
RAFT Under Uncertainty - Simulating Lossy Network Connections

Leon Bi
Stanford University

leonbi@stanford.edu

Michael Chang
Stanford University

mchang6@stanford.edu

Thomas Jiang
Stanford University

twjiang@stanford.edu

Abstract

RAFT (Ongaro and Ousterhout, 2014) is a dis-

tributed protocol used to synchronize some data

across a number of replicated servers. How-

ever, while the use of RAFT has been well

documented for database purposes, storing key-

value pairs containing integers or short strings,

there has been little research into how RAFT

handles replication of large files. In our paper

we analyze the performance of the distributed

algorithm RAFT under the condition of lossy

connection between server and client such as

what might be encountered over a mobile net-

work. More specifically we investigate how

RAFT implementations handle lost packets or

dropped server-client connections when trans-

mitting large files such as photos or video. This

question is important as the increasing use of

cloud photo storage, especially through mobile

phone, necessitates the need for better replica-

tion protocols for photos and videos. We con-

duct simulations with the existing RAFT imple-

mentation, PySyncObj (Ozinov, 2017), under

two modes (abort-if-dropped, and commit-if-

dropped) with a variety of network and find

that neither mode is satisfactory. Therefore we

necessitate the need for a new protocol built

on top of RAFT to deal with large files over

lossy networks and suggest one such possible

protocol.

1 Introduction

Raft was originally developed in an effort to

create a more understandable consensus pro-

tocol over Paxos. It has since been imple-

mented as the foundation of many large-scale

distributed storage systems. Consensus means

that multiple servers can agree on the same

information across a network. The cluster

of distributed servers interacts with a client

system that can potentially send data over the

network to be replicated within the Raft dis-

tributed system itself. The servers within the

cluster can either be a follower, candidate, or

leader. The servers periodically send heart-

beats and over time will elect a singular leader.

In Raft, only the elected leader should con-

nect with the client and consequently all other

nodes can only receive the data from the client

once the leader has fully received the data from

the client and then it sends it to its followers.

The issue lies when the client wants to send

an abnormally large file such as a photo or a

video over a lossy network. The leader node

would have to wait for the entire file to be up-

loaded from the client, which itself is a slow

task under a lossy network, until it finally be-

gins attempting to replicate the file to each of

its peer nodes. Additionally, in the event that

the leader node goes down in the middle of

receiving the large data file from the client, the

client would have to wait for a new leader to

be elected and then begin the file upload again



from scratch.

2 Approach

To more efficiently send and replicate large

media files, we propose a method of splitting

the file data into fragments and reassembling

the fragments back together at a later point in

time once all fragments have been collected

by the given server node. Before sending data,

the client will send an initial request to inquire

from the server which fragments for file path

k have already been received (note that the

file path k will correspond to the key for the

corresponding data file in the key value store

(KVS) on each server). This initial request

will also include the total number of fragments

expected for this one data file. The server will

then respond with a response object that con-

tains which fragment indices are missing for

the complete data file.

If the file has never been sent before or no

complete fragments have been successfully

transferred, then the server will send a re-

sponse back including all of the fragment in-

dices. If some of the fragments have already

been received, then the response will only in-

clude the remaining fragment indices.

Consequently, as soon as fragments are fully

sent they will begin to be replicated among

the raft cluster as per the original consensus

protocol. As you can imagine, in the event

that the network is partitioned while the client

is sending data to the leader, fragments that

have already been fully sent will be saved and

replicated before the rest of the large data file

fragments have been received.

Additionally, if the leader node experiences

failure or a new leader is elected before all frag-

ments have been sent, the client can reconnect

to the new leader, which most likely already

has fragments of the data file that the client

is attempting to send, and continue sending

the rest of the fragments that the new leader is

missing. This prevents the client from restart-

ing the file upload process again without the

fragmenting.

It should be noted that our addition to the

Raft protocol is reliant on the fact that the

client is trustworthy and won’t change the frag-

ments of the data file halfway through file up-

load immediately following a network parti-

tion or leader change.

To reassemble the individual fragments and

handle fragment uploads we implement an as-

sembler class. The assembler tracks what frag-

ments are complete, uploads completed frag-

ments, and reassembles uploaded fragments

when a client pulls data from a node.

3 Experiments

We ran three types of file upload experiments

from the client to a Raft cluster of 6 server

nodes for a file of size 325,811 bytes in order

to simulate the impact of our proposal: (1) We

simulated uploading a large media file with

no packet loss. (2) We simulated uploading

a large media file from the client to a Raft

cluster with x% packet loss. (3) We simulated

uploading a large media file splitting the file

into 10 fragments from the client to a Raft

cluster with x% packet loss.

For each of these experiments we added a



random chance (low: 0.1, medium: 0.3, and

high: 0.5) for a network partition between the

client and the server, meaning the client has

to reestablish connection and restart its upload.

Ultimately, we logged the round trip time to

send and subsequently read the uploaded file.

The simulation was conducted with all

nodes hosted locally on separate ports. We cre-

ated an abstraction for packets (since python

has few ways to directly interface with pack-

ets). We divided our 325,811 byte file using

a packet size of 1000 bytes, for a total of 326

packets. Since over-the-wire communication

locally happens almost instantaneously we im-

pose a 60ms delay (an average RTT in a non-

local simulation) server-side before responding

to any received packets.

A single round consists of the client sending

all remaining packets to the server it is con-

nected to and waiting for the server to respond

with the packets remaining before continuing

to the next round. After every round there is a

chance for a network partition, at which point

the connected node loses all non-checkpointed

packets. Although this implementation is im-

perfect (network partitions should be allowed

to occur mid-round), with enough aggregated

trials we can minimize the impact this imper-

fection has on our results.

4 Results

For all reported results, we ran each simulation

of a given <packet loss, network partition> pair

50 times and averaged the results.

As a sanity check the first experiment we ran

was for the original raft implementation with

no packet loss to simulate a stable network (see

fig 1). In the resulting graph you can see that

the time it takes for the file to be uploaded and

read again is independent of percentage chance

for a network partition. This is a direct result

of the imperfect round system described above

as all uploads complete in a single round be-

fore any chance to network partition. We also

see that in a stable environment our proposed

implementation slightly underperforms which

can be attributed to the overhead associated

with uploading fragments as soon as they are

complete.

Next, we ran experiments for Raft under a

lossy network by simulating packet loss. We

ran this for a RAFT cluster with and without

our proposed fragmenting implementation for

a low, medium, and high chance for network

partitions between the client and the server (see

fig 2, 3, and 4). In most experiments we saw

that our proposed implementation decreased

the round trip time for a large file to be up-

loaded and read again. In the simulation with

the low chance of network partition (fig 1) we

saw about the same performance no matter

the packet drop chance until the packet drop

chance was really high (> 0.4) where our pro-

posed implementation is slightly faster. How-

ever, when the network partition chance and

the packet drop chance are both relatively high

like in figure 3 and figure 4, we can see that our

proposed implementation does in fact decrease

the round trip time a dramatic amount. In fact,

with a 0.5 network partition chance and a 0.5

packet drop chance our improved implementa-

tion about halves the round trip time.



Figure 1

Figure 2

Figure 3

Figure 4

Figure 5: Vanilla Raft: File Upload Round Trip Time

(ms)

Figure 6: Proposed Modified Raft: File Upload Round

Trip Time (ms)

5 Future Work

As we continue to work on this project we hope

to conduct even more experiments to get a bet-

ter grasp on how our proposed implementation

affects Raft performance. One metric we hope

to capture in the future is the time it takes for a

complete file to be replicated across the entire

cluster and how our proposed implementation

affects this time during varying amounts of

network partitioning and node failures. Since

a client can continue uploading fragments to

a new leader without re-sending already sent

fragments, we expect to see that our proposed

implementation will perform better than the

standard Raft implementation.

Additionally we also plan to explore the abil-

ity to fragment large files during reads from the

server cluster. In the event that the client loses

connection to one server and reconnects to an-

other, we hope that the abstraction of fragment-

ing the data will allow for faster read times

because the client will not have to restart the

file download.

It would also be interesting to see the im-



pact of varying additional variables such as

file size and cluster size on our simulations.

Furthermore, tracking other metrics such as

latency, throughput, RAM usage, and CPU us-

age would be fascinating to analyze.

Our current implementation also only con-

siders append only use-cases which works per-

fectly for media files because they most likely

won’t change. However, if the user wishes to

modify or delete files we must consider how

the fragments will be updated across the clus-

ter.

Finally, we hope to compare how this idea of

fragmenting large data files performs amongst

other consensus protocols. Does Paxos see

similar results or does fragmenting data make

the performance worse?

6 Conclusion

Through our simulations of packet loss and net-

work partitions within an application of Raft,

we were able to see how splitting up large me-

dia files into fragments and piecing them back

together can improve the speed at which files

are uploaded and subsequently read from a

RAFT cluster. There are still many more sim-

ulations to run especially when adjusting for

different sizes of fragments, different file sizes,

and different cluster sizes. We hope that our

initial findings inspires further work into test-

ing the limits of existing consensus protocols.

References
Diego Ongaro and John Ousterhout. 2014. In search of

an understandable consensus algorithm. In Proceed-
ings of the 2014 USENIX Conference on USENIX An-
nual Technical Conference, USENIX ATC’14, page
305–320, USA. USENIX Association.

Fillip Ozinov. 2017. Pysyncobj. https://github.
com/bakwc/PySyncObj.

https://github.com/bakwc/PySyncObj
https://github.com/bakwc/PySyncObj

	Introduction
	Approach
	Experiments
	Results
	Future Work
	Conclusion

