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Abstract
Distributed cache is useful for bypassing the memory limitations of using a single computer,
which could be exponentially expensive, allowing for the construction of arbitrarily large hash
tables using affordable servers. This paper explores different implementations for distributed
cache and presents a case-study of how consistent hashing works. Besides that, we
implemented a fully functional scalable distributed key-value store, demonstrating proof of
concept. Moreover, we simulated various scenarios to explore different metrics of the key value
store implemented, such as server load, query performance, and availability. We also implement
the “load-aware” consistent hashing from Google’s Zanzibar, a Consistent, Global Authorization
System , which allows for replication based on the hotness of a particular cached object.

Server Model
We divide the cache into two components: the primary cache server and its workers. The
primary cache is responsible for routing SET and GET requests to the appropriate cache worker
servers, bringing up and down workers, and load balancing.

Set
For any incoming Set request, the primary server will try writing to the appropriate worker. In the
event that the worker’s memory is full, a new node is brought up and the new machine’s hash
will be computed. The insertion will be attempted again on the new node.

Similar to the figure on the left, we will produce
multiple hashes to represent a single machine. This
is to bring more eveness to the distribution of
objects to our worker servers.

Get
For any incoming get requests, we will look through
all workers containing this object. If none are found,
the worker will return an error.

Based on how we designed the primary cache
interface, we are able to configure caches such that
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they can alter the maximum capacity of the cache, the number of initial machines or nodes
supporting the cache, the initial cache size, the replication factor of each write, and the hash
function being used. Bolded values correspond to configurable parameters used in the
PrimaryCacheServer object.

Our implementation supports asynchronous requests to the server so that calls can be blocked
by the cache depending on the underlying worker machine’s current load. This exposes edge
cases based on the cache’s configuration, such as an increased cost from trying to make many
read requests to a single, large cached object that hasn’t been properly replicated. This would
expose a lack of proper availability built into the cache’s design.

Hash Functions
The built-in hash Python hash function, hash(), is known to not be a cryptographic hash. This
results in an uneven distribution of objects in the consistent hash ring. We will also use the
SHA256 cryptographic hash to understand if this will produce better results at scale.

Request Types
We test two different modes of making parallel requests: request hedging and awaiting. With
‘hedging’, we will return immediately on the first successful cache hit while we will wait for all
parallel requests to return before proceeding with ‘awaiting’.

I/O Operation Cost Modeling
Individual machines will need to be written to and read from. They will also need to compute
hashes. This is a table of how we compute the I/O operation cost modeling.

I/O
Reading an object - Equivalent to object size*
Writing an object - Equivalent to object size*
Deleting an object - No cost is evaluated for deletions
* Modern SSDs like the Samsung 870 EVO series have a write speed and read speed that are
relatively similar (560 MB/s read, 530 MB/s write)
Cache Miss - Constant (5)
Read Database - Constant(500)

Consistent Hashing
Adding Node - Represents bringing up a new worker cache server. Constant (300)
Computing hash - Computing a hash for a machine or object. Constant (5)

https://stackoverflow.com/questions/48139398/hash-function-producing-inconsistent-hashes


Load Modeling
Since networking is hard to account for by the operations themselves, we encapsulate these
using a per-worker load value. When a worker cache server is being written to, it has an
additional load of two, and when it is read from, it has an additional load of one. The worker will
block any incoming requests where the request’s additional load would have the worker exceed
its load threshold. In this way, load_threshold allows the cache to shed load routed to a
busy server.

Scaling Strategies
No Replication
In a naive implementation, consistent hashing will make a single worker responsible for any
given object. This maximizes the cache hit ratio and eliminates hot spots on the underlying
backend, like Spanner.

Replication by Factor (RF)
Every time we write a new object to the cache, we will write the object to N number of replicas,
where N is the replication factor the user has specified. The latency of the first write will be
slower due to the multiple writes (and potential need to bring up new machines if neighbors are
full), but will make the object much more available for later reads. This is especially beneficial if
the object is hot.

Load-Aware Consistent Hashing (LA-CH)
In cases where there are very few objects, objects may be too hot for a single worker but not so
numerous that replication would benefit all objects given the latency of replication. Hot workers
must divert a large fraction of requests to a new worker, which is typical without replication.
However, this introduces latency by the way of having to compute the next consistent hash and
use a different worker. With tail latency, or the highest percentile latencies experienced by users,
response times can be catastrophically long for a cache. Instead, using multiple workers for a
hot object can reduce the need for recomputing the next hash.

To achieve this, we will have the primary cache server maintain a count of the number of
outstanding operations per hash value.

Let L, or the load threshold, be a number such that if L many requests are made to the object,
we add a node to handle follow-on requests. Naturally, lower L values lend to more latency
initially due to more replication, but will naturally increase the availability of a hot object and
reduce the average latency of read requests to the hot object over time.

For super hot objects, we will use all workers to forward requests to the single worker
responsible for the object. As we use L to identify the hotness of an object on a worker, we will
use 2*L on the Primary Cache Server to identify objects whose primary worker ID will be cached
for faster access.



Deviations from Zanzibar
We make some deviations from the original paper to incorporate it into our simulation of a
cache. The original paper has a single worker responsible for normal objects, with traffic
diverted to the machine at the next consistent hash when the initial server is too busy. Its fix is to
have the caller keep track of the load for an object and divert traffic on its own side only when
the load for the object, not the single server, requires it. It fans out requests as a function of this
load. We do not support redirecting traffic in our simulation. Instead, we add workers
responsible for an object as its load increases and make parallel GET calls to multiple workers
(request hedging), in the replication_factor and load_aware cases to reduce the tail
latency.

At the limit, load_aware reads on super hot objects would divert traffic to all workers, reducing
the cache hit ratio on any single worker. The paper presents an alternative where the workers
will redirect traffic to a single worker to maximize cache hits. This forms a “two-cache hierarchy”.
Instead, we cache the worker/machine indexes allocated for the super hot object when it was
just considered a hot object and force a call to the first machine responsible for it if these all
result in a miss, mimicking the two layers of caching for the single object.

Scenario Testing
Our battery of tests include faults to workers nodes. Given the replication available in specific
scaling methods, we expect RF and LA-CH scaling schemes to keep cached objects available
despite these faults. We do not test resilience to the failure of our primary node.

Tests
BasicWriteAndRead() - Tests whether the cache can asynchronously write and read multiple
objects.
BasicWriteAndReadWithNodeFailures() - The same test as BasicWriteAndRead() with node
failures before caches are read from.

Metrics
A good cache will keep reads fast and the cached objects available. A great cache will
maximize the availability of a super hot object. The smaller the total scenario cost, the better the
availability of an object should be on GET calls.



Results

Cache miss happens less frequently when the replication factor is greater. In case of a cache
miss in a worker due to eviction or failure, the primary server can attempt to send the GET
request to another worker(s) up to the replication factor, resulting in a decrease in cache miss
ratio.

A Get request is more expensive when the replication factor is greater because a GET request
is routed to another worker in case of a cache miss in the first worker, and more up till the
replication factor, resulting in increase in latency.

A SET request is also more expensive when the replication factor is greater due to the increase
in storage used. When the memory of a worker is fully used, a new node is brought up on
demand, resulting in higher latency.

Note that the SET request latency is not affected by synchronous routing to workers because
the primary cache server returns success when the object insertion to the first node is
successful and does not wait for the asynchronous object insertion to the remaining nodes. That
being said, if the architecture is modified such that the primary cache server issues GET
requests to multiple nodes in parallel, we expect to see the request latency to remain the same
even for various replication factors. We did not implement this architecture to reduce the server
load assuming a low write and read heavy workload, such as social media posts where the read
to write ratio is high, especially for trending posts.

As indicated by the results, it is evident that there is a tradeoff between the cache miss ratio and
GET request latency. Depending on the expected workload and requirements, we can
determine the ideal parameter.

Hash Functions
We saw no difference between using hash() and hashlib.sha256()in I/Os or cache hit
ratio.



Request Hedging vs Awaiting All Requests

Scaling
Strategy

Replication
Factor

Cache Size per
Machine

# of
Writes

Cost Request Type Cache
Miss
Ratio

RF 5 1000 500 509672 Hedging 0.916

RF 9 10000 2000 439466 Hedging 0.137

Load
Aware

5 1000 1000 588423 Hedging 0.57

Load
Aware

9 1000 1000 608403 Hedging 0.597

RF 9 1000 2000 210000 Awaiting 0.0

Load
Aware

5 1000 2000 22742 Awaiting 0.0

We find that hedging is costly and awaiting, while allowing for tail latency, does allow for objects
to stay in caches long enough to be retrieved on the first call, even with a small replication
factor. In the case of hedging, we would have to wait for another GET request for the object to
now be resident in some machine’s cache. Comparing the last two rows, at lower replication
factors, we can see that we bear 1/10th of the performance cost for similar performance in
load_aware jobs.

As we increase the cache size per-machine, the cache miss ratio with hedging starts to improve
but is still not reliable, and the increased cost shows that the cache is thrashing without enough
memory on workers.

Future Work
Right now, we use a form of load shedding whereby multiple writes/reads to busy servers will fail
an incoming request. We could experiment with using task queues and/or a  load balancer to
limit the amount per worker while minimizing the latency introduced to keep the cache fast. We
should also test whether a single large object can be extremely available despite multiple
concurrent readers.
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