. Communication Cost Plot

Analysis: The plot shows the small but frequent
heartbeat messages as well as the infrequent but heavy
gradient messages. The gradient message size is reaching
almost 40 MiB. Due to these extreme communication
costs, we couldn’t use deeper neural networks for our
experiments. This is a big disadvantage of FLADS. While
we do suggest some routes for optimization in Section IV,
we leave the question of further optimization to future
work.

VI. CONCLUSION

In this paper, we introduced FLADS, and discussed its
design and implementation details, as well as the choices
made during implementation specific to our use case. We
introduced the idea of relaxing the constraints on ML
model training by allowing stale gradients to be used for
SGD.

We ran experiments with different data splits among
nodes and different staleness variations to confirm our
intuition. The results strongly suggest that using FLADS
retains the advantage of high training throughput and
privacy preservation that we would like to achieve in
federated learning scenarios with only marginal decrease
in accuracy vs a baseline model. With a skewed data
split, the accuracy might even improve as is shown by
the Range-Partitioned data split. Such splits are quite
common in practice.

REFERENCES

[1] Hicham Hammouchi, Othmane Cherqi, Ghita Mezzour, Mounir
Ghogho, and Mohammed El Koutbi. Digging deeper into data
breaches: An exploratory data analysis of hacking breaches
over time. Procedia Computer Science, 151:1004–1009,
2019. The 10th International Conference on Ambient Systems,
Networks and Technologies (ANT 2019) / The 2nd International



Conference on Emerging Data and Industry 4.0 (EDI40 2019) /
Affiliated Workshops.

[2] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu
Devin, Mark Mao, Marc' aurelio Ranzato, Andrew Senior, Paul
Tucker, Ke Yang, Quoc Le, and Andrew Ng. Large scale
distributed deep networks. In F. Pereira, C.J. Burges, L. Bottou,
and K.Q. Weinberger, editors, Advances in Neural Information
Processing Systems, volume 25. Curran Associates, Inc., 2012.

[3] Joost Verbraeken, Matthijs Wolting, Jonathan Katzy, Jeroen
Kloppenburg, Tim Verbelen, and Jan S. Rellermeyer. A survey
on distributed machine learning, 2019.

[4] Feng Niu, Benjamin Recht, Christopher Re, and Stephen J.
Wright. Hogwild!: A lock-free approach to parallelizing
stochastic gradient descent, 2011.

[5] Jakub Konečný, H. Brendan McMahan, Felix X. Yu, Peter
Richtarik, Ananda Theertha Suresh, and Dave Bacon. Federated
learning: Strategies for improving communication efficiency. In
NIPS Workshop on Private Multi-Party Machine Learning, 2016.

[6] H. Brendan McMahan, Eider Moore, Daniel Ramage, Seth
Hampson, and Blaise Agüera y Arcas. Communication-efficient
learning of deep networks from decentralized data, 2017.

[7] Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar.
Personalized federated learning: A meta-learning approach, 2020.

[8] Chunjiang Che, Xiaoli Li, Chuan Chen, Xiaoyu He, and Zibin
Zheng. A decentralized federated learning framework via
committee mechanism with convergence guarantee, 2021.

[9] Flavio P. Junqueira, Benjamin C. Reed, and Marco Serafini. Zab:
High-performance broadcast for primary-backup systems. In
2011 IEEE/IFIP 41st International Conference on Dependable
Systems & Networks (DSN), pages 245–256, 2011.

[10] ADRIAN COLYER. Zab: High-performance broadcast for
primary-backup systems.


	Introduction
	Related Work
	Design
	Node
	The Distributed System

	Implementation
	Machine Learning Implementation
	System Implementation
	Combining the Two

	Experiments
	Accuracy
	Network Communication Cost

	Conclusion
	References

