
Profiling Distributed Systems: Two Case Studies

Nelson Liu
Stanford University

Abstract

We present two case studies in profiling distributed sys-
tems to better understand their bottlenecks and hot spots.

Our first case study focuses on CodaLab, a platform for
reproducible research. CodaLab is deployed as a collec-
tion of Dockerized microservices that must communicate
with each other to fulfill user requests. We trace real-
world user queries through the application to better un-
derstand where latency in the application arises. We find
that a significant amount of latency comes from database
operations, and provide some future recommendations for
improving performance.

The second case study focuses on a replicated SQLite
database (rqlite), where consensus across nodes (via
Raft; [1]) is required to serve and execute user queries
in a fault-tolerant manner. We measure the overhead
from replication, the average and tail speed of the
AppendEntries and RequestVote RPCs, finding that
replication slightly affects throughput even in our small-
scale benchmark.

1 Introduction

Understanding the performance and bottlenecks of tradi-
tional applications is relatively well-studied, with many
mature profiling tools and workflows available for a wide
variety of programming languages. However, profiling
and understanding the performance of distributed applica-
tions is not as straightforward—a single user request may
touch multiple services before returning a result to the
user. In this increasingly-common setting, it is diffcult
to disentangle the contribution of individual services on
overall request latency.

To fulfill these needs, a variety of tools have been built
for tracing requests through distributed systems. In this
work, we present case studies of tracing for two very
different distributed systems. The first case study fo-

Figure 1: Spans represent individual blocks of work in a
distributed system, and traces are hierarchically structured
sets of spans. Figure reproduced from the OpenTelemetry
documentation.

cuses on CodaLab, 1 an end-to-end platform for repro-
ducible research. The second case study traces requests
in rqlite,2 a distributed SQLite database. Through trac-
ing, we can better understand the latency breakdown of
requests through these systems and also derive useful
insights for improving their throughput.

2 Tracing Distributed Systems

To profile and trace requests through distributed systems,
we use the framework and tools developed by the Open-
Telemetry project.3

2.1 Spans and Traces

To establish a causal relationship between different invo-
cations of a method or an RPC, we record spans. Spans
are named, timed operations that represent a piece of
the execution flow in a distributed system—spans are the
building blocks of traces. Each span stores a name, its
start and end time, and the parent span from which it was
created (if one exists). As a result, a trace is a tree of

1https://github.com/codalab/codalab-worksheets
2https://github.com/rqlite/rqlite
3https://opentelemetry.io

https://github.com/codalab/codalab-worksheets
https://github.com/rqlite/rqlite
https://opentelemetry.io


spans that reflects the hierarchical call stack and includes
timing information. Figure 1 shows an example of spans
in a trace.

To establish this hierarchical structure between spans
that generate new spans, children spans must receive in-
formation about the parent span (generally the currently-
executing span) when they are created and started. This is
straightforward in traditional applications (e.g., with con-
text variables), but propagating context across different
services is slightly more involved.

However, in 2021, the W3C created a trace context
specification that defines standard HTTP headers and a
value format to propagate context information that enables
distributed tracing scenarios. 4 This trace context is meant
to uniquely identify individual requests in a distributed
system.

As a result, to propagate this trace information across
service, we simply inject the necessary trace information
into the HTTP header, and extract the information when
the RPC is received and the child span is created.

2.2 Instrumentation
Spans and traces provide an understandable and easy-to-
use way to interpret execution information in a distributed
system, but what units and functions should make up a
span? This question, and the broader question of what to
profile and trace, are at the core of instrumentation.

Instrumentation is the process of modifying an ap-
plication to generate coherent spans and traces. This
is generally done manually—while automatic tools for
instrumentation do exist, they may be harder to inter-
pret because they indiscriminately record all operations
and/or functions. On the other hand, a carefully manually-
instrumented application requires developer expertise
about what units of work are salient and worth recording—
instrumentation that is too high-level would generate unin-
formative traces, but instrumentation that is too low-level
would generate traces with dozens of spans that are dif-
ficult to interpret. A balance between detail and concise-
ness is necessary when instrumenting, and the relevant
methods to instrument are dependent on the goals of pro-
filing and the questions to be answered. We manually
instrument the applications in each of our case studies
and defer details for later in the paper.

3 Case Study I: CodaLab

Background Our first tracing case study concerns Co-
daLab, a platform for reproducible research. Codalab
bundles represent the code, data, and results of a se-
quence of commands (e.g., an experimental pipeline).

4https://www.w3.org/TR/trace-context

Figure 2: Each rectangle represents a bundle, and arrows
represent dependencies between bundles. This figure
shows two uploaded bundles. The first (top-left) is a script
called cnn.py. The second (top-right) is a dataset (named
mnist) with two files (train.dat and test.dat). The
run bundle exp2 is created by executing the python com-
mand on the contents of the cnn.py and mnist bundles.
Figure reproduced from CodaLab documentation.

Users can create bundles by uploading files from their
local disk. Users can also create run bundles, which are
the output of executing bash commands on the contents
of previous bundles. This shell command is executed in
a Docker container by a worker, which may be a sepa-
rate host. Figure 2 shows how run bundles are created
by executing a command on data and code bundles. The
dependency graph over bundles represents a reproducible
path from producing the output of an experiment or set of
experiments from the original code and data.

Instrumentation CodaLab is deployed as a collection
of Docker container microservices (Figure 3). A single
CodaLab command will involve requests that traverse
between multiple of these containers, often multiple times.
As a result, when observing end-to-end request latency, it
can often be difficult to discern which particular service or
service subroutine is causing the issue. Tracing requests
as they percolate through and across services is essential
for understanding request performance.

We primarily focus on instrumenting the RPC calls
between services, to better understand the latency break-
down of a single slow request across different parts of
CodaLab. CodaLab exposes a REST API to clients—we
instrument each of these endpoints. These endpoints make
further requests to a MySQL database, and we instrument
each of the database queries.

Requests to study We focus our analysis on two partic-
ular types of requests—cl run requests and cl search

requests.
cl search is the command used to return bundles that

match a particular keyword or set of keywords. For ex-

2

https://www.w3.org/TR/trace-context


Figure 3: The architecture of a CodaLab deployment. The
main three services are the REST API, the MySQL DB,
and the bundle manager.

ample, cl search owner=nfliu would return bundles
owned by user nfliu, and cl search python would
return bundles with “python” in the name. CodaLab
bundles store various metadata (e.g., name, owner, de-
scription, etc.), any of which can be queried with the
cl search command. Under the hood, the command
uses its input parameters to construct a SQL query, which
is executed against the MySQL database containing the
information about the bundles. When running many ex-
periments, cl search becomes an invaluable tool for
operating over sets of the experiments in batch. For exam-
ple, to delete all failed experiments, one could run cl

rm $(cl search .mine state=failed -u ). The
inner cl search .mine state=failed -u returns a
list of the bundles that are failing, and cl rm can take
the shell output and directly operate on it. However, user
experience indicates that these cl search queries can
often be quite slow, so we trace these requests to better
understand the latency breakdown across services.

Tracing Requests We run the CodaLab deployment
on a AWS t3.medium instance (2 vCPUs and 4GiB of
memory). We use locust to simulate 10 parallel clients
issuing requests to the server. We measure the latency of
cl run date and cl search .mine (which resolves
to cl search owner=<current user>). As these re-
quests are issued to the server, traces are uploaded to a
different AWS t3.medium instance for post-hoc analysis
and viewing. We use Jaeger to visualize the CodaLab
traces.

cl run Trace Analysis Figure 4 presents the trace of
a slow cl run invocation.

Figure 4: An example trace of a slow cl run invocation
(586.2ms in total). The left column shows the name of the
CodaLab service and operation name, and the bars on the
right provide a visual timeline of execution throughout the
lifetime of the request. Figure best viewed on a computer.

The command breaks up into two main REST re-
quests. The first is a call to the /worksheets endpoint.
When a run bundle is created, it is inserted into a work-
sheet, which visually hosts a collection of a bundles—the
/worksheets endpoint returns the worksheet to insert
the new run bundle to. Looking further at the breakdown
of this endpoint, we see that a fairly significant amount of
time is taken by network latency (i.e., the amount of time
it takes for the request to be received by the server after
being sent by the user). This is visually represented by
the gap between the start of the rest client span and
the start of the /worksheet.

Calling the /worksheet endpoint itself takes 36.2ms
in this example, and is mainly broken up into two calls
to the batch get worksheets function. This each invo-
cation of this function issues two requests to the MySQL
database, each of which executes a SELECT. These re-
quests to the MySQL database each take around half of
the overall runtime of the function, and can vary in speed
(from 1.39ms to 8.86 ms).

Applying a similar analysis to the other top-level REST
operation in the trace (a call to the /bundles endpoint),
we see that a significant amount of time is taken by

3



Figure 5: An example trace of a slow cl search invo-
cation (408.44ms in total). The left column shows the
name of the CodaLab service and operation name, and the
bars on the right provide a visual timeline of execution
throughout the lifetime of the request. Figure best viewed
on a computer.

database operations. Furthermore, there is significant
variation in the time of SQL execution depending on
the supplied statement / query. For example, the short-
est query takes 668 microseconds—this query inserts a
new entry into the permissions database with the bundle
UUID and the permissions value. The longest query takes
14.07ms—-this query selects bundles with a dependency
on a supplied UUID. Studying the database schema, we
find that this operation is slow primarily because it re-
quires iterating over all database rows, since the database
is only indexed by the bundle UUIDs.

As a result, our trace analysis suggests that in order to
improve the performance of slow cl run invocations, it
may be useful to focus on the performance on the MySQL
database service. In particular, it may be necessary to
rework the database structure to speed up frequently-
executed queries. This may naturally come at the cost of
storage space, since the on-disk size of the database may
increase.

cl search trace analysis We can apply a similar anal-
ysis to slow cl search invocations.

Figure 5 shows the trace of a slow cl search. The
command is again broken up into calls to two REST end-
points: /worksheets and /bundles. The worksheets
call is exactly the same as that of the cl run command,
so we omit the analysis for the sake of brevity. However,
the call to the /bundles endpoint calls five subroutines,
though the runtime is mainly dominated by the call to
batch get bundles (79.31/119.87 ms). This function
is broken up into three SQL select queries which return
data about the bundles found via the search.

Corroborating our analysis of cl run, we see that even
these simple queries can be quite slow; although they are

frequently used, they require examining all rows of the
MySQL database. As a result, the speed of these queries
grows linearly with the number of bundles on the server.
Given that CodaLab servers can easily host tens of thou-
sands of bundles, this could explain why users experience
significant (often longer than 60 seconds) latency when
using the production deployment of CodaLab. For bet-
ter or for worse, it appears that the database service is
the culprit for both slow cl run operations and slow cl

search operations, so our recommendations of refactor-
ing the schema and adding additional database indices for
commonly-executed queries also apply here.

4 Case Study II: rqlite

For our second case study, we analyze the traces from
rqlite, a replicated SQLite system written in Go.
rqlite uses Raft behind-the-scenes as its consensus pro-
tocol. In conducting this case study, our main goal was
to get a better sense of the actual performance costs asso-
ciated with replication (and Raft in particular), in terms
of both individual Raft RPC performance and end-to-end-
request performance.

Instrumentation We instrument the Raft
AppendEntries and RequestVote RPCs, since
we wanted to get a sense of (1) how often these RPCs
were executed and (2) the individual cost of each RPC.
We also applied some instrumentation to the parent
functions that called these RPCs (e.g., the heartbeat

function), to get a better sense of why these RPCs are
executed.

Experimental Setup We run rqlite nodes on AWS
t3.medium instances (2 vCPUs and 4 GiB of memory).
To see how end-to-end request latency on the replicated
database changes as more nodes are added (and more
communication overhead is thus incurred), we experiment
with varying cluster sizes: single-node (no replication),
and clusters of 3, 5, 7, and 9 nodes. rqlite exposes a
REST HTTP API to the replicated database, and we use
locust to simulate 10 parallel clients issuing requests to
the replicated database. In particular, we the workload is
evenly divided into database writes and reads.

Our test table contains contains two fields: name, of
type TEXT, and age, of type INTEGER. For the database
writes in our workload, we create a new entry with a ran-
dom name and random age and insert it into the database.
For the database reads in the workload, we SELECT all
entries fro m the test table with a randomly-chosen name.
The test database is stored in memory, since we are pri-
marily interested in the speed and cost of inter-node com-
munication, rather than any potential costs associated with

4



Write Requests (ms) Read Requests (ms)

Cluster Size 50% 95% 50% 95%

1 42 53 41 50
3 45 53 41 50
5 44 56 42 50
7 49 58 44 52
9 50 59 45 52

Table 1: End-to-end request time for read and write re-
quests for varying cluster sizes.

AppendEntries (µs) RequestVote (µs)

Cluster Size 50% 95% 50% 95%

3 132 198 286 379
5 157 182 238 398
7 143 173 358 408
9 135 191 281 351

Table 2: RPC latency for varying cluster sizes. We omit
cluster size 1 because no RPCs are sent in this setting.

disk access.

Results: End-to-End Request Latency We first bench-
mark end-to-end request latency with our previously-
described workload across a range of cluster sizes. Table 1
displays the median request time, as well as the 95th per-
centile of request times, for the read and write operations
for various cluster sizes. Even in our small-scale bench-
mark, we can observe both median and 95th-percentile
response times increasing slightly—the performance over-
head from replication is slightly noticeable.

Results: Individual RPC performance To better un-
derstand how individual RPC performance contributes
to overall request latency, we study the cost of the
AppendEntries and RequestVote Raft RPCs; Table 2
displays the results. The cost of each RPC is on the
order of hundreds of microseconds. Furthermore, as ex-
pected, the cost of an individual RPC does not signifi-
cantly change with the cluster size. Rather, as clusters
grow or shrink in size, the total number of RPCs required
to commit an operation increases.

The number of recorded AppendEntries RPCs far
outpaces the number of RequestVote RPCs, since the
former is frequently invoked as a heartbeat from the leader
to each of the followers, while the latter is only really used
when candidates must gather votes to elect a new leader.

Overhead from instrumentation We also run some
preliminary experiments to assess the overhead caused by
instrumentation itself. In particular, we reran the same ex-
periments with an unmodified (and thus uninstrumented)
distribution of rqlite. However, we found that we were
not able to discern a significant different in end-to-end
request latency nor single-RPC latency between these two
versions in our simple testbed. Although it is entirely
possible that heavier loads or other experimental settings
would reveal a significant overhead to tracing, we did not
observe any differences.

Discussion By analyzing the performance of both end-
to-end requests and the individual Raft RPCs, we gained
a better understanding of the overhead associated with
replication and Raft in particular. When reading the ab-
stract description of an algorithm, it’s often unclear which
operations could be potential bottlenecks, or the relative
frequency with which they’re invoked—tracing these re-
quests allowed us to concretely measure how long a given
RPC takes (not too long, as expected), and how often it’s
called.

Furthermore, while it’s natural that replication will in-
crease end-to-end performance, it can be unclear how
this affects request times in benchmarks. Although this
benchmark is simple, we were able to observe a slight de-
crease in performance as the result of replication, making
these potential performance hits much more concrete. In
our setting, replication comes at a relatively small cost,
though it may cross the threshold for intolerably expen-
sive in other applications that see higher load or larger
operations.

5 Conclusion

In this work, we traced and profiled two different dis-
tributed systems: CodaLab, an application composed of
several microservices, and rqlite, a distributed SQLite
database. Our case study of CodaLab helped us better un-
derstand application hotspots and the complete life-cycle
of a request, pointing to potential areas for performance
improvements. Our study of rqlite improved our con-
ceptual understanding of the Raft consensus algorithm by
making its operation concrete and helped us get a hands-
on sense of the order of magnitude of performance hits
associated with replication. More broadly, we adapted
the same set of tracing tools to answer very different
questions about different distributed systems, providing a
template for instrumentation and other design decisions
when conducting future analyses.

5



References
[1] ONGARO, D., AND OUSTERHOUT, J. In search of an understand-

able consensus algorithm. In Proceedings of the 2014 USENIX
Conference on USENIX Annual Technical Conference (USA, 2014),
USENIX ATC’14, USENIX Association, p. 305–320.

6


	Introduction
	Tracing Distributed Systems
	Spans and Traces
	Instrumentation

	Case Study I: CodaLab
	Case Study II: rqlite
	Conclusion

