
GFS Simple Implementation

Andy L. Khuu
Stanford University

andykhuu@stanford.edu

Vincent J. Heng
Stanford University

vheng@stanford.edu

Abstract

The Google File System is a scalable and
distributed file system developed at Google that
provides high performance operations, and fault
tolerance. In this paper, we implemented GFS
Simple Implementation, a light localized version
of GFS in Golang, with the goal of recreating
key features of GFS to explore how certain
design decisions and configurations affect overall
performance under various workloads. Our system
supports concurrent CRUD requests from multiple
clients. As part of our testing, we focused on bench
marking the performance of the system under a
variety of workloads and provide the results of our
findings.

1. Introduction

In this project, we implemented a light
version of the Google File System. With
our implementation we sought to preserve the
power and fault tolerant properties of GFS while
providing a clear and simple interface for viewers
to see the more nuanced technical details and
obstacles that goes in to building a large distributed
system. We sought to explore and tackle these
unspoken technical problems such as ”How do
you actually implement leases and manage them
between master and chunk server? and ”How
do you isolate and write structured code for
the multitude of tasks that the master has?” By
confronting these problems with modern software

paradigms and coding patterns, we hoped to gain
a better understanding about the concrete work it
takes to building such a large system and get better
practice at tackling the unsung technical obstacles.
Along this journey, we worked to preserve the naive
implementations (e.g. synchronous) we initially
created as a means of exploring the performance
differences that technical optimizations (e.g. async
> sync processes) provide in such a large
system. Most notably, a key optimization that we
frequently utilized was the conversion of repeated
actions into separate overlapping asynchronous
routines. For example, we saw that making
the forwarding of write requests to secondary
replicas asynchronous led our system to significant
performance improvements.

This paper is organized as follows. In
Section 2, we discuss the architecture of GFS
Simplified Implementation through describing
the main components of the system and their
responsibilities. In Section 3, we walk through
the testing process and functionality tests that
were routinely performed during development
to ensure correctness. Section 4 focuses on
bench marking, stress tests, and data collected
and compared across the modified configurations
and architectures. In Section 5, we discuss
considerations and challenges that we faced during
implementation. Lastly, Section 6 summarizes
production GFS features that we were not able to
implement, given the time constraint, that would
have created more opportunities to experiment with



that is related to our current areas of exploration.

2. Architecture

In our implementation, the system is broken
down into three main modules that will be
described in the following subsections: Master
Server, Chunk Server, Client.

2.1. Master Server

The master server is the core service provider
and main point of contact for GFS clients. It is
the key entity which tracks the current state of
the file system. More specifically, it contains an
in-memory list of chunk servers in the system, a
map of file names to file handles, a map of file
handles to chunk server, a map of chunk handles to
lease, and a set of chunk handles that are currently
in-use.

The master is responsible for managing all the
file chunks (64KB segments) on the system but
does not directly store these chunks. Through the
in-memory data structures it is comprised of, the
master server designates chunk servers as location
where a given chunk will be stored on. This is
relevant in the case of creating a new file and in
the case of writing to a file such that it grows to
span across more chunks. When removing files,
records of the chunk location and chunk handles
will be removed. Essentially, clients that interacts
with files in the file system will first communicate
with the master to determine the locations of the
chunks they want to modify and from there send
operations requests to these locations. Throughout
this entire process, the chunk server will be in
constant communication with the master to ensure
that all affected file metadata is properly updated.

2.1.1. Lease Manager Similar to the original
GFS implementation, the master server is also
in charge of managing and distributing leases to
chunk servers. We encapsulate this functionality in
an entity we call the Lease Manager. In particular,
whenever a client wants to make a mutation to a
specific chunk, it first inquires the master about
what chunk server currently holds the lease for

the desired chunk. If no one holds the lease, one
is granted to one of the chunk servers that holds
a replica of the chunk. This data is relayed to
the client as part of the GetChunkLocationRpc.
Since our implementation is built on a single
computer, we were able to implement our Lease
type by leveraging background daemons and the
computer’s internal system clock. For the sake of
our simulations, we set the timeout for our lease
implementations to 30 seconds.

2.2. Chunk Server

Chunk servers are where file chunks are stored.
For the sake of simplicity in our implementation,
every chunk server is allocated a linux based
directory which serves as their store for all
chunks. The number of chunk servers in a system
is configurable and set in the master server.
Accessing of files for any CRUD operations will
require direct read or write to the memory of these
chunk servers. In addition to these more trivial
functions, chunk servers are also tasked more
obscured functions in order to drive core Google
File System semantics and maintain consistency.

2.3. Handling Mutations

When a write operation is requested by a
client, the writing of data into physical memory
must be replicated across n chunk servers where
n is determined by the configured replication
factor. To reduce bandwidth consumption, the
client only send a write-request to a single chunk
server, called the primary chunk server (Ghemawat
(2003)). Among the set of replicas, a primary
server is determined by the current holder of the
chunk lease or if non-existent, a random replica
server. When a primary chunk server receives a
write request, it first checks if the lease it holds
on the chunk is about to expire and if so, it will
communicate with the master to renew the lease.
Following that, the primary chunk server then
forwards this write-request to secondary chunk
servers to replicate the file chunk and only returns
to the client when it receives an acknowledgement
that all replicas have successfully committed



Name Description
SendHeartBeatMessage Called by chunk servers for periodic communication with master
GetChunkLocation Called by clients to find replica locations of chunks
GetSystemChunkSize Called in set up to determine system chunk size
CreateFile Called by clients to create empty files
RemoveFile Called by clients to remove files
RenewChunkLease Called by chunk servers to renew a lease

Table 1. MasterServer RPC Interface

Name Description
Read Called by clients to read a chunk
ReceiveWriteData Called by clients as part of data flow ingestion for mutation
PrimaryCommitMutate Called by clients to request a write operation
SecondaryCommitMutate Called by chunkservers to prompt secondary replicas to commit a mutation
CreateNewChunk Called by master to create a replica of a chunk
RemoveChunk Called by master to remove chunk
ReceiveLease Called by master to pass a lease to a chunkserver

Table 2. Chunkserver RPC Interface

the mutation. In our system, any error on the
secondary servers are met with a repeated call
until completion. Any arbitrary chunk server can
serve as a primary or secondary under different
client transactions. The secondary chunk servers
will communicate the status of a write operation
the primary and the primary responds with a
cumulative success status to the client if all chunk
servers successfully wrote or fail status in the else
case.

Furthermore, the primary chunk server is also
responsible for determining a serial order of file
mutations. This is extremely important when
any given primary receives a flurry of concurrent
write requests to a single chunk. In our system,
the primary server determines this serial order
through a first come first serve basis. Allowing
the single primary chunk server to determine
an order is critical to maintain synchronization
and consistency across the distributed system.
This serial order is included in the forwarded
write-request to the secondary chunk servers so
that all chunk severs storing replicas of a chunk
with handle x follow this mutation order. This is
critical to ensuring that all replicas observes the
same effects from concurrent sets of mutations.

2.4. Handling Reads

On the other hand, the read operation observes
less overhead since it does not compromise
consistency. After retrieving a list of chunk
location(s) from the master server, the client may
send a read request directly to any one of the
replicas. Our current method of load balancing
is through random selection. In other words, to
reduce hot spots and evenly distribute the load of
read-requests sent to chunk servers, clients will
send a request to a randomly chosen chunk server
that contains the targeted chunk. The chunk server
then responds with the data that the client requests
to read, fulfilling the read-request.

2.5. Client

We implemented a Client object to represent
a source of file system requests. The Client has
access to exported master server and chunk server
functions, which simulates public API endpoints of
production GFS. Its implementation comprises of
five main operations: a constructor, Read, Write,
Create, and Remove. The latter 4 are intentionally



written to be similar to the commonly known Linux
functions. This allows the client invocation of
these functions to be familiar and recognizable.
The Client object also serves as a medium to
carry and execute specific workloads we created in
order to benchmark the relation between operation
performance and system configuration

3. Functionality Testing

Functionality tests were routinely added
and ran to ensure correctness throughout the
implementation process. These tests were meant
to check for correct behavior and stress the system
in an end-to-end fashion. Test cases created,
wrote, read, and removed files of a variety of sizes
from single-chunk to multi-chunk spanning files.
We also created test cases where multiple clients
access the same file simultaneously. The number
of clients running in parallel were also varied to
validate lease management and consistency over
time.

4. Performance Testing

Performance testing was very similar to
functionality testing. The key difference lies
in the chosen workloads and the usage of
benchmark-specific super classes of a clients and
chunk servers during boot up. The super classes
contains an additional configuration object that
enables logging of operational latency and toggling
of certain architectural details. This allowed us
to measure and record the effects of these design
decisions and observe how it reduces system
bottlenecks.

During performance testing, the latency of
CRUD operations were recorded. We define
latency as the amount of time between the client
making a request to when the client receives a
success response from the system. We focused on
tracking latency for Read and Write since they are
directly impacted by client workload and system
configuration.

There were two points of architectural details
we experimented with. The first is in the

replication of chunks across multiple chunk
servers. In one case, we replicated the chunks
sequentially, where the system is blocked from
making a subsequent replications until the previous
replication responds successfully. The other case
conducts replications asynchronously. The second
point of experimentation is when the primary
chunk server forwards the commit request to the
secondary chunk servers. Here, we also tested two
cases: the first using sequential execution and the
second asynchronously.

In Figure 1, we observe the effects of various
size workloads on latency a client-side Read and
Write operation where chunksize was configured
to 64kB. Latency was measured to be the total time
between the invocation of the Read or Write API
and the time when the client receives a success
response. For Write, this indicates replication
is completed across the configured number of
chunk servers and that the master server’s metadata
accurately reflects this. For Read, this success
response contains the data the client requested to
read. The Async descriptor indicates that the GFS
configuration is using asynchronous replication
of write data and asynchronous forwarding of
write commits from primary to secondary chunk
servers. On the contrary, the Seq description
indicates a sequential replication and commit
forwarding process. We observed lower latency
in asynchronous write compared to its sequential
counterpart. However, there is no performance
difference between asynchronous and sequential
read. This makes sense because the asynchronous
optimization targets only the GFS workflow for the
write operation.

Figure 2 displays the effects of the number of
concurrent clients on Read latency with varying
number of Chunk Servers. The systems are
configured to have 3, 5, 10, and 50 chunk servers.
Replication factor is set to 3, and chunk size
is 64kB. Furthermore, the current implementation
uses a Random Sampler for load balancing. When
a Client request to Read, it is randomly assign to
contact a one of the three Chunk Server containing
the targeted chunk. The file being read is 1kB.



Figure 1. Effect of workload on Async/Seq Read

and Write

Overall, we observed a linear correlation between
the number concurrent clients and the temporal
overhead of Read. This makes sense because
chunkServers must handle Client read request in a
linear queue manner. However, this is suboptimal
performance because this indicates that the current
implementation will not scale well. Fortunately,
because of the scalability of GFS, we can somewhat
address this performance issue by increasing the
number of Chunk Servers in the system. We
observe that through increasing the number of
ChunkServers, more clients can be handled with a
lesser increase in latency. Further optimizations are
possible if we raise the replication factor to increase
accessibility and use a more effective load-balancer
that can actively mitigate hotspots and bottlenecks
in the cluster.

Figure 2. Effects of increasing clients on read latency

5. Challenges

In this section, we will discuss the variety
of challenges we faced while implementing
Simplified GFS: ranging from design problems to
implementation bugs. While daunting at first, the
free range we were provided in making our own
design decisions on how to implement GFS ended
up being an enjoyable experience which has helped
us grow immensely.

5.1. Simulating GFS

The first immense design decision that we had
to tackle dealt with how we wanted to mimic GFS.
We of course did not have access to a multitude
of commodity machines that we can separately set
up to work with but we also didn’t want to build
a single heavily coupled binary with fixed behavior.

To this end, we juggled around three potential
set ups, 1.) Implementing all the components
(master, chunk server, client) in a single binary, 2.)
Implementing all components as separate binaries
and starting them up individually (e.g. different
terminals) 3.) Implementing a master and chunk
server binary and opening their ports for access by
client binaries. We ultimately decided to follow
option 3 as we felt it gave us the best middle
ground in our options and had the fastest run way
for us to start testing.

Despite the set up of a single binary for the
master and chunk server creations, we still wanted
to preserve complexity that comes with managing
asynchronous communication between a multitude
of nodes. To keep our project within the scope of
our abilities, we decided to utilize a combination
of goroutines and local listening ports to mimic
the existence of individual nodes. To communicate
between these nodes, we decided to use gRpc as
we felt it best simulated reality and gave a sense of
latency with network messaging.

5.2. Handling Concurrent Mutations

Another problem that we struggled
with throughout this project dealt with the



implementation of concurrent mutations. Most
notably, we struggled to develop fine grained
synchronization patterns that could handle high
traffic on the chunk servers and master while
maintaining high performance. A key challenge
for us was figuring out a way to elegantly protect
a multitude of shared resources which were
constantly being contended for. As a sanity
test, we initially started off with extremely coarse
locking with a single lock on the entire chunkserver
before progressing to more fine grained locks per
internal data structure.

6. Future Work

While we are satisfied with our progress, there
are still a multitude of extensions and features
which we hope to flush out in our Simplified GFS
implementation. Most notably, we would want to
implement functionality to support Record Append
and Snapshot operations into our system so that
we can support the full suite of functionality in
the original GFS. By doing so, we hope to explore
more nuanced design decisions and learn more
about the plethora of problems we have to deal
with in supporting more complex operations.
Furthermore, there is still a lot of work to be done
in flushing out our testing suite so that we can
detect and fix edges cases which cause periodic
failures in our system. A key failure that we
periodically see in our implementation comes from
when we bring our implementation to scale. Most
notably, we see a huge decrease in performance
as our locking is quite coarse and significantly
reduces the performance of our system. Lastly, we
hope to embed failure recovery mechanisms into
our system such that it can sustain common failures
at scale as supported by the original paper. We feel
that this would be an extremely interesting path to
explore and can also pave the way for our system
to migrate to using containerization technology
such as Docker which allows us to easily spin up
and manage isolated components.

As a stretch goal, we hope to isolate some
components of our system and leverage services
such as Redis which would allow our emulation

of GFS to scale for actual live use. This would
involve building out a more robust and interactive
client interface that supports the creation and
modification of actual files. We feel that that
this poses an extremely challenging but exciting
opportunity for us to see what it takes to build out a
distributed system from scratch.

7. Acknowledgements

We would like to thank Prof. David Mazieres
and T.A Geoff Ramseyer for all their support and
guidance throughout this quarter.

References

Ghemawat, S. (2003). The google file system. https:
/ / static . googleusercontent . com / media /
research . google . com / en / /archive / gfs -
sosp2003.pdf (accessed: 04.22.2022)


