
RAFT Cluster Reconfiguration Managed by Trusted
Registry

Zixi An, Danny Lee, Jingchi Ma
Stanford University

anzixi@stanford.edu

dglee@stanford.edu

jingchi@stanford.edu

Abstract— In a RAFT cluster operating at high capacity, a
cluster configuration change could affect latency and throughput
of client requests made to the system. This is because all
configuration change requests are processed by the leader, and
propagated to follower nodes in the same fashion as appending
log entries. As such, extra complexities are added to the system to
ensure the safety of reconfigurations, preventing multiple leaders
in a single term. Furthermore, the original RAFT paper provides
no method to automatically detect node failures. To reduce the
extra overhead of handling configuration changes, and to
automatically detect and remove failed nodes from the cluster, we
proposed and implemented a new method to manage RAFT
cluster membership, using a trusted registry service.

Keywords— RAFT, 2 Phase Commit, Cluster Failure Detection,
Trusted Registry

I. OVERVIEW

The RAFT consensus algorithm [2] is gradually
overtaking Paxos as the preferred option both in the
classroom and on deployment servers because of its
relative simplicity, safety, and availability. By design,
RAFT offers high availability despite node failures,
internal leader change, temporary network partition, and
even cluster configuration changes. Certain systems go
offline when adding/removing active nodes [1], but
RAFT remains operational by entering a special
transitional state during reconfigurations [2], while
continuing to respond to AppendEntries client requests.

By default, when active nodes change from cluster C1
to cluster C2, the leader appends a special “C1/C2” log
entry and broadcasts to followers through
AppendEntries RPC. Upon receipt, nodes enter a “joint
consensus” state where committing new log entries or
electing new leaders require majorities from both C1 and
C2. Once the special log entry is committed, the leader
will broadcast a second special log entry, “C2” to signal
the end of the joint consensus state. This is analogous to
the 2 phase commit protocol, where 2 special change-log
entries represent the “prepare” and “commit” phases.
However, when the cluster is under heavy load, each

node has many concurrent AppendEntries RPCs to
process, and the special change-log AppendEntries
requests might experience lock starvation or other delays
due to constraints on nodes’ processing power.
Furthermore, if C1 and C2 are disjoint, log entries added
during joint consensus requires twice as many RPCs to
commit, leading to heavier network and CPU load on the
leader.

In his dissertation, Ongaro proposed a simplified
method for configuration change, by adding the
addServer and removeServer RPCs to the cluster [3].
This allows nodes to use the new configuration as soon
as it is received, but imposes the constraint that only a
single node may be changed at a time. It writes a
change-log record, and relies on AppendEntries RPC to
propagate to the cluster.

With either method, the cluster configuration change
in RAFT is always triggered by an administrator, and
there’s no built-in automatic failure detection. As a
result, a majority of node failures undetected by
administrators could indefinitely stall the system.

To simplify and separate the config change process
from the log replication process, and to automatically
detect node failures, we’ve implemented a registry
service with a mechanism similar to two-phase commit
[4] that coordinates reconfiguration without adding
change-log entries and leader broadcasts, and to detect
failed nodes using a simple heartbeat mechanism. This
removes the need for joint consensus state, reduces
reconfiguration overhead, and prevents undetected
failures from stalling the cluster.

II. REGISTRY MODEL

The registry is modeled as a service providing
two functions: coordinating RAFT cluster

mailto:anzixi@stanford.edu
mailto:dglee@stanford.edu

reconfiguration, and sending periodic heartbeats to
nodes for failure detection. It is separate from the
RAFT cluster and is run on a separate server. System
administrators interact with the registry service
through 3 public APIs: updateGroup,
addSingleMember, removeSingleMember.

updateGroup(newMembers):

This API takes in the new cluster configuration,
updates the current cluster members with a 2
phase commit mechanism, and terminates once
the entire cluster acknowledges the new
configuration.

addSingleMember(nodeId, url):

This serves as the registry wrapper for the
cluster’s addServer method.

removeSingleMember(nodeId):

This serves as the registry wrapper for the
cluster’s removeServer method.

The updateGroup is designed to provide a
similar safety guarantee as the original joint
consensus mechanism, without interfering with
RAFT’s log replication process. However, if
reconfiguration only involves a single node change,
using RAFT’s addServer/removeServer is
preferable, so they are included as registry wrappers.

III.REGISTRY COORDINATED RECONFIGURATION

When updateGroup is invoked, the registry
serves as the coordinator of the 2 phase commit
process to communicate the new configuration to all
cluster nodes. The following changes need to be
made to RAFT nodes:

Figure 1: prepareCommit RPC

Figure 2: commit RPC

Figure 3: additional states

Figure 4: additional rules

During the prepare phase, the registry sends
prepareCommit to every node in the old, and new
configuration. When every node replies with a yes
vote, the registry sends the commit and marks the
config change as complete, responding to the original

updateGroup request immediately. The
prepareCommit and commit RPCs ensure the
atomicity of configuration changes by providing the
following guarantees once an updateGroup request
comes back successful:

1. Every node either has their pendingMembers,
or active members set to the new configuration.

2. Only nodes in the new configuration may
participate in elections and voting.

Let C1 be the set of nodes in the old configuration,
C2 be the set of nodes in the new configuration. The
figure below describes the key states of a
updateGroup request:

t0: registry sends prepareCommit to all nodes

t1: registry receives first prepareCommit vote from RAFT
node

t2: registry receives all prepareCommit vote, and sends
commit to all nodes, returns updateGroup request as true

t3: registry receives first ack from commit

t4: registry receives acks from all nodes.

Because of the prepareCommit and commit
implementation, C2 - C1 won’t participate in voting
or election before t2 (1), and C1 - C2 won’t
participate in voting or election after t2 (2). The “-”
notation represents a set difference. For duplicate
leaders to be elected, there must exist a time where
node_i sees C1’ as cluster configuration, node_j sees
C2’ as cluster configuration, such that |C1’- C2’| >
|C1’| / 2 (3) and |C2’- C1’| > |C2’| / 2 (4) hold true.
Only then could node_i and node_j both receive
majority vote in an election, from their respective
clusters. Given observations (1) and (2), we know
that once a server receives the prepareCommit
message, it will not vote for a stale node (present in
the old config, not the new config), and any stale
node will not participate in an election. As a result,
(3) and (4) will never hold, thus our registry
coordinated updateGroup safely performs
configuration change without taking the cluster
offline.

If a node fails after sending the prepareCommit
response, but before receiving commit from the
registry, and recovers after every other node receives

the commit, its cluster configuration may become out
of sync with the other active nodes. To eliminate this
issue, the additional rule in Figure 4 guarantees that
nodes with stale cluster information are immediately
updated once they come in contact with the current
cluster.

Aside from the safety guarantee, updateGroup
adds very little overhead to the leader, does not
require a complex joint consensus mechanism, and is
not constrained to add/remove one node at a time.
Admittedly, with joint consensus, the config update
commits after a majority of cluster members respond,
whereas updateGroup requires all cluster members
to respond, we believe the modularity and simplicity
are fair trade-offs to the potentially higher tail
latencies.

Finally, although we modeled the registry
service to be always available and partition resistant,
it can, and will fail. When the registry is unavailable,
administrators can easily switch to RAFT’s own
addServer/removeServer RPCs to update cluster
configurations.

IV. AUTOMATIC FAILURE DETECTION

The registry also monitors the health of active
RAFT nodes, and automatically removes nodes from
the cluster after a period of inactivity. We’ve
implemented a simple heartbeat mechanism as
follows:

Figure 5: pingCluster protocol

Each RAFT receiver node responds to the
cluster ping with a simple ACK, without checking
any internal state, or acquiring any locks. The
T_heartbeat parameter determines the duration
between each heartbeat ping, and failure_threshold
determines the number of consecutive pings a node
can miss before being marked inactive by the
registry. In our implementation, we used fixed values

for these parameters. We’ve set T_heartbeat to the
average reboot time of a cluster node (30s) and
failure_threshold = 2.

We need to avoid doing reconfigurations too
often because they are costly and can potentially
delay normal operations. Setting the threshold to be
too small will cause noises like high load and server
reboot to trigger reconfigurations. As a result, the
threshold needs to be greater than the average reboot
time to accommodate normal server maintenance,
and much greater than the normal network round trip
time between servers and registries. In general, it is
difficult to figure out the best value for every network
environment; we decided that we would rather detect
server failures with a higher latency than have to do
the reconfiguration for the whole cluster over and
over again.

To summarize, the heartbeat mechanism is a
convenient and cheap method for us to detect server
failures and start cluster-wide reconfigurations,
although it does incur some overhead in raft servers
and is sometimes vulnerable to failure noises. We
decide that the benefits outweigh those potential
drawbacks.

V. EVALUATION

We implemented the RAFT algorithm with the
addServer/removeServer RPCs, and implemented
the registry service described in this paper. We picked
Golang for its popularity with distributed systems
and ease of use with multithreading. For our
experiments, we deployed RAFT nodes to 7 AWS
EC2 instances with 4 CPUs and 16 G memory. The
registry service was deployed to a single EC2
instance with 1 CPU and 1 G memory. In our testing
and evaluations, we focused on 2 aspects of the
registry service:

1. How registry based reconfiguration
(updateGroup) affects normal AppendEntries
processing, compared to RAFT’s
addServer/removeServer config change
method.

2. How much overhead does the heartbeat
mechanism add during normal RAFT
operations.

To measure how ApendEntries is affected
under different cluster configuration change
protocols, we ran a “complete reconfiguration”
scenario, where we initialized the cluster with nodes

1, 2, and 3, then reconfigured the cluster to include
nodes 4, 5, and 6. The change occurred after 2
minutes of sustained AppendEntries client requests,
and the requests continued for 2 minutes after
reconfiguration. We logged the latency of each
AppendEntries request, as well as the latencies of
configuration change requests, and present them in
Figure 6. The blue line represents the
AppendEntries latency when registry is turned on,
and updateGroup is used to perform the
configuration change. The red line represents the
latency when only addServer/removeServer are
used to perform the config change. As we can
observe, a single updateGroup request has higher
latency (0.179s) than addServer/removeServer
requests (avg 0.11s), ranging from 75ms to 178ms.
However, in this “complete reconfiguration”
scenario, 6 consecutive addServer/removerServer
requests are needed, compared to the one
updateGroup request to complete the config change.
Without the registry, the transitional period from old
to new configuration spans over 0.7 seconds,
significantly higher than the 0.18 seconds with the
registry. After the configuration change is complete,
we can observe a higher AppendEntries latency
spike in the “no registry” case. This behavior could
be attributed to extra leader elections and cluster
instability after successively adding and removing
single nodes, and the extra load placed on the leader
for committing change-logs.

Overall, the updateGroup request is slower
than a single addServer/removeServer request, but
it removes the need to issue multiple
addServer/removeServer requests for total
configuration change, reducing the total transitional
duration. Coupled with the fact that it removes the
complex joint consensus mechanism, and the need to
keep change-logs, we believe the registry’s
updateGroup method to be valuable.

The average AppendEntries latencies with the
registry (36.4ms) is slightly higher than that without
the registry (35.7ms). This 2% difference accounts
for the extra overhead of the registry’s heartbeat
mechanism on the RAFT cluster, and is further
analyzed.

To measure registry’s overhead on normal
operations, we simply initialized a cluster with all 7
nodes without the registry, continuously issued
concurrent client AppendEntreis requests to

simulate heavy load. We repeated the run with the
registry turned on, and recorded the request latencies
in both cases. The latencies in both test cases are
presented in Figure 7. Note that the average latencies
in Figure 7 are consistently lower than those of
Figure 6, this is because the second experiment is run
on a client instance with better network connectivity
and closer to the cluster’s physical location
(us-west-2).

From the data, we observe a small, but clear
difference in client request latencie. When the
heartbeat mechanism is turned on, the average
latency of 28.9ms is 5.1% higher than when registry
is turned off (27.5ms). In addition, we observe
slightly more latency spikes with the heartbeat
overhead, potentially triggered by extra leader
elections and cluster instability.

The evidence suggests that there is a non-trivial
overhead associated with the heartbeat mechanism,
because its periodic pings add extra load to nodes’
network IO, competing with client requests and
internal RPCs. Under heavy load, this network
overhead could delay the leader from sending
AppendEntries to followers long enough to trigger
unwanted elections. However, the registry heartbeat’s
overhead can be reduced by tuning the T_heartbeat
parameter, and optimizing the transport protocols to
use for RPCs. In our implementation, we used HTTP
over TCP for RPCs because of its simplicity, but it
has a much higher cost to open/close connections
compared to UDP. The overhead would also be less
noticeable when the cluster is under lighter load,
when the heartbeat pings aren’t competing for
network IO resources with other concurrent client
requests.

Despite the added overhead, we still believe the
heartbeat mechanism to be a meaningful feature of
the registry service, for it provides a valuable
automatic failure detection function to the RAFT
cluster at relatively low cost.

VI.FUTURE WORKS

In this project, we only used a simplified version
of the registry service, deployed to a single node.
During registry failure, configuration change requests
will be served by the RAFT cluster directly as
backup. In reality, we can scale the registry service to
multiple distributed nodes for higher availability and
redundancy, and transform it to a configuration
management service for multiple client RAFT
clusters. We can provide standardized RAFT server
code compatible with the registry service and
distribute to clients’ clusters. When the clusters with
registry compatible RAFT code comes online,
administrators can use a streamlined interface to
safely update configurations for multiple RAFT
clusters.

Furthermore, our current heartbeat
implementation is rudimentary and inflexible. It

requires a fair amount of parameter tuning and
specific knowledge of the RAFT cluster’s network
topology to minimize false positives. In an improved
version, the registry could keep a rolling average
latency for each node’s ping request, and adjust the
heartbeat timeout for each node. With a heartbeat
mechanism that adapts to individual clusters, false
positives will be significantly reduced.

Finally, the registry’s updateGroup
performance can be further evaluated in a more
diverse set of use cases. In our experiment, we did
not introduce arbitrary network delay, random node
failures, out of order RPC deliveries. Nor did we
experiment with log compaction and snapshotting
techniques when adding new members after a long
period of active cluster activity. We are certain that
new opportunities for improvement for the registry
model will arise when tested in a more
production-like environment.

REFERENCES

[1] LISKOV, B., AND COWLING, J. Viewstamped replication revisited.
Tech. Rep. MIT-CSAIL-TR-2012-021, MIT, July 2012.

[2] ONGARO, D., AND OUSTERHAUT, J. In Search of and
Understandable Consensus Algorithm. Stanford University. In
Proceedings of the 2014 USENIX conference on USENIX Annual
Technical Conference. USENIX Association, USA, 305-320.

[3] ONGARO, D. Consensus: Bridging Theory and Practice. PhD thesis,
Stanford University,2014.
http://ramcloud.stanford.edu/˜ongaro/thesis.pdf.

[4] Lampson, B., and Lomet, D., “A New Presumed Commit Optimization
for Two Phase Commit,” Technical report, Digital Equipment
Corporation, February 1993.

http://ramcloud.stanford.edu/%CB%9Congaro/thesis.pdf

