
RPC Resource Management and Remote Objects with Rust
Class Project for CS 244b

Spring 2022 quarter, Stanford

Tim Chirananthavat
(NetID: timch)

June 2022

Abstract

Resource management (e.g., deallocating unused
memory) is difficult, even in a program on a sin-
gle machine. When it comes to distributed set-
tings using RPCs, existing RPC protocols do not
provide much help, and require programmers to
manually and explicitly manage resources. Rust
has language features that make resource man-
agement more manageable while allowing ex-
plicit control by the programmer. We present an
RPC system1 that leverages Rust’s features to
allow for pointers that reference remote objects,
similarly to network object systems, and deallo-
cating said remote objects exactly when they’re
finished being used.

1 Background

The Cap’n Proto RPC protocol[3], unlike other
popular RPC protocols, is capable of sending
opaque objects over the networks, effectively re-
sulting in a remote object system or distributed
object system. However, it is unclear from
the documentation how memory management is
done in Cap’n Proto. Manual memory man-
agement seems unwieldy, so the other two op-
tions are either leaking all unused memory until
the connection is closed, which is bad for long-
running connections, or some sort of distributed
garbage collection algorithm is run, which is
probably inefficent.

1Code can be found at https://github.com/

theemathas/rusty_rpc

Rust provides an alternative. Rust uses
compile-time checks to automatically determine
exactly at which point in the code an object
should be deallocated, while ensuring that each
object is deallocated exactly once. This gives us
the efficiency of manual memory management,
but some of the convenience and all of the safety
and security of garbage collection.

We use Rust’s unique features to implement
an RPC system which has remote objects (called
services in our system), while properly deallocat-
ing unused objects.

2 Design

2.1 Usage

In this section, we’ll examine how our RPC sys-
tem could be used.

In our current design, the RPC system is used
between two parties, the server and the client.
The server creates a TCP listener, and waits for
the client to connect to it. The client can then
make RPC calls to the server, and ends the in-
teraction by closing the TCP connection. The
server stores one set of state data per client con-
nection, with each set of state data being sepa-
rate from each other.

I will use the term server to either mean one
of the two communicating parties, or mean the
concrete implementation on the server side of a
certain service instance.

1

https://github.com/theemathas/rusty_rpc
https://github.com/theemathas/rusty_rpc


struct Foo {

x: i32,

y: Bar,

}

struct Bar {

z: i32,

}

service MyService {

foo(&mut self) -> i32;

bar(&mut self, arg: i32) -> i32;

baz(&mut self, arg1: i32, arg2: Foo)

-> Foo;

}

Listing 1: File hello world.protocol

2.1.1 Basic usage

Like most if not all RPC systems, the user of our
system needs to write a file specifying what RPC
calls are allowed. We’ll call this file a protocol
file. An example of a simple protocol file can be
found at listing 1.
The user defines struct data types. Cur-

rently, the supported types of fields are i32

(Rust’s 32-bit integer type), and other structs.
The user also defines services. These are trans-
lated into Rust traits. If a Rust object imple-
ment that trait, then other code can call the
methods.
A protocol file is translated into generated

Rust glue code and user-facing Rust types and
traits. The user-facing portion of the translation
for hello world.protocol can be found at list-
ing 2. The #[async trait] attribute (from an
external library[2]) is used to allow async func-
tions being used in traits, which Rust does not
currently support natively yet. The return types
are wrapped in io::Result, signalling that the
function might result in an I/O error, since this
trait might be called from the client side. The
Send + Sync trait bounds is required for usage
with the tokio[5] async runtime.

Client code using this protocol file can be
seen at listing 3. It uses the interface file!

macro to load the interface file. It uses the
await keyword to asynchronously wait for the
calls to finish, and it uses the .unwrap() method

use std::io;

use async_trait::async_trait;

#[async_trait]

pub trait MyService: Send + Sync {

async fn bar(&mut self, arg: i32)

-> io::Result<i32>;

async fn baz(&mut self, arg1: i32,

arg2: Foo) -> io::Result<Foo>;

async fn foo(&mut self)

-> io::Result<i32>;

}

Listing 2: User-facing portion of the translation
of hello world.protocol

to (poorly) handle I/O errors by crashing. In
the start client function call, the client needs
to specify that it expects the server to (ini-
tially) provide the MyService service. For the
.close() method calls, see section 3.4. Note
that the client can call the service like any other
method, as though the service was running lo-
cally.
Server code using this protocol file can be seen

at listing 4. It shares some similarities with the
client code, so we will describe only the differ-
ences here. The code defines MyServiceServer
to be a concrete type implementing the abstract
MyService interface. The implementation is
marked with the #[service server impl] at-
tribute, which is a macro that generates the nec-
essary glue code. The MyServiceServer type
can contain data necessary for the server, but in
this case it does not. To call start server for
a type, that type has to implement the Default
trait, which means that our RPC system can cre-
ate more values of the MyServiceServer type on
demand, one per each client.

2.2 Returning service references.

Our RPC system has a unique feature, inspired
by Cap’n Proto[3], where a service can spawn
child services (which might even be other in-
stances of that same parent service). A par-
ent service must wait for the child service to be
dropped (terminated) before the parent service
can be dropped. Furthermore, while the child

2



use tokio::net::TcpStream;

use rusty_rpc_lib::start_client;

use rusty_rpc_macro::interface_file;

interface_file!(

"path/to/hello_world.protocol"

);

#[tokio::main]

async fn main() {

let stream =

TcpStream::connect("127.0.0.1:8080")

.await.unwrap();

let mut service = start_client::

<dyn MyService, _>(stream).await;

let foo_result = service.foo().await

.unwrap();

assert_eq!(123, foo_result);

service.close().await.unwrap();

}

Listing 3: Client-side code using
hello world.protocol

service has not been closed yet, the parent ser-
vice cannot be used (but see section 3.1). This is
enforced both at runtime (using dynamic checks,
see section 2.3.1) and compile time (using Rust’s
features, see section 2.3.2).

To define a method that returns service refer-
ences, the following syntax is used in the protocol
file:

child(&mut self) -> &mut service ChildService;

The server code and the client code for using
service references can be seen in listings 5 and 6,
respectively.

Note that now the return type of the method
has a ServiceRefMut<...>. This type is a proxy
type. On the server side, it’s just a no-op wrap-
per around a server. However, on the client side,
it holds a &mut dyn ChildService (a reference
to a trait object in Rust) and when used as a
ChildService, will send the method calls over
the network.

In the server code, the child server is given a
reference to the parent server. That is, the child

use std::io;

use tokio::net::TcpListener;

use rusty_rpc_lib::start_server;

use rusty_rpc_macro::{interface_file,

service_server_impl};

interface_file!(

"path/to/hello_world.protocol"

);

#[derive(Default)]

struct MyServiceServer;

#[service_server_impl]

impl MyService for MyServiceServer {

async fn foo(&mut self)

-> io::Result<i32> {

Ok(123)

}

// Other methods omitted.

}

#[tokio::main]

async fn main() {

let listener =

TcpListener::bind("127.0.0.1:8080")

.await.unwrap();

start_server::<MyServiceServer>(

listener).await.unwrap();

}

Listing 4: Server-side code using
hello world.protocol

3



async fn child(&mut self) ->

io::Result<ServiceRefMut<

dyn ChildService>> {

Ok(ServiceRefMut::new(

ChildServer::new(self)

))

}

Listing 5: Server-side code for returning services.

server is borrowing data from the parent server.
This means that until it is dropped, the child
server has borrowed exclusive access to the par-
ent server’s data (unless a grandchild is spawned,
in which case the chain of borrowing of access
rights continues).

Note that in the client code, the child services
must be dropped before the parent service can
be used again. In Rust, an object can be manu-
ally dropped (as in child service 1), or it can
be automatically dropped when it goes out of
scope (as in child service 2). In either case,
Rust keeps track of when objects are dropped,
in order to maintain the invariants mentioned at
the beginning of this section.

Again, for the .close() method calls, see sec-
tion 3.4.

2.3 Implementation

In this section, we’ll examine how our RPC sys-
tem was implemented.

The RPC system is implemented in two
parts. One part is a normal library, and
the other is a procedural macro, which is
a Rust feature which allows code to gener-
ate code. Our RPC system has two pro-
cedural macros: interface file!(...) and
#[service server impl]. These two macros
generate the glue code necessary for the RPC
system to function.

The server and the client both uses the tokio[5]
runtime to run asynchronously. The server, once
it gets a connection from the client, sends and
receives a series of messages. The messages are
delimited by a header specifying how large each
message is, and each message is serialized using

let mut parent_service = ...;

let mut child_service_1 =

parent_service.child()

.await.unwrap();

child_service_1.do_something()

.await.unwrap();

drop(child_service_1);

/* Compilation will fail if

the above line is omitted.

Compilation will also fail if

child_service_1 is used after

this line. */

// Equivalent to above.

{

let mut child_service_2 =

parent_service.child()

.await.unwrap();

child_service_2.do_something()

.await.unwrap();

child_service_2.close()

.await.unwrap();

}

parent_service.close()

.await.unwrap();

Listing 6: Client-side code for returning services.

4



the MessagePack[4] format.

When the client makes an RPC call, it sends
a message containing a service ID, a method ID,
and the serialized arguments. The server then
finds the specified service instance, runs the RPC
call to completion, and sends a message back to
the client containing the return value. RPC calls
are processed in sequence serially (but see sec-
tion 3.3).

2.3.1 Service references

Each service instance is assigned a 64-bit service
ID. The initial service is assumed by both parties
to have ID zero. When a subsequent service is
spawned, the next service ID is incremented and
assigned to this service. On overflow, the ID
wraps around and keeps being incremented until
an unused ID is found.

In Rust, a mutex guard (written as
MutexGuard in code) is a type or a value
of that type, representing the rights to access
the data behind a locked mutex. Creting a
mutex guard requires locking that mutex. When
a mutex guard is dropped (deallocated), the
mutex is unlocked.

The server side maintains a server collection,
which is a hash map, mapping from service IDs
to servers. Each server in the server collection
is guarded by a mutex. Each server in this col-
lection (except the initial server) is associated
and stored with a mutex guard representing ac-
cess rights to that server’s parent. As a result,
as long as the child server has not been dropped,
nobody else can access the parent server, and the
parent server also cannot be dropped.

When a server creates and returns a
ServiceRefMut object, the RPC system consid-
ers that to be a newly created server, and assigns
it a new service ID. This service ID is then sent
across the network and stored in the client-side
ServiceRefMut object which has a service proxy
inside. This object will then transmit back this
service ID when a method is called on this ser-
vice. Once the .close() method is called on a
service proxy, the client transmits a request to
the server to drop the service, and then waits for
the server to respond with a confirmation before

proceeding.
A method in a service that returns a service

reference is translated to a Rust method such as
below:

async fn child(&mut self) ->

ServiceRefMut<dyn ChildService>

which is equivalent to below (due to lifetime eli-
sion)

async fn child<'a>(&'a mut self) ->

ServiceRefMut<'a, dyn ChildService + 'a>

Rust is then able to connect the return value
with the self argument via the ’a lifetime,
meaning that the return value might contain ref-
erences to data in self.

2.3.2 Traits and code generation

The following traits are used in order to bridge
the gap (in a type-safe way) between the RPC
library and the code generated by the procedural
macro:

• RustyRpcStruct: This trait is implemented
by the interface file!() macro for all
structs. The type i32 also implements this
trait. That is, this trait is implemented all
arguments and all return values except for
return values that are service references.

Types implementing this trait can be serial-
ized and deserialized.

• RustyRpcServiceClient: This trait is
implemented by the interface file!()

macro for the trait object corresponding to
the service trait. For example, in 1, the
type dyn MyService (which is the dynamic-
dispatch version of the MyService trait) im-
plements RustyRpcServiceClient.

Types implementing this trait has a cor-
responding proxy type that implements
RustyRpcServiceProxy, and is therefore
legible for being in a ServiceRefMut, e.g.
ServiceRefMut<dyn MyService>.

• RustyRpcServiceProxy: This trait is im-
plemented by the interface file!()

5



macro for a newly generated type.
For example, in 1, a type named
MyService RustyRpcServiceProxy is
generated which implements this trait.

Types implementing this trait can be con-
structed from a service Id.

• RustyRpcServiceServer: This trait is im-
plemented by the #[service server impl]

macro for server types. For example, in 4,
the type MyServiceServer implements this
trait. The way this is implemented is that
it calls a method added to the (for example)
MyService trait by the interface file!()

macro.

Types implementing this trait can be stored
in a server collection. In order for this to
work, types implementing this trait can be
given a method ID and a bunch of opaque
bytes representing the arguments.

Types implementing this trait can also
be used as the initial service in the
start server() method.

• RustyRpcServiceServerWithKnownClient

Type: This trait is implemented alongside
the RustyRpcServiceServer trait. The
difference is that, as the name suggests,
this trait contains type-level information
on what the corresponding service trait
is being implemented. For example, in
4, the type MyServiceServer implements
RustyRpcServiceServerWithKnownClient

Type<’a, dyn MyService> for all lifetimes
’a.

The above traits should not be manually im-
plemented by the users of the RPC system.

3 Possible future extensions

There are some possible extensions that were en-
visioned in designed, but were not actually im-
plemented due to time constraints. They are dis-
cussed here.

3.1 Shared references

Unfortunately, with the current design, only one
service can be in use at a time. This is enforced
at runtime by a mutex and at compile time by a
chain of &mut T references, which are exclusives.
It is possible to extend the syntax to allow not
only &mut T references to services, but also &T

references, which are nonexclusive shared refer-
ences. Such references have behavior mirroring a
read-lock in a readers-writer lock, and can be en-
forced at runtime by such a mechanism instead
of a mutex.

3.2 Independent (non-borrowed) ser-
vices

In section 2.3.1, we see that a child service al-
ways borrows from a parent service. Therefore,
the parent service cannot be used while the child
service is active (unless the section 3.1 is used).
It might be sometimes desirable to spawn a child
that is completely independent from the parent,
so both services can be active concurrently.

3.3 Concurrency and multiple clients

Once section 3.1 or section 3.2 is implemented,
there can now be multiple active services at the
same time. We could then allow for multiple con-
current RPC calls at the same time. This would
require adding an RPC call number to each re-
quest from the client, and to each response from
the server. Once we have this set up, it should
be relatively easy to allow for multiple clients to
share access to the same server state.

3.4 Async drop

In the current design, the .close() method (see
section 2.3.1) on a service proxy causes the corre-
sponding server-side object to be dropped. The
original design did not have this method, but
merely dropping the service proxy would be suf-
ficient. This would require the destructor (a.k.a.
drop implementation) to run async code, which
is currently impossible in Rust. There appears
to be a plan[1] to make this “async drop” feature
possible, but it is unclear.

6



References

[1] async fn fundamentals initiative: Async
drop. url: https://rust-lang.github.
io / async - fundamentals - initiative /

roadmap/async_drop.html.

[2] async-trait Crate. url: https://github.
com/dtolnay/async-trait.

[3] Cap’n Proto: RPC Protocol. url: https:
//capnproto.org/rpc.html.

[4] MessagePack Serialization Format. url:
https://msgpack.org/.

[5] Tokio Crate. url: https://tokio.rs/.

7

https://rust-lang.github.io/async-fundamentals-initiative/roadmap/async_drop.html
https://rust-lang.github.io/async-fundamentals-initiative/roadmap/async_drop.html
https://rust-lang.github.io/async-fundamentals-initiative/roadmap/async_drop.html
https://github.com/dtolnay/async-trait
https://github.com/dtolnay/async-trait
https://capnproto.org/rpc.html
https://capnproto.org/rpc.html
https://msgpack.org/
https://tokio.rs/

	Background
	Design
	Usage
	Basic usage

	Returning service references.
	Implementation
	Service references
	Traits and code generation


	Possible future extensions
	Shared references
	Independent (non-borrowed) services
	Concurrency and multiple clients
	Async drop


