
Implementing A Decentralized Messaging
Application

Henry Ang
henryang@stanford.edu

Shaohui Guo
shaohui@stanford.edu

Jingyi Bian
jybian@stanford.edu

ABSTRACT

This project implements a decentralized chat messenger
application that enables data sovereignty, scalability, and
flexibility of either on-premise or cloud deployments. The
implementation is based on the Matrix protocol, and we
implement the message synchronization mechanism between
servers from scratch. Our implementation ensures that the
system provides causal consistency, high availability and fault
tolerance. Temporary server crashes and network errors do not
impact the rest of the system.

I. INTRODUCTION

A. Motivation

Most popular chat applications today run in the data centers
of big tech companies, and therefore the users have to entrust
their data with these companies, hoping that the data is
securely stored on the servers that they have no control of. In
the recent years, the unpredictable success of cryptocurrencies
leads to a revolution in the decentralized economy, and we
envision that a decentralized chatting tool may solve the trust
and data privacy issues. A decentralized messaging application
provides data ownership. All messaging history is on servers
owned or trusted by the client. The Matrix protocol is one of
the solutions that has gained popularity among corporations
and individuals because of its ease of use and abundant secu-
rity features, and what we decided to base our implementation
on this protocol.

B. Background

Matrix protocol is a decentralized, peer-to-peer messaging
protocol. [4] [6] It primarily defines two sets of interfaces,
the client-server API and the server-server API. [5] [3] The
prior allows users to choose the client messaging app that they
prefer to use on the Matrix network, e.g. Discord, while the
later handles communication and message storage behind the
scene. The clear separation of client and server provides great
flexibility to the users. Users using different messaging app
clients can join the same chat room by connecting to federated
Matrix servers. It also allows the user to choose the where the
service is hosted. An user can use public hosted servers or
set up a private server only for the users’ use. In our project,
the main target is to explore the properties of Matrix as a dis-
tributed system. We implement an application that follows the
Matrix server-server specification. For simplicity, we assume

that every user hosts a private server and encapsulate both the
client and server logic in the same application.

II. TECHNICAL OVERVIEW OF THE MATRIX PROTOCOL

A. Matrix Protocol

On a high level, Matrix is a protocol for federated servers
to achieve decentralized storage of messages. [1] The history
of messages is replicated across all the servers that participate
in the chat room, and each server equally shares the duty of
maintaining the messaging history. Accordingly, there is not
a single point of failure in the system. If one server is down,
the rest of the servers can still communicate normally, and
when the failed server recovers, it can retrieve the missed
history from other servers. Behind the scenes, each server
maintains the messaging history in an event graph. Later
sections will provide more detailed explanation and analysis
of event graphs. Whenever a client writes a new message to
the client’s server, the message is added to the server’s event
graph locally, and it is then broadcast to all other servers in
the federation, each of which will add the event to its own
event graph respectively.

B. Event Graph

An event graph represents all the history in a chat room. [4]
Each vertex on the graph represents an event in the room, e.g.
a message. The edge between events is directed and represents
casual and temporary relationship between the events. [7] For
example, in fig 1, an edge pointing from event B to event A
means that event A is the parent of event B. It implies that,
temporally, event B happens after event A, and that, causally,
writing the message in event B could be a result of reading
the message in event A.

Fig. 1. Vertices and edges in an event graph

Figure2 shows a simple but complete event graph. In an
event graph, there is always a single root vertex which has no
parent. The first event, Message A, is linked to the root vertex.



Message B and D are sent after two clients see Message A
respectively. Message C is sent after a client sees Message B
but not Message D. Message E is sent after a client sees both
Message C and D. If a new Message F is now sent in the chat
room, it will be linked to all the vertices that do not have
children, which is Message E in this case.

Fig. 2. A simple event graph

C. Concurrency and synchronization of event graph

Normally, an event should only have one parent event,
which is the latest message in the chat room. However,
when two clients write two different messages to two servers
simultaneously, the two servers will temporarily have divergent
views of the event graph. Figures 3 and 4 provide an example
of how concurrent messages are handled with the event graph.

• In the beginning, only Message A is in the history, and
the replicas are identical on the two servers.

• At the next moment, both clients of Server 1 and Server
2 decide to write messages. Client of Server 1 writes
Message B and C, while client of Server 2 writes Message
D. In each replica’s local view, only Message A and the
messages just written are in the chat history, thus the two
replicas temporarily diverge.

• Then, the two servers broadcast the newly added mes-
sages to other servers. Having received the new messages,
the two servers now add the new messages from each
other to their event graphs, which become in sync again.

• Afterwards, the client of Server 2 sends Message E,
which merges the two causal chains in the event graph.

III. IMPLEMENTATION

In this section, we first explain the general architecture
of the application and how each module of the application
functions. Then we will explain a few key design decisions
we made for the system’s correctness and optimization.

A. Application Architecture

Our application can be abstracted into the following mod-
ules: Event handler, Transport, User interface, Storage, and the

Fig. 3. Current writes (1)

Fig. 4. Current writes (2)



Fig. 5. Application Architecture

Main Controller that coordinates the different modules. Figure
5 illustrates the architecture of the application.

1) Event Handler The Event handler contains the core
logic of maintaining the event graph and implements the
logic for handling all events. It defines the interfaces
necessary for the servers to create and synchronize
events.

• AnalyzeMessage: This interface is used to update
the event graph. It takes a message and attempts to
add it to the event graph. This interface is invoked
when the server receives new events from other
servers or restores events from logs in storage. For
a new event to be appended to the graph, the event’s
parents must already exist in the event graph. When
one or more parents of a new event are not in the
graph, it means that the missing parent event might
have some issue with transportation, such as order
of delivery, or network failure. In this case, the new
event will be put in a buffer and wait until all the
parent events are added to the event graph. This
maintains the invariant that all events that are in the
event graph are causally linked. Only events in the
event graph can be read by the client.

• HandleNewMessasge: when the client sends a new
message, the Event handler generates a new event
that encapsulates the message. It first appends the
event to the local event graph, by linking it to all
vertices with no children in the event graph. This
implies that the new event is causally dependent on
its linked parents - that the client sends the message
after reading the parent events. It then needs to
prepare to send the new vertex and edges (the event
and id of its parents) to other servers through the
Transport module.

• GetMessages: this interface queries the event graph
and retrieves the desired messages. It may be used
for displaying messages in the UI, responding to a
request for message history from another server, or
updating the local logs. It may retrieve a specific
event by the event id, or it could retrieve a range
of the event graph. The returned messages will

be sorted in the causal order of events. When the
event graph splits into multiple branches that are
not causally dependent, the events will be ordered
by the message timestamp while maintaining the
topological order of the graph, so that causal order
is never violated.

2) Transport The transport module handles communica-
tion with other servers and abstracts away the details
of sending and receiving events. When sending a new
message generated from the local client, the message is
broadcast to all the other servers that participate in the
chat room. There is no guarantee for the latency or the
success of the delivery, but retries could be made if it
fails to deliver messages to an active server.

3) Storage The storage module is responsible for preserv-
ing the event graph in the local disk. Updating the logs
on disk for every single new event would be wasteful,
so we decide to batch the writes to disk by doing a write
every N updates are made to the event graph. The logs in
the disk also serve as a starting point for reconstructing
the event graph when the application restarts or crashes.
It allows the server to recover as much info as possible,
before requesting messages from other servers to save
network bandwidth. Additionally, all the disk writes are
executed asynchronously, so that slow I/O operation
would not block other services on the server.

4) User Interface The user interface displays real-time
messages to the client and collects new messages
entered by the client. The display is refreshed each time
new messages come and the event graph is updated.
The order of displaying follows the order of messages
returned by calling the EventHandle’s GetMessages
interface. When a client sends a message, pieces of
metadata are collected, such as the timestamp of the
message or the id of the users. They are then passed
along with the message to the EventHandler to be
appended to the event graph and broadcasted.

B. Design Decisions

Next, we will review a few important design decisions
that are crucial to the correctness and performance of the
application.

1) Idempotent updates to the event graph
The messages that we transport between servers
and write to logs are lists of structured values that
encapsulate the message and other metadata that can
be translated to idempotent update operations to the
event graph. When applying an update operation to the
event graph, the application checks if the UUID of the
event already exists in the event graph. If it already
exists, the operation is a no-op to the graph. If it does
not exist, the application checks the validity of the
update to decide if the update is applied or rejected. An
update operation is valid if and only if all the parents



of the event exist in the event graph. The idempotence
of updates is important for a few reasons. First, it
eases the requirements for message transportation.
When broadcasting new messages to other servers, the
server could choose to transmit a few prior messages
as redundancy, in case the prior messages were lost
in transmission. Also, when servers find missing info
and request message histories from other servers, the
same message could be received multiple times if the
original broadcast eventually arrives. In these cases, the
idempotence of the updates ensures that the messages
are updated correctly.

2) Handling of invalid events
As explained in the previous section, an event may be
invalid because its parent events have not been received
by the server yet. In our project, we do not assume
malicious messages, so missing parent events is the
only reason that causes an event to be invalid. When
such an event is received, the event handler puts the
invalid event in a buffer without updating the state of
the event graph. The next time events are received, the
events in the buffer and the incoming messages will
be used together to update the graph. If the incoming
events contain the missing parent events of the events
in the buffer, the events in the buffer could be appended
to the event graph and removed from the buffer.

3) Reads of the event graph and causal consistency
When the user interface refreshes the messages to
display to the users, it is formally a read operation
from the local event graph replica. The operation only
reads the messages that are linked in the graph but not
the ones in the buffer. Although it might sometimes be
useful to present messages in the buffer to the client
before their parent messages arrive, we decided against
it to ensure the causal consistency of the system. With
the event graph data structure, it is guaranteed that
all replicas see the events in the same causal order
because a write to the event graph is only valid when
its causally proceeding events are in the graph.

4) Handling of missing events
Typically, when receiving an invalid event whose parent
is unknown to a replica, the reason for the missing
event is network delays, and the missing event should
arrive later; however, in cases where such an missing
event has not been received after a certain timeout, the
server will try to request the missing event from other
servers. We first attempt requesting it from the server
that sends us the invalid event. It is guaranteed that
the missing event exists in the event graph of that server.

IV. EVALUATION

A. Theoretical Analysis

In this section, we will evaluate the properties of the
system theoretically. The CAP theorem states that a distributed
system cannot achieve consistency, availability and partition
tolerance at the same time. [2] While our system focuses high
availability and partition tolerance, it still provides some useful
consistency properties - causal consistency. In the previous
section, We explained that the use of the causal event graph
ensures causal consistency. In this section, we will analyze the
availability and partition tolerance.

1) Availability The system guarantees that whenever a
read or write request is made to an active node, the
system will return a non error response. Assume the
extreme case where all the servers in our system are
down but one, the client can still read from the server
because the server contains the complete history in its
event graph, which may or may not contain the most
up-to-date writes. The client can also make writes to
the server, as the server will be able to append the
message to the event graph and save it to the disk. The
new message cannot be broadcast to other faulty nodes
now, but it will eventually be synced when the other
nodes recover.

2) Partition tolerance When the nodes of our service are
partitioned, the connected nodes can still function like
a sub-chat room. The partitioned groups will develop
divergent causal chains in their event graphs, and those
causal chains will be replicated across all the replicas
in the same connected group. When the network is
recovered, the divergent causal chains will be merged
and replicated in all nodes.

B. Empirical Experiment

This section demonstrates the experiments that we con-
ducted to test our implementation.

1) Network partition In this experiment, we tested what
happens when the nodes are partitioned in our system.
We partitioned 3 servers into 2 partitions. We simulated
this by blocking one server’s communication module,
so that it will not be able to communicate with the
rest of the two. We see in figure 6 that initially, the
three servers were connected and the first three messages
were in sync. We then disconnected the right one, and
as a result, the rest of messages in figure 6 were out
of sync. The left and middle were still in sync because
they are connected, while the right one only sees its own
messages. Then, Figure 7 shows what happened after we
reconnected the right server - the messages sent during
the partition were synced to all the servers.

2) Program Recovery We also experimented with what
happens when application crashes. After sending a few
messages into the chat room, we terminated one of the
servers in command line. We sent some extra messages



Fig. 6. Partition experiment (1)

Fig. 7. Partition experiment (2)

on the other servers when this server was still down.
When it was restarted, it restored the chat history as
expected and received the messages that it missed when
it was unavailable.

V. FUTURE WORKS

A. Encryption

In our project, since we focused on building the core
synchronization functionalities, we did not have time to imple-
ment encryption features for this messaging application. End-

to-end encryption would provide great value to the users of
this decentralized messaging application, because privacy is
one of the main benefits provided by having control over the
data.

B. Message Caching

In our implementation, the entire event graph is stored in
the memory, which makes the application memory-hungry.
One optimization we could make is to only load the recent
messages that the client is likely to read. If the client needs



messages that are further back in time, they can be loaded
from the disk logs on demand.

VI. CONCLUSION

In this project we implement a decentralized instant mes-
saging application based on the Matrix protocol. We provided
an overview of the protocol and the mechanisms of the event
graph. We also explained how we implemented the application
and discussed the key design decisions. We evaluated the sys-
tem and concluded that the system guarantees both availability
and partition tolerance. It also provides causal consistency,
which is an important property for a messaging application.
Decentralized messaging applications have not been widely
adapted in the public, but with increasing awareness of data
privacy and growing computing resources, it may be a good
alternative to the popular messaging apps today.

VII. CODE

Link to our Github repo:
https://github.com/heatherbian/CS244Project

REFERENCES

[1] Alex Auvolat. Making federated networks more distributed. 2019 38th
Symposium on Reliable Distributed Systems (SRDS), 2019.

[2] Eric A. Brewer. Towards robust distributed systems (abstract). Proceed-
ings of the nineteenth annual ACM symposium on Principles of distributed
computing - PODC ’00, 2000.

[3] Florian Jacob, Luca Becker, Jan Grashöfer, and Hannes Hartenstein.
Matrix decomposition. Proceedings of the 25th ACM Symposium on
Access Control Models and Technologies, 2020.

[4] Florian Jacob, Carolin Beer, Norbert Henze, and Hannes Hartenstein.
Analysis of the matrix event graph replicated data type, Nov 2020.

[5] Florian Jacob, Jan Grashöfer, and Hannes Hartenstein. A glimpse of the
matrix. Proceedings of the 20th International Middleware Conference
Demos and Posters on ZZZ - Middleware ’19, 2019.

[6] Anirban Kundu. Decentralised indexed based peer to peer chat system.
2012 International Conference on Informatics, Electronics amp; Vision
(ICIEV), 2012.

[7] Leslie Lamport. Time, clocks, and the ordering of events in a distributed
system. Concurrency: the Works of Leslie Lamport, 2019.


