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Abstract

Modern day distributed systems are extremely complex
deployments that constantly evolve in their features and
data flows. A system like Google Search is going to
have many separate teams of engineers working concur-
rently on the serving stack, with many downstream RPC
calls and processing steps for each query. The latency
characteristics of these systems can evolve rapidly, such
as changing load from new emerging traffic patterns or
new datacenter deployments. Thus, keeping the latency
of such a rapidly evolving system to a minimum is a
challenging task. Several existing techniques, including
distributed tracing, CPU profiling, and RPC telemetry,
all fall short of giving maintainers the information they
need to know to fix latency regressions in practice.

Taking a recently published ACM Queue article on
Critical Path Tracing[6] (CPT), we use their techniques
to implement a profiler that illuminates the root causes
of system response time by identifying those subcom-
ponents on the critical path contributing to overall la-
tency. This is done by first locally determining the crit-
ical path through a process’s Java Dagger/Producers
asynchronous programming framework and then aggre-
gating these local paths across RPC boundaries, utiliz-
ing gRPC headers to propagate the path information for
any given service specification. This critical path trac-
ing thus provides detailed and actionable information to
maintainers about which modules of a large and com-
plex distributed system are most culpable for its overall
latency, so that optimizing them has a direct impact on
system performance.

1 Introduction

Low latency is an essential feature for many online ser-
vices. As new features, functionality, and data flows are
added to complex systems, keeping the overall latency
to a minimum becomes challenging, as the root cause
of any change in performance is often non-obvious. The
goal of this project is to answer a key question, namely
given a distributed system and workload, what subcom-
ponents can be optimized to reduce end-to-end latency?

Critical path tracing is a new applied mechanism for
gathering latency profiles at scale in large distributed
applications[6]. It provides detailed and actionable in-
formation for maintainers looking to reduce latency or
discover the source of a recent regression. A critical
path describes the single sequence of dependent steps
that form the slowest path of a processed request, such
that optimizing any of these steps reduces the overall la-
tency. Thus, a critical path is the longest single duration
of processing steps, both within and between processes,
that form a dependency chain. If the entire distributed
system is viewed as a large, directed execution graph
with latency labels at each node, the critical path is a
directed walk through the graph that maximizes the sum
of node latencies.

Large Web applications typically consist of many sep-
arate services, and CPT relies on application program-
mers using server frameworks to instrument each of these
subcomponents. This allows for the logic that propa-
gates and aggregates critical paths to be built into the
framework, so no incremental work is necessary to start
passing critical paths among callers and callees built and
maintained by different engineering teams. Specifically,
when one microservice (the client) calls another (the
server), the critical path information from the server is
returned back to the client via the remote procedure
call (RPC) metadata, so it never appears within any
application-layer service definition. The caller may in
fact also be a server to some other client upstream of it,
and thus must merge the information from all its down-
stream dependencies into a unified critical path for that
specific request execution. In the original paper, the top
level service finished by logging this unified critical path
for the entire request, to be consumed later for use in sta-
tistical analysis and A/B experimentation frameworks.
Their log analysis can create ‘average’ RPC profiles by
aggregating over many similar request types. Here, we
instead extend their approach to include a frontend for
realtime analysis of each request’s critical path as it oc-
curs. We also utilize the open source gRPC framework
for distributed communication, rather than the propri-
etary Google channels used in the paper.

The process of CPT is very efficient compared to tra-
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ditional distributed tracing, as each subcomponent is
pruning a complex execution graph down to a single lin-
ear one, by recursively combining the linear paths of its
dependencies and of its own internal processing. This
enables a large number of requests to be sampled, and
the resulting profiles give actionable, fine-grained cover-
age of distributed sources of latency.

2 Related Approaches

There are some well known existing techniques for mon-
itoring the latency of distributed systems today, with
the most common techniques of RPC telemetry, CPU
profiling, and distributed tracing in use for most major,
large scale deployments.

2.1 RPC Telemetry

In this technique, services export individual RPC-level
information, such as how many times a remote procedure
call is made to the service, its error rate and latency,
and any slices of interest. Monitoring services collect
and display this information on dashboards or persist it
in logs. This approach works well when there are only a
few RPC calls that are critical for overall service latency,
such that any change in that RPC directly impacts the
overall service’s latency metric. However, this approach
struggles in some common scenarios -

• Multiple RPCs. When a service calls multiple other
services asynchronously or repeatedly, the relation-
ship between them matters.

• Heterogeneous workloads. Since the exported met-
rics of the RPC are averaged over multiple requests,
the latency information about low frequency re-
quests or particular request types may be lost.

• Causality. Even if a given RPC call increases in
latency, it might not be the cause of the overall ser-
vice degradation, if for instance some other increase
in cpu-bound work happened to occur at the same
time.

2.2 CPU Profiling

CPU Profilers work well if you already know an expen-
sive subcomponent that needs to be optimized. Function
call stacks along with CPU samples are collected to pro-
vide insights into expensive code paths. Thus you can
get in-depth insight into lock contentions, disk accesses,
or other sources of latency for any component. However,
they do not track latency across RPC boundaries, and if
you are optimizing a module that is off the critical path it

could have no impact on overall service latency. In some
respects, profiling should be considered complementary
to CPT, since once an expensive method is identified by
CPT, CPU profiling can be used to dig deeper into its
stack frames.

2.3 Distributed Tracing

In this approach, the entire flow of control through the
distributed system is tracked, with timing points and
additional data captured for analysis[14]. Unlike RPC
telemetry, distributed tracing can make sense of paral-
lelism and heterogeneous workloads since the informa-
tion about external service requests and their latency
is collected. However, these traces are often expensive,
causing in practice only a small sample of all requests
to be traced. Depending on the system, you often also
need to manually annotate those portions of the code to
trace, and may need to join across service logs to recre-
ate the full trace, which can be an expensive operation.
CPT overcomes these limitation by only keeping a small
subset of the entire trace, namely that portion on the
critical path, and passing it via RPC metadata for col-
lection, logging, and analysis at the top level service.
In the evaluation section below we compare our imple-
mentation of CPT to the PerfMark distributed tracing
library[12], which is a manually instrumented tracing li-
brary for Java.

3 Challenges and Motivation

Most of the commonly used latency analysis tools have
at least one of the following limitations, which we set out
to overcome by applying the techniques first popularized
within Google Search as described in [6].

• Able to measure only one component, not end-to-
end latency

• Struggle to make sense of parallelism between ser-
vices and how internal processing interacts with
asynchronous calls

• Struggle to make sense of repeated RPC calls and
data dependencies during execution

• Show inflexible approaches to providing dimen-
sional slices

• Require additional complex analysis on top of the
collected data to identify root causes of latency for
the overall system

• Have difficulty handling heterogeneous workloads
and present information gaps around low-volume
requests
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CPT addresses the above limitations. It can be
thought of as part CPU profiling, by surfacing method-
level metrics; part RPC telemetry, by surfacing RPC
latencies; and part distributed tracing, by following one
request through its full distributed execution. It can do
these things at a fraction of the cost of traditional dis-
tributed tracing, since the return value at each service
is a single list of {Component, Cost} pairs, with recursive
list merging occurring upon the conclusion of processing
at each node. The final output is a fraction of the to-
tal execution path of the full distributed trace, and CPT
can calculate this path without needing any special code
instrumentation.

4 Tech Stack and Architecture

Libraries

Protocol Buffers: Protocol buffers[13] are a language-
neutral, platform-neutral, extensible mechanism for seri-
alizing structured data. Like JSON it can be used to pass
messages between services, but the wire format of the se-
rialized data is much more packed (and as a result non-
human readable) for greater network utilization. The
user defines the structure of data, from which the proto
compiler generates the source code to read and write to
the data streams. In our case, we used the Java version
of the proto compiler.

gRPC: Written on top of protocol buffers, gRPC[8]
is an open-source RPC framework designed by Google
to achieve high-speed communication between microser-
vices. It allows developers to integrate services pro-
grammed in different languages. gRPC passes serialized
data on top of the HTTP/2 protocol, while gRPC-Web
uses HTTP/1 since HTTP/2 is not yet supported by
many browsers. Using gRPC, a client can directly call a
method on a remote server as if it were a local object. As
in many RPC systems, gRPC is based around the idea of
defining a service separate from its implementation, by
specifying its parameters and return types. The server
implements this interface and runs gRPC to route client
calls to its implementation. The client links against a
stub that appears to the application as a local method
call. gRPC is roughly 7 times faster than REST due to
the use of Protocol Buffers and HTTP/2[9].

Dagger: Dagger[3] is a compile-time framework for
dependency injection. Compared to other dependency
frameworks such as Spring and Guice that use reflection
for dependency injection during application execution,
Dagger plugs itself into the Java compilation workflow
and generates static code to resolve requested object de-
pendencies. This means there is no runtime overhead,
making it more suitable for embedded and native appli-

cations where reflection is too expensive, and the gen-
erated source code pushes many programming mistakes
from runtime into compile-time, making debugging eas-
ier and safer.

Dagger Producers: Dagger Producers[4] is an ex-
tension to Dagger that utilizes its graph-based depen-
dency injection framework as an asynchronous program-
ming paradigm in Java. It lets you code synchronous
methods, with the output of each method being a
ListenableFuture representing some asynchronous return
value from the computation. The framework takes care
of scheduling each method as its required inputs become
available, creating a “computation graph” to execute via
a user-supplied Executor - in essence a graph of compu-
tation dependencies rather than synchronous object de-
pendencies. In many ways it mirrors an event-driven
architecture, as opposed to a thread-based one [15]. Un-
derstanding the control flow and path through the com-
putation graph is one commonly known issue that arises
under this approach [1].

D3.js: D3.js[2] (also known as Data-Driven Docu-
ments) is a JavaScript library for creating dynamic, in-
teractive data visualizations in the web browser. D3
allows you to bind arbitrary data to the Document Ob-
ject Model (DOM), and then apply data-driven trans-
formations to the document. We utilize this library to
visualize the critical path data, giving real time insights
into the dynamic application data and helping the user
to inspect latency causality.

Backend

Figure 1: Architecture

Our distributed system consists of three servers,
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which we named TopLevelServer, ServerB, and ServerC

. We used the Dagger/Producers framework to in-
ternally implement the asynchronous processing inside
each server, and used gRPC to communicate between
servers. As seen in Figure 1, the TopLevelServer im-
plements Get(String) and Put(String, String) requests,
with the dependencies between the servers mirroring
those in [6]. The implementations are such that certain
requests will conditionally execute the Producer graph
in different orders, such as changing RPCs from parallel
to serial to represent data dependencies and heteroge-
neous workloads. We also conditionally made some of
the service methods sleep for varying lengths to simu-
late different cpu-bound workloads.

Frontend

As shown in Figure 1, the Web app utilizes gRPC-Web,
which allows a single protocol buffer service definition
to be shared between both the frontend and backend
servers. This is much more convenient than a sepa-
rate REST/JSON frontend serice that needs middle-
ware to translate into backend protocol buffers. How-
ever, this approach does necessitate the use of Envoy
Proxy [7], which has built-in support for gRPC-Web and
serves as its default service gateway. This additional
service is launched via Docker to translate HTTP/1.1
to HTTP/2 calls as the Web app communicates with
the TopLevelServer. The actual HTML is served via the
small Python http. server, with Node.js[11] used for the
JavaScript runtime environment. In addition, the D3.js
library[2] is used to visualize critical path information.

5 Implementation

The codebase is around 4k lines of code, and balloons
to over 24k lines once all the code generation steps are
run (Dagger, Producers, and Protoc). Originally when
we chose the project, we thought that the statistics
from Producer execution would be available as part of
the framework, and that the compile-time constructed
graph would be available and consumable. However, we
found on https://dagger.dev/dev-guide/producers

the ominous warning: As of March 2016, not im-
plemented yet. Thus, our first step was to instru-
ment Producers to capture timing information. Fol-
lowing that, we had to implement a distributed tracing
ID, utilize both client and server RPC interceptors to
pass metadata outside the scope of service definitions.
With that we could calculate critical paths, and recur-
sively combine such paths using heuristics from other
instrumentation. The majority of this functionality is
contained in the src/main/java/kvprog/common directory.

In keeping with our goal to not need to instrument
application code, the interceptor and timing logic can
be added to any Dagger/Producers server by including
InterceptorModule.class into the top-level component for its
global bindings and MonitorModule.class into the Produc-
tionComponent Producer Graph for the remaining call-
scoped bindings.

Figure 2: Implementation Details

5.1 Instrumenting Time

Producers exposes the ProductionComponentMonitor inter-
face to provide custom monitoring of Producer methods.
It is created once per Producer graph, and is then asked
to create ProducerMonitors to hook into each method’s life-
cycle events. The events we utilized:

1 pub l i c void methodStart ing ( ) ;
2 pub l i c void methodFinished ( ) ;
3 pub l i c void succeeded ( Object o ) ;
4 pub l i c void f a i l e d ( Throwable t ) ;

Through this we can calculate the time taken in every
method. Note that methodFinished ends upon creation
of the ListenableFuture, so encapsulates CPU time taken,
but for critical path computations we need to know when
the actual Future completed to kick off whatever depen-
dency waited for it, which is captured via the succeeded

event.

5.2 Critical Path Computation

In theory, since Dagger creates a static graph at com-
pilation, we should be able to determine exactly what
Producer method called another. We discuss such an
approach in Section 8. Without that, we had to use
heuristics to calculate the critical path. First, we cap-
tured the global execution ordering of each Producer
method according to its start time, as it scheduled to run
on one of the threads in the ExecutorService threadpool.

4

https://dagger.dev/dev-guide/producers


By knowing what Producer was currently scheduled on a
ThreadLocal when entering an RPC client interceptor, we
can mark that method as making an external RPC call,
and subdivide its timing information with the critical
path returned from that call. At the end of the Pro-
ducer graph execution, we then work backwards on the
execution order list we created, constructing a critical
path using the heuristic that either the local method or
RPC call which completed most closely to start time of
the current Node was what my Producer was waiting on.
This heuristic minimizes unaccounted for ’framework’
time which would otherwise exist. In addition, RPCs
are marked as occurring in parallel using a Cache on
the trace id , where we decide that any RPC that started
before another one finished is an independent path.

5.3 Context and Metadata

There still exists the issue of how to pass critical path
information across RPC boundaries, and how to pass
the trace id that correlates RPC calls as coming from the
same top-level request. This is done through two proper-
ties of gRPC, the Context and both request and response
Metadata. Context is a per-request data structure pro-
vided by gRPC, where you can stick data associated to
a key. This allows for information sharing between the
Server and Client RPC interceptors on a single service.
The top level server creates the initial trace id using an
AtomicInt and places it into the side-channel Metadata of
the RPC call. Subsequent servers pull it out of Meta-
data and place it back into their local Context, where it
can be further propagated by their own Client. In the
same way when returning calls back upstream, each crit-
ical path is inserted into the Metadata, which the client
reads and parses to apply to its own children critical
paths.

6 Evaluation

Using our CPT framework and the test system from Fig-
ure 1, we instrumented RPC calls to perform differently
for different inputs and visualized the changes in the
critical path produced.

PUT

As seen in Figure 1, a Put request will call either B1
or Get (or both, as we cannot tell from this high level
diagram). We implemented the call so that Get was
only called conditionally, if the key passed in the request
was queryOfDeath. In this case we also sleep for 1 second
to represent heavy cpu-bound processing. In the first
request of Figure 3, you can see the critical path returned

Figure 3: Critcal paths for different Put requests

only makes a call to B1, which in turn calls the local B2
module. However, in the second request we passed the
queryOfDeath, which exploded the critical path taken to
include the conditional call to Get. In addition, we see
the 1 second delay on the InternalPut processing stage.

GET

Figure 4: Critcal paths for different Get requests

Figure 4 shows a second example of heterogenous RPC
calls taking different critical paths. Once again, the high
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Figure 5: Perfmark-trace

level dependencies are showcased in Figure 1, but the
actual execution paths depend on the input key pro-
vided. In this case, the special key CallC2InSeries changes
the parallel calls from Get to B2 and Get to C2 to in-
stead be in series, mimicking a data dependency where
the result of one RPC is needed to form the request of
the follow-on RPC. In the first request, the call to C2 is
completed elided, which is expected as a single hop from
TopLevelServer to ServerC should be lower latency than the
two hops shown from TopLevelServer to ServerB to ServerC.
In the second request, we see the large increase in the
critical path from the in-series requests, as well as the 2
second sleep occurring on an internal processing step. In
a real world system, upon seeing this graph an engineer
could investigate if this serial call was a misconfiguration
or in fact working as intended.

PerfMark comparison

To highlight how CPT differs from other systems, we in-
clude in Figure 5 the output from a typical distributed
trace. Such traces are indeed a wealth of information,
giving extremely granular information on what compu-
tation each thread was performing for each unit of time.
However, it suffers from two critical shortfalls:

1. We can see the highest latency segments, but there
is no guarantee that optimizing those segments
would reduce overall latency, if they are away from
the critical path.

2. To produce this graph, we had to manually in-
strument our code using code blocks like PerfMark

.traceTask(”Get”), which is not scalable across a large
distributed system in which we don’t even maintain
every subcomponent.

7 Shortfalls

While a very useful approach, CPT does suffer from
some shortfalls which should be recognized. One is that
you may still need more information after finding the
critical path to actually optimize it. Things like lock
contention or slow disks would not be immediately clear,
and likely need more in-depth CPU profiling to diagnose.

Another is that you could optimize the critical path only
to have it then change, without a large latency improve-
ment. This is related to the concepts of drag and slack
outlined in [6]. Finally, for large critical paths there
is real network costs to passing the extra binary data
around in HTTP headers. This is typically mitigated
through a sampling regime.

8 Future Work

We did not have access to a static dependency graph,
and thus had to use a heuristic to recreate the path of ex-
ecution. The Dagger Service Provider Interface (SPI)[5]
is a mechanism to hook into Dagger’s annotation pro-
cessor and access the binding graph model that Dagger
creates during compilation. Using this framework, we
could save the static graph to a proto and consume it
into our critical path calculation at runtime. One exam-
ple of SPI in action is shown in Figure 6, which is pro-
duced by the Scabbard[10] plugin to generate png images
of the dependency graph.

9 Conclusion

Critical path tracing addresses the limitations of other
common latency analysis methods such as RPC teleme-
try, CPU profiling, and distributed tracing. In this work,
we have demonstrated how CPT can be implemented for
gRPC using Dagger/Producers. Further, we have added
to the original approach with a gRPC-Web frontend to
display real time critical path information.
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