
1

Permissioned Blockchain for establishing Trusted Ratings
vishal5@stanford.edu

1. Introduction
Ratings form an integral part of validating the worthiness of a financial asset, a movie , a
doctor etc. and increasingly dominate our decision making process when choosing
between multiple available options. Having a good rating can significantly improve
profitability and sales of a product or service however incorrectly tagged rating can result
in significant financial loss or inconvenience to the end consumer.
The purpose of the simple blockchain based model described here is to address the
threat model wherein a rating agent as an independent entity or colluding with a set of
other rating agents influence the correctness of a rating.

2. Why Blockchain?
Blockchain maintains a full history of events / transactions that are securely linked and
agreed upon via consensus established by participating nodes. In this specific
implementation PBFT consensus is used wherein at max 1/3rd nodes can be byzantine.
Rating agents are assumed to be participants of rating firms that are permissioned
members of the blockchain. Due to blockchain being permissioned there are no
concerns on the identity of a node, However, threat emerging from rating agents trying to
tamper the data and or/collude with other rating agents to influence a rating remains. To
mitigate this risk , A correctly implemented blockchain would ensure that :-

1. Events / Transactions that are used to compute rating are not tampered with.
Block approvals entail 2n/3 votes from n participating rating nodes.

2. Rating provided by a rating agent is based on the same events/ transactions that
are available to any other rating agent. (Within an acceptable time frame).

3. Rating Is recaculatable for any historical point in time at any future time. This
feature is especially useful if the rating agents are being audited and are asked to
prove the legitimacy / accuracy of a historical rating.

Remainder of this paper describes a basic implementation of a blockchain that
can be used to establish trusted ratings. Whilst the solution is applicable in any
context, the specific scenario used in this paper is Financial Rating.

2

3. Components

● Participants (package com.project.participant)
a. Internal Events Source - this is a data provider of firms internal events ,

like corporate action, management changes, new projects, etc.

b. External Event Source - Provides external events like interest rate
changes, sector information, global events, etc. For the purposes of this
project external events source generates dummy events in response to
firm events.

c. Rating Agents - agents that consume internal and external events and
provide a point in time rating based on inputs. Each rating agent
maintains a local copy of the blockchain and participates in voting for
block approvals.

d. Byzantine Rating Agent - is like any other rating agent (extends rating
agent class) , however tampers a transaction by changing the event value
stored in it.

● Network (package com.project.network)
Each process is implemented as a multicast node. Networking for the project is
built using the java.net package.

● Consensus (package com.project.consensus)
Rating Agent coordination and Leader Election is achieved using Zookeeper.
New Leader is elected at each Epoch. A ballot is assigned for each epoch , it
holds votes and determines if consensus is achieved.

● Blockchain (package com.project.blockchain)
Comprises of Blocks that contain transactions. Blocks (and transactions) contain
methods to convert to Json string and back into objects.

SHA3-256 scheme is used to compute hashes for blocks and Transactions.
Block hash is computed using epoc, MerkleRoot of transactions, previous block
hash and timestamp. Blockchain is written out to Rating agents local file system
as a json file.

3

Fig 1 - High level Process Flow

4

4. Process
Input Data

1. Internal Events Source generates an event.External Event Source generates
event(s) in response to internal events and/or an independent event.

Consume Data
2. Each Rating agent consumes the event(s) and adds to pendingTransactions list

in their individual localBlockchain (Note: Each Rating agent maintains a Local
Blockchain)

Leader Election
3. Epoch number is maintained as a shared counter managed by zookeeper

(/counter/epoch Persistent Node). [ref CoordinationService.java]

4. A new Leader Rating agent is elected at each epoch interval. (leader path in ZK
is /leader/epoch-leader). [ref CoordinationService.java]

Epoch is incremented every 3 seconds, for the duration of this interval the leader
assembles transactions to block, proposes it, the block is voted for and
committed post consensus. At the end of the epoc leadership is relinquished and
the leader goes back into the queue for subsequent election at a later time.

Propose Block
5. Leader looks for max pending transactions by firm id and adds them to a block.

New block hash is computed using epoch ID , merkleRoot for included
transactions, timestamp, previous block hash [ref: Block.java].

The block is published as a proposal to all rating agent nodes. Published block
contains hash of current block, previous block hash, timestamp, epoc and a list of
transactions.

5

Vote for Block
6. Rating agents validate the block

a. Previous block hash should be same as hash of last block on the chain
b. Epoc number of the current block should be higher than the last block on

the chain.
c. All transactions in the block should be available in pendingTransactions of

the validating rating agent.
If all above conditions are met, the Rating Agent publishes their votes to all other
ratingAgents. Each rating agent maintains a map of ballotByEpoch, vote count in
the ballot for a given epoch is incremented each time the rating agent receives a
vote message for the block from other rating agents.

Commit Block
7. Leader through its epoch ballot checks for presence of votes >= 2n/3 (n being

the number of participating rating agent nodes). If a required amount of votes are
received , the leader issues a Prepare request for the block. Individual rating
agents (including leader) on receiving this message validate the votes for block in
their respective epoch ballots and if all looks good block is committed to their
local blockchain. Corresponding transactions are removed from
pendingTransactions list. Block chain in this implementation is maintained as a
json file tagged to individual rating agent, example shown below

{"epoch":5,"previousHash":"86ae26bd0b10858260a9ddedf7b7bbb54dcd5b6ea
71d8ad0f3e3010b715b7d3f","merkleRootHash":"934cfeb2330d806310a2ac532
022018affe66b362ac02ac20d57db377a4f35d9","timestamp":1653500944584,
"Hash":"f178122ec6ec0b4fdfe8fc0552c8afdc04516521ef31752d205fc5612ece7a
dc","transactions":[{"firmId":"1","eventId":"1-1653500925978","firmEvent":"good"
,"sentBy":"IS"l},{"firmId":"1","eventId":"1-1653500925978","firmEvent":"good","sen
tBy":"ES","marketEventSourceId":"1","marketEvent":"good"}],"stage":"commit","ra
tingAgentId":"/rating-agents/0000000000","eventId":"1-1653500925978"}

Note: if the block is not committed in the epoc its proposal was created, it's
discarded. Corresponding transactions are picked up in subsequent epochs.

6

Dealing with Byzantine Agents
8. In the implementation a byzantine node changes the value of a transaction , the

block containing a tampered transaction is not accepted by honest rating agents
and hence never meets the criterion for consensus. The valid transactions in
rejected blocks remain intact in the local pending transaction pool of honest
rating agents and are picked up for inclusion in subsequent blocks.

Query
9. Blockchain can be queried via rating agent to:-

- Fetch blocks by date range.
- Query all blocks

Timestamp on block represents the time when it was created; however
transactions included in it have a timestamp that represents the time when that
specific event was generated in the business context. This bitemporality gives
flexibility to query the blockchain in both time dimensions to suit the appropriate
use case.

Computing Ratings (TODO)
10. Ratings are computed by individual rating agents using information in blockchain

and published periodically. Each rating agent can use a different algorithm to
arrive at ratings , however rating has to be voted for by other agents who accept
a rating block within the a delta threshold of the rating they compute for the same
firm/timestamp. Each rating also contains a hash of the codebase that was used
to compute it at a point in time; this serves to provide an audit trail with full
lineage to how the rating number was arrived at.

5. Conclusion
Permissioned blockchain built on top of a well implemented consensus mechanism is
applicable to several use cases that require multiple firms/agents to interoperate. As an
example rating agents described in this paper could belong to different companies who
work together to ensure a trusted system overall. Incentive models can be created to
reward firms correctly approving and/or publishing valid blocks on the network.
Building on concepts applied in this project , A more sophisticated model can be
implemented that is applicable to any use case where ratings form an integral part of the
consumer decision making process.

7

6. References
Following papers have been referenced to formalize ideas for the project:

ZooKeeper: Wait-free
coordination for Internet-scale
systems

https://www.scs.stanford.edu/
22sp-cs244b/sched/readings/
zookeeper.pdf

PBFT Practical Byzantine
Fault Tolerance

https://www.scs.stanford.edu/
22sp-cs244b/sched/readings/
pbft.pdf

Streamlet: Textbook
Streamlined Blockchain

https://www.scs.stanford.edu/
22sp-cs244b/sched/readings/
streamlet.pdf

