Implementing and Benchmarking a Fault-Tolerant Parameter Server for

Distributed Machine Learning Applications
(CS244B Final Project

Anusri Pampari Aman Patel
anusri@stanford.edu patelas@stanford.edu

June 3, 2022

Introduction

Recent state-of-the-art machine learning algorithms have revolutionized our ability to model and extract
insights from data in a wide variety of disparate fields, from language to vision to biology. One of the
strongest trends in current Al research involves a shift towards larger models with billions of variables
([1, [2]) trained on petabyte-scale datasets ([8], [6]), thus necessitating the need for distributed training
systems. One such system, called the Parameter Server (PS), has seen widespread adoption in both
academia and industry ([5], [3]) and has undergone multiple generations of development customized
towards various machine learning and deep learning applications. The first generation of these systems, a
”data parallel” setting, involves a single central server and multiple worker nodes. In this setting, training
data is shared among workers, while the central server stores a global set of model weights, which each
worker draws upon. Specifically, at each iteration, all workers fetch the most recent weights from the
server, compute gradients with a local batch of data, and push the gradients back to the server so the
global weights can be updated. This system can iterate through petabyte-scale training data far more
quickly than is possible with a single-core training system.

However, globally sharing all model weights can impose several challenges. First, requiring a single
server to access all parameters and update all gradients per iteration necessitates a network bandwidth
proportional to the number of model parameters. Second, as only one server is utilized, the process of
fetching gradients and updating weights is slow and can be parallelized. Hence, a second generation of
these systems have focused on "model parallel” settings, in which model weights are distributed across
multiple parameter servers. This reduces the network bandwidth and computational load per server, thus
improving overall speed.

In this study, we provide and explore an implementation of a model-parallel distributed training system
in Python, using the Ray library([7]). It is important to note that parameter server implementations
are often tailored to the machine learning task at hand, so we focus specifically on a linear or logistic
regression setting. First, we will demonstrate the efficacy of our implementation of consistent hashing,
which we use to distribute weights across servers [4]. Next, we will use a logistic regression model and
the MNIST dataset to benchmark a variety of system properties, including runtime and accuracy, in
addition to comparing our system to a traditional data-parallel setting. Finally, we add fault tolerance
to our system by ensuring training can continue when a server goes down, and we explore the effect this
extension conveys on performance.

1 System and Implementation

Workers pull weights from servers (weights are cached per worker) Workers push gradients to servers (gradients are computed using cached weights)
Servers push the weights to workers Servers aggregate the gradients received from workers
[wo | ws | ve] w1 | vs | vo RECIRCINCINCIRCINNNN v« | v | v BEE BREE o o o oo |EIEIE
Server S, Server S, Server Sg

Server Sy Server S, Server Sg

Getall |
weights from |

all servers “ _— —) Gradients — g0, g5, g6 Gradients — g1, g8, g9 Gradients — gk, gj, gr
@ N Workers N Workers N Workers
N Workers N Workers N Workers
1--1 ii--1 ii--1
ii--1 11 | , . »
Cache weights per worker ~ Cache weights per worker Cache weights per worker

Cache weights per worker Cache weights per worker Cache weights per worker

A a I 4 4 A

Training Data Training Data

(a) (b)

Figure 1: A schematic of the distributed training system. (a) At pre-specified iterations, each worker
pulls and stores the latest weights from all servers. (b) At every iteration, workers compute gradients
based on local training data and push them to the relevant server. The servers then use these gradients
to perform weight updates.

Algorithm 1 Synchronous Parameter Server for Linear/Logistic Regression

Input: Server IDs {Sp, Si...Ss}, Number of workers per server N, Number of weights W, Training
iterations I, Checkpoint iteration interval C

Randomly initialize W weights {Wy, W1... Wy}

Use consistency hashing to map {Wy, Wi..Wy } to {Sp, Si...Ss} and get D, dictionary

Distribute {Wy, Wi.. Wy} to {So, Si...Ss} based on D,

while t < I do
if t%C == 0 then
Workers pull {W{}, Wi..W},;} from all servers based on D,
{W{, Wi.. W}, } are saved as a checkpoint
end if
Workers compute and push gradients {GY, GﬁG%V} to respective servers based on D
Servers use gradients {G}, GY...GY, } to update {W{, Wi.. W}, } based on Ds.
end while

We implement a synchronous parameter server (also described in Algorithm 1) for linear or logistic
regression with the following system components:

Servers: We can have either a single central server that stores a global set of model weights (total
size |W||), or multiple servers with the ||IW|| weights distributed across them using a weights-to-server
mapping D, obtained from consistent hashing. See Figure 1 and Figure 2a for more details. As will be
described below, servers have two main functions: to push weights to workers, and to pull and aggregate
gradients from them.

Workers: Every server S; is associated with N workers, where the workers jointly learn the set of
weights W; that S; stores. Each worker stores its own local copy of the model, with all weights frozen
except those in Wy;. In each iteration, every worker independently samples a batch of the training data
and uses its local copy of the weights to determine what changes should be made to W;, assuming the

other weights in the model are constant, to minimize the model’s loss on the data. These changes (or
gradient updates) are then pushed to S; and aggregated to obtain a new set of master weight values for
Wy;. This kind of gradient update, called coordinate gradient descent, is theoretically well studied in
machine learning [I0]. At the start of training and after every C' iterations, all workers’ local models are
updated with the latest weights from each server, thus synchronizing training across the system.

In the case of a single server setting, the most expensive step in Algorithm 1 involves communicating
and updating the subgradients G?, both of which scale linearly with the number of parameters. By
increasing the number of servers, and distributing the weights evenly across these servers, we can speed
up this step of the algorithm and therefore improve the efficiency of the system. In Section 1.1, we
show how we can distribute weights evenly and achieve load-balancing by using consistent hashing. In
Section 1.2, we use this mapping within our parameter server, and we show improvements in runtime
between multiple-server and single-server settings. We acknowledge that when weights are distributed
across multiple servers, failure of one server can block the progress of the system. Therefore, in Section
1.3, we introduce a fault tolerance algorithm to account for server failure by re-assigning the weights of
the failed server using consistent hashing.

1.1 Consistency Hashing Performance

Load Balancing vs Hashes per Node Load Balancing vs Number of Parameters
) 0.80 Hashes per Node
- 08 - — 1
/o 3 Sors{ —5
Server 5 x — 10
=06 20701 — 50
° °
B T 0.65
Server 13 S
c <
w E 0.4 é 0.60 -
g @ 0.55 1
< 02 e
o 0. o 4
W5 \N1 é <>(050
0.45
0.0 . .

A T T T T T
weé Server 2 \N’Z)\N 5 10 50 10 50 100 500 1000 5000 10000
Number of Times Each Node is Hashed Number of Parameters

) (b) ()
Figure 2: Characterization of our consistent hashing implementation. a) A schematic of the consistent
hashing process. b) Relationship between load balancing ability and the number of times each node is

hashed. c¢) Relationship between load balancing activity and the number of keys (parameters) in the hash
ring.

Before applying our consistent hashing implementation to model training, we verified its behavior and
efficacy in load balancing. Suboptimal performance in this regard could lead to a lopsided assignment of
weights to servers, potentially greatly hampering training efficacy.

To set up the problem, assume we have n nodes and k keys, where k >> n, and we want to assign
each key to a node. In our distributed. system, nodes would correspond to servers and keys to model
parameters. As shown in Figure 2a, we achieve this by hashing each node and key to a position (from
0 — 27 radians) on a circle. Finally, we assign each key to the nearest node with position greater than
the key’s position. In essence, each node ”covers” the area between its position and the previous node’s
position. In this manner, each node has an expected value of k/n nodes assigned to it.

However, the distribution of keys per node may be rather lopsided in practice. For example, if two nodes
hash nearby to each other, then one of them will cover a very small portion of the circle. One solution
is to hash each node multiple times to different points on the circle. In this manner, we eliminate the
randomness of hashing each node only once and likely produce a more even distribution between nodes.
To ensure this hypothesis holds for our implementation, we tested a consistent hashing system with 5
nodes and 785 keys while varying the number of times each node was hashed. Figure 2b indicates how
the load balancing ability (averaged over 20 runs with different sets of keys) varies with the number of

hashes per node.

The results clearly indicate that in our implementation, a large number of hashes per node is necessary
to obtain effective load balancing. This is expected behavior, and we have used it to inform the settings
of our training system.

In a similar manner to the previous concern, a sufficiently small number of keys could also skew the load
balancing. We therefore conducted similar experiments, except this time varying the number of keys in
our hash ring. The results are shown in Figure 2c. As expected, an increase in the number of keys also
increases the load balancing efficiency. It is informative to note that the number of parameters in our
test model (785) would place us at an efficiency of approximately 0.8 with 100 hashes per node.
Overall, these experiments allow us to profile the behavior of our consistent hashing implementation and
to demonstrate its proper functionality. They also result in more informed parameter choices for our
distributed training system.

1.2 Benchmarking System Performance

°
©
o
s
<9
&
8

— model parallel (#servers = #workers)
data parallel 0950

&
8

°
S

0.900

&

T~

]
1

Final Accuracy

o
v

Total time per iteration
°
o

Total time per iteration

0.825

o

Fs
°
@
=3
=]

0775 . .

°
w

T T T T T T T 85 T T T T T T
2 4 6 8 10 2 4 6 8 10 12 2 4 6 8 10 12
Number of Workers Number of Servers Number of Servers

(a) (b) (c)

Figure 3: Performance of model-parallel parameter server (a) Model-parallel is more efficient than data-
parallel at various worker counts (b) Increasing the number of servers improves efficiency (c) Increasing
the number of servers does not produce an appreciable decrease in overall accuracy

In this section, we carefully characterize the performance of using multiple servers with distributed weights
(model parallel), and we compare the efficiency of this system to that of using a single server (data
parallel). To achieve a relatively equal distribution of weights in the multiple server setting, we use the
consistency hashing technique with 100 hashes per server as described in section 1.1. For benchmarking,
we use the MNIST dataset, which consists of images of digits from 0-9, and we train a logistic regression
model designed to classify these images as even or odd. The model has a total of 785 parameters. All the
experiments in this section are averaged for 3 different seed runs. For simplicity, we checkpoint weights
at every iteration.

First, we compare the efficiencies of the multiple and single-server settings while varying the total
number of workers in the system. Specifically, if we have IV total workers, then the multiple-server setting
will have N servers, each with one worker per server, while the single-server setting will of course have all
N workers coordinating with the central server. In Figure 3a, we show that the total time per iteration
is consistently more efficient with multiple servers as compared to one server and that the efficiency
gap widens as the number of workers increases. This result matches expectations, because with an
increasing number of workers in the data-parallel setting, a single server is now responsible for collecting
and aggregating all gradients from all workers. This serializes both the communication of workers with
the servers (with multiple workers accessing the same server) and the weight update step within the
server. With multiple servers, this bottleneck is overcome because every worker is now responsible for
pushing only a subset of the total gradients to its constituent master server. Furthermore, the individual
servers are responsible for gradient updates of their own weights. Thus, these processes can run more
efficiently in parallel.

Having established the superior efficiency of the multiple-server setting, we now further characterize
it. First, we focus on the effect of server count on runtime. Specifically, given a constant total of 12
workers in the system, we vary the number of servers and track how the time per iteration changes
as a result. Note that in this case, more servers would mean fewer workers per server. We run these
experiments for 500 iterations. In Figure 3b, we show that as the number of servers increases, the time
per iteration decreases and then eventually plateaus. Once again, this result reflects expected behavior -
as we increase the number of servers, we reduce the runtime of the gradient computation step until it no
longer becomes the major bottleneck.

Next, we probe the effect of server count on model accuracy. To ensure uniform training convergence,
we keep the number of workers per server (one) as a uniform value. As shown in figure 3¢, varying the
server count does not produce an appreciable decrease in accuracy, which is a reassuring result for the
reliability of modules trained in a distributed manner. However, we acknowledge the task-dependent
nature of these results, which is a known drawback of parallel coordinate descent-based systems. In the
worst case, if features (and therefore weights and gradients) are highly correlated, randomly separating
them across servers may lead to slow convergence or even divergence. Some previous work combats this
issue by pre-computing feature correlations and grouping them accordingly across servers [9]. We suggest
this method as a future extension of our work.

1.3 Fault Tolerance

Training Curve for First 100 Iterations - Training Curve for First 100 Iterations -
No Failure Failure at 40
85 85
80 80
75 75
E0 270
> >
3 65 865
P WEIGHT geo geo
U < <
wil, w2, w3 wl/vll/ wﬁ\ CACHE 55 55
/)} : 50 50
- \ 45 45
[wi, w2, 0 20 40 60 80 100 0 20 40 60 80 100
Wa, w5, W6 wd w3 w3, w9 Iteration Iteration
PN a Training Curve for First 100 Iterations - Training Curve for First 100 Iterations -
&) Failure at Failure at 60
= ot wa, ws, 85 ailure at 50 o
w7, w9 . N w7 w6, w7, w8 80 80
w5 \X w8 75 75
r 4 N s 2
2) We use our 3) We restore all <70 <70
1) Server goes consistent hashing weights from the § 65 E 65
down during ring to rapidly last checkpoint and 2 0] 6
training reassign weights from continue training < <
the lost server 55 55
50 50
45 45
0 20 40 60 80 100 0 20 40 60 80 100
Iteration Iteration

Figure 4: A procedure to allow robustness to server shutdowns. a) A schematic of our approach. b)
Training curves with server failure at 40, 50, and 60 iterations compared with no failure

An important property of distributed systems in practice is fault tolerance - if one of the many components
of the system fails, the system should be able to rebound and continue execution. In this section, we
introduce a fault tolerant extension to our training system. Specifically, we focus on robustness to server
failures, which otherwise would crash the entire training process.

The algorithm is described in Figure 4a. When a server goes down, we utilize our consistent hashing
ring to locate the relevant weights and reassign them to new servers. As the most recent universally
available version of these weights are those stored at the last checkpoint, we restore all weights from this
checkpoint for uniformity, and we resume training.

To ensure the efficacy of this algorithm, we simulated server shutdowns at known iterations in the
training process, and we observed training behavior as a result. The results are displayed in Figure
4b, in which we compared simulated failures at iterations 40, 50, and 60 to the training curve without
any failures. In each case, performance drops slightly at the failure iteration, which is expected since
weights were restored from the last checkpoint, but training rebounds quickly and continues as normal.
All plots were the result of averaging over three runs of training with five servers, one worker per server,
and checkpointing weights every five iterations. Through our algorithm, a server shutdown did not
prove catastrophic, but rather only caused a momentary decrease in performance. Thus, we conclude
this procedure can indeed provide robustness to server failures in distributed training systems similar to
ours.

2 Discussion

In this study, we present a parameter server system for distributed training of machine learning models.
First, we describe the details of our algorithm and approach, and we characterize the consistent hashing
framework essential to the procedure. Next, we benchmark our system against a data parallel setting and
show improvements in total runtime. We also show that increasing the system’s server count does not
cause a drop in accuracy, and, with a constant total worker count, causes a decrease in runtime. Finally,
we describe a fault tolerant extension to our system, which allows for training to recover quickly after a
server crashes.

Of course, several opportunities for extensions and improvements exist. Our model is quite simple
from a machine learning standpoint, and most notably, there are no dependencies between model weights,
as would be the case in deeper neural networks. Accounting for these dependencies would require more
complex algorithms than those presented here, but for parameter servers to form an essential part of the
modern machine learning toolkit, this functionality is essential. Despite this limitation, our framework
can be easily extended to a variety of other machine learning applications, including topic modeling
approaches like Latent Dirichlet Analysis (LDA)[5]. Furthermore, our system is currently synchronous -
that is, all workers are always at the same point in training, and model weights are globally synchronized
at set intervals. If we switch to an asynchronous setting, thus allowing workers to operate independently
without global control and locking, it is possible that our system will operate more efficiently. Thus,
characterizing the tradeoffs between synchronous and asynchronous settings represents another key area
of future work. Finally, introducing other forms of fault tolerance, particularly against worker shutdown,
would make our system more complete.

In conclusion, we demonstrate the utility of our parameter server system for distributed training, and
we present several avenues of future exploration.

3 Reproducibility

Code for this project can be found at https://github.com/amanpatel101/CS244BParameterServer. All
the notebooks and data to reproduce the plots are also provided with the github repo.

References

[1] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-
Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey
Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray,
Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,

[10]

and Dario Amodei. Language models are few-shot learners. CoRR, abs/2005.14165, 2020. URL
https://arxiv.org/abs/2005.14165.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, Parker Schuh,
Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker Barnes, Yi Tay, Noam
Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Ben Hutchinson, Reiner Pope, James
Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke, Anselm Lev-
skaya, Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier Garcia, Vedant Misra, Kevin
Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito, David Luan, Hyeontack Lim, Barret Zoph,
Alexander Spiridonov, Ryan Sepassi, David Dohan, Shivani Agrawal, Mark Omernick, Andrew M.
Dai, Thanumalayan Sankaranarayana Pillai, Marie Pellat, Aitor Lewkowycz, Erica Moreira, Re-
won Child, Oleksandr Polozov, Katherine Lee, Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark
Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy Meier-Hellstern, Douglas Eck, Jeff Dean,
Slav Petrov, and Noah Fiedel. Palm: Scaling language modeling with pathways, 2022. URL
https://arxiv.org/abs/2204.02311.

Rong Gu, Shiging Fan, Qiu Hu, Chunfeng Yuan, and Yihua Huang. Parallelizing machine learning
optimization algorithms on distributed data-parallel platforms with parameter server. 2018 IEEFE
24th International Conference on Parallel and Distributed Systems (ICPADS), 2018. doi: 10.1109/
padsw.2018.8644533.

David Karger, Eric Lehman, Tom Leighton, Rina Panigrahy, Matthew Levine, and Daniel Lewin.
Consistent hashing and random trees: Distributed caching protocols for relieving hot spots on the
world wide web. Proceedings of the twenty-ninth annual ACM symposium on Theory of computing -
STOC 97, 1997. doi: 10.1145/258533.258660.

Mu Li. Scaling distributed machine learning with the parameter server. Proceedings of the 2014
International Conference on Big Data Science and Computing - BigDataScience ’14, 2014. doi:
10.1145/2640087.2644155.

Chao Liu, Fan Guo, and Christos Faloutsos. Bbm: bayesian browsing model from petabyte-scale
data. Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and
data mining - KDD ’09, 2009. doi: 10.1145/1557019.1557081.

Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard Liaw, Eric Liang,
Melih Elibol, Zongheng Yang, William Paul, Michael I. Jordan, and Ion Stoica. Ray: A distributed

framework for emerging ai applications, 2018.

Sree Hari Krishnan Parthasarathi, Nitin Sivakrishnan, Pranav Ladkat, and Nikko Strom. Realizing
petabyte scale acoustic modeling. IEEE Journal on Emerging and Selected Topics in Clircuits and
Systems, 9(2):422-432, jun 2019. doi: 10.1109/jetcas.2019.2912353. URL https://doi.org/10.
1109%2F jetcas.2019.2912353.

Chad Scherrer, Ambuj Tewari, Mahantesh Halappanavar, and David Haglin. Feature clustering for
accelerating parallel coordinate descent, 2012.

Stephen J. Wright. Coordinate descent algorithms. Mathematical Programming, 151(1):3-34, 2015.
doi: 10.1007/s10107-015-0892-3.

https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2204.02311
https://doi.org/10.1109%2Fjetcas.2019.2912353
https://doi.org/10.1109%2Fjetcas.2019.2912353

	System and Implementation
	Consistency Hashing Performance
	Benchmarking System Performance
	Fault Tolerance

	Discussion
	Reproducibility

