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Abstract
We created a decentralized system that uses a public
blockchain as a two-phase commit (2PC) coordina-
tor, so users can securely commit an atomic transac-
tion across any databases that support our interface.
Users treat our system as one large database with
ACID, despite being composed of many individual
databases that are unaware of each other’s exis-
tence. By using a blockchain as a coordinator, it is
resilient to failures such as network outages, power
outages, and disk failures that cause traditional
2PC implementations to block. Our initial integra-
tion is with the Ethereum blockchain and LMDB
databases; however, our system provides a generic
interface to integrate with other blockchains and
databases.

1 Introduction
Two-Phase Commit (2PC) is a widely-adopted pro-
tocol that allows distributed systems to reach the
consensus of distributed transactions. It ensures
that the transaction can be either committed or
aborted at all distributed machines. However, block-
ing is proven [1] to be to be inevitable even in syn-
chronous systems where bounds on delays can be
reliably estimated.
Since the invention of Bitcoin, the underlying

blockchain technology has not only gained attrac-
tion from cryptocurrency systems like Ethereum [2]
but also academic research about computer systems.
At its core, blockchain is a protocol of reaching con-
sensus by using Proof-of-Work. Previous work [3]
has shown that a synchronous blockchain can in-
crease the reliability of the original 2PC protocol
and also make it non-blocking when various kinds
of failures happen.
In this paper, we further extended the previous

work with an optimized system architecture and
properly designed interfaces. These contributions
make 2PC with blockchain work in production and
at scale. Compared to the traditional version of

2PC protocol [4], our proposed approach increases
extensibility, scalability and reliability.

1.0.1 Extensibility. We can plug any blockchain,
regardless of whether it is public/permissionless or
private/permissioned, into our blockchain interface
which exposes StartVoting(), Vote(), GetVot-

ingDecision(). We can also plug any database
system that has ACID support into our transac-
tion delegation interface which implements com-
mon transaction operations - Begin(), Commit(),
Abort(), Get(), Put().

1.0.2 Scalability. We design our coordinator to
be light-weight to handle high throughput and to be
horizontally scalable. This is achieved by delegating
coordination and voting work to the blockchain.
The delegation makes the coordinator stateless and
allows many coordinator jobs to co-exist to balance
the load and tolerate job failures. Adding a cohort to
the system is as simple as making potential clients
aware of the address of the newly added cohort, so
our system is horizontally scalable.

1.0.3 Reliability. Our system has better relia-
bility than the traditional 2PC protocol for two
reasons. First, the system leverages the blockchain
to maintain the coordination state. The stateless
coordinator can easily recover as long as it knows
the participating cohorts. Second, the coordinator
is stateless and horizontally scalable. We can keep
multiple jobs running concurrently and place a load-
balancing layer on top of it to be tolerant of indi-
vidual coordinator node failures.

2 Design Overview
2.1 Architecture and Components

We define a transaction as a list of operations start-
ing with Begin() followed by multiple Get() or
Put() and ending with Commit(). The client cre-
ates a transaction and requests the coordinator to
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Figure 1. This diagram displays the main components within our architecture and example steps of
successfully committing a transaction.

commit. The coordinator distributes the transac-
tion to the corresponding cohorts to prepare and
then offloads the remaining 2PC responsibility to
the blockchain. Each cohort prepares the transac-
tion locally, votes to the blockchain if ready, checks
on the blockchain to see if a transaction should be
committed, and finally commits the transaction to
its database.
The architecture is similar to the traditional 2PC

architecture where we have one coordinator and
multiple cohorts - except each cohort talks to the
blockchain directly to vote and to look up the voting
decision as the coordinator offloads the 2PC voting
responsibility to the blockchain.
We describe the details of each component in

the remaining 2.1, the complete flow of handling a
successful transaction in 2.2, and how we handle
failures in 2.3.

2.1.1 Blockchain. The blockchain component
performs a 2PC protocol, so it’s responsible for
tracking voting states of each transaction and mak-
ing decisions of whether to commit or abort. The
implementation uses Ethereum smart contracts to
store the followings states of each transaction (in-
dexed by the transaction ID) internally:

∙ transaction state stores voting states of
each cohort of a transaction.

∙ transaction config stores the transaction
configure of each transaction including the
number of cohorts and the vote timeout time.

We designed a BlockchainAdapter interface, which
exposes the following APIs externally to the coor-
dinator and the cohort:

∙ StartVoting(transaction id, cohorts,

vote timeout time)

Called by the coordinator to start voting on a
transaction. cohorts is the number of cohorts
that will vote on this transaction later.
vote timeout time is the absolute time on
the blockchain when the 2PC stops taking
votes.

∙ Vote(transaction id, cohort id,

ballot)

Called by the cohort to vote COMMIT or ABORT
on a transaction before timeout.

∙ GetVotingDecision(transaction id)

Called by any component to check the voting
state of a transaction.

StartVoting() initializes the states for a trans-
action and Vote() updates the voting status of a
transaction. GetVotingDecision() makes the de-
cision by following the below logic:

1. If any ABORT vote is received, return an ABORT

decision.
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2. If all COMMIT votes are received, return a COM-
MIT decision.

3. If not (1) and not (2), return an ABORT de-
cision if the blockchain time has passed the
vote timeout time; otherwise, return a PEND-

ING decision.

2.1.2 Database. The database component is re-
sponsible for committing sub-transactions in each
cohort and abstracts typical ACID databases with
five APIs in a DatabaseAdapter:

∙ Begin() starts a transaction.
∙ Commit() commits a started transaction.
∙ Abort() aborts a started transaction.
∙ Put(key, value) puts value in a row whose
primary key is key.

∙ Get(key) gets the value from the row whose
primary key is key.

We require the underlying database to be ACID
because the database can handle locks and trans-
actions natively without requiring cohorts to im-
plement complicated locking logic for Put and Get

operations. However, for databases that only sup-
port weak snapshot isolation (e.g. LMDB [5]), the
cohort needs a single write lock to prevent other
write transactions to be started to make sure that
transactions are serialized.

2.1.3 Coordinator. The coordinator exposes two
APIs to the clients:

∙ CommitAtomicTransaction(

CommitAtomicTransactionRequest,

CommitAtomicTransactionResponse)

∙ GetTransactionResult(

GetTransactionResultRequest,

GetTransactionResultResponse)

The data key space is split into namespaces, each
of which corresponds to the single cohort respon-
sible for all keys in that range. When the coordi-
nator receives a CommitAtomicTransaction() call
from the client, it first sends StartVoting() to
the blockchain to track the voting status from the
cohorts. Then it decomposes the transaction into
sub-transactions, which will be executed in the co-
horts, based on the namespace of each operation.
After transaction decomposition, the coordinator
sends PrepareTransaction() requests with the
sub-transactions to the cohorts. Different from the
traditional 2PC protocol, we design our coordinator
to delegate voting and coordination work to the

blockchain. From here on, the coordinator no longer
handles any work unless GetTransactionResult()
is requested from the client.
When the client sends GetTransactionResult()

to the coordinator, the coordinator reads the trans-
action status from the blockchain. If the blockchain
returns a PENDING or ABORTED status, the coordina-
tor will return the status directly. If the transaction
is COMMITTED, the coordinator will send requests to
the cohorts to fetch the Get results and then return
the status with the Get results. If not all cohorts
return the Get results (e.g. due to crashes or net-
work latency), the coordinator will send a partial
response to the client with the ones that responded
along with an indicator that the response is not yet
complete.
As described in 2.1.1, the coordinator does not

need to persist any information to disk as all vot-
ing information is stored in the blockchain and all
other information (e.g. list of cohorts involved in
the transaction) is also known by the client.

2.1.4 Cohort. The cohort exposes two APIs to
the coordinator:

∙ PrepareTransaction(

PrepareTransactionRequest,

PrepareTransactionResponse)

∙ GetTransactionResult(

GetTransactionResultRequest,

GetTransactionResultResponse)

The PrepareTransactionRequest() contains a
transaction id, a list of operations of the sub-
transaction and the vote timeout time, after which
the blockchain will not accept votes. When a cohort
receives a PrepareTransaction() request from the
coordinator, it takes these steps:

1. Start a new thread in the thread pool.
2. Create a DatabaseAdapter object.
3. Start a transaction with DatabaseAdapter::

Begin().
4. Acquire the relevant locks for the sub-transa-

ction.
5. Execute a series of requested Put or Get op-

erations in the sub-transaction.
6. If any operation is reported invalid by the

database or locks cannot be acquired in time,
the cohort will send an ABORT ballot to the
blockchain via BlockchainAdapter::Vote().
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7. If all operations succeed, it will store the re-
trieved Get values in an in-memory hashmap
as well as persistently on disk keyed by the
transaction id to prepare for future Get-

TransactionResult() calls.
8. Set a timer based on the input vote timeout

time.
9. If the timer reaches the vote timeout time, it

will send a request BlockchainAdapter::
GetVotingDecision(transaction id) to the
blockchain.
a. If the blockchain states that the trans-

action should be committed, it will call
DatabaseAdapter::Commit() and release
any acquired locks.

b. If the blockchain states that the transac-
tion should be aborted, it will call
DatabaseAdapter::Abort() and release
any acquired locks.

When the cohort receives a GetTransactionRe-

sult() request and has committed the transaction,
it simply reads the in-memory hashmap based on
the transaction id in the request and returns the
got values as response. If it has not yet received a
commit or abort response from the blockchain, it
returns a pending response instead.

2.2 System Interactions (a.k.a Life of a
Transaction)

This section and Figure 1 describe the end-to-end
life of a transaction without failures.

1. The client composes a transaction request
and passes it to the coordinator through Com-

mitAomticTransaction(). The coordinator
returns a transaction ID for the client to look
up the transaction result later.

2. The coordinator asks the blockchain to trace
votes for the new transaction through Start-

Voting().
3. The coordinator decomposes the transaction

into sub-transactions and distributes them to
the corresponding cohort through Prepare-

Transaction().
4. Each cohort executes a sub-transaction by ac-

quiring locks and forwarding the operations
to the database up to the point before Com-

mit(). The cohort writes an entry to the redo
log to recover in case it crashes. Additionally,
the cohort writes the Get operation results

to disk for faster responses after a crash and
recovery.

5. The cohort votes to the blockchain through
Vote() indicating that it wants to commit or
abort the transaction.

6. The cohort waits until the expected transac-
tion vote timeout time and gets the voting
decision from the blockchain through GetVot-

ingDecision().
7. If the voting decision is to commit the transac-

tion, the cohort commits the sub-transaction
onto the database and releases any acquired
locks; otherwise, it aborts the sub-transaction
in the database and releases any acquired
locks.

8. (Independent of the previous steps) The client
waits until the vote timeout time and re-
quests the transaction result from the coor-
dinator through GetTransactionResult(),
using the transaction ID given in step 1.

9. The coordinator gets (1) the voting decision of
the inquiry transaction from the blockchain
through GetTransactionResult() and (2)
the Get operation results from each cohort.

2.3 Handling Failures

As described above, one of the main benefits of
our system compared to traditional 2PC implemen-
tations is improved resiliency. By delegating the
voting and coordination to the blockchain, our sys-
tem does not block on any one machine that crashes
or has a partitioned network.

2.3.1 Crash of the coordinator. The state of
the coordinator includes only the list of which co-
horts are involved in each active transaction. Thus
if the coordinator crashes, when it recovers, it will
respond to client requests for the Get responses
of the transaction by indicating that it is unable
to find the transaction. As a result, the client can
directly ask the cohorts what the Get responses
of the transaction are. Unlike in traditional 2PC,
where the coordinator stores how each cohort has
voted, in our design, this information is stored in the
blockchain. Our system is resilient to such crashes,
as the transaction does not need to block on the
coordinator’s recovery, and the cohorts can commit
or abort even while the coordinator is unresponsive.

2.3.2 Crash of a cohort. Our system is also
resilient to crashes of cohorts, as these crashes do

4



Two-Phase Commit Using Blockchain

not cause any other cohorts to block for longer than
the vote timeout time. If a cohort crashes before
sending a vote to commit, then the blockchain will
wait until the vote timeout time and all cohorts
will abort the transaction. If a cohort crashes af-
ter voting to commit and the blockchain decides
that the transaction should commit, then the co-
hort will replay all transactions that committed
while it crashed and recovered. To replay the trans-
actions, the cohort will acquire the same locks it
had for the transactions and send the relevant Put
and Get requests to the database and commit the
transactions in the database. Since it has already
computed the response, if the coordinator asks for
the Get responses for any of these transactions, the
cohort can safely return them, even if they have
not yet committed in the database. This can be
implemented in the future, but we decided not to
include it in our first version.

2.3.3 Slow blockchain. We use Ethereum for
our blockchain implementation. According to [6],
it takes around 15 seconds to 5 minutes to pro-
cess a blockchain transaction on Ethereum, which
indicates that the blockchain is relatively slow com-
pared to other components within our system. A
slow blockchain increases the likelihood that not
all commit votes can be collected before the vote
timeout time, which leads to more transactions to
abort eventually; however, the blockchain slowness
doesn’t affect the promised atomicity. The client or
the coordinator can specify a longer vote timeout
time if needed.

3 Implementation
In this section we first describe the implementation
of our overall system. Then, we illustrate the im-
plementation of individual components. The source
code of our implementation is available at [7] li-
censed under GNU Lesser General Public License
[8]. Our implementation depends on the follow-
ing libraries: truffle [9], ganache [10], sqlite3 [11],
grpc [12], web3 [13], abseil-cpp [14], rule nodejs [15],
gflags [16], glog [17], openssl [18], threadpool [19],
lmdb [20], and lmdbxx [21].

3.1 Environment

We implemented the coordinator and the cohorts
with about 2800 lines of C++ code. For communi-
cations between components, we used gRPC [12]

and ProtoBuf [22]. For providing the extensibility
of swapping different database and blockchain im-
plementations, we provided generic interfaces. We
tested end-to-end behaviors on a single machine
with different processes simulating each component.

3.1.1 Blockchain. We wrote our two-phase-
commit smart contract with Solidity and developed
it with Truffle [9]. Truffle provided the development
environment for us to compile smart contracts, test
it, and deploy it locally for debugging. Once we
deployed our smart contract, the coordinator and
the cohorts interacted with the contract through
a smart contract client library. However, we didn’t
find a proper C++ smart contract client library
to use, so we used a JavaScript library (web3.js
[13]) instead and added an additional gRPC layer
to translate to C++.
While testing in the Truffle development, we

learned the gas used for successfully committing
a transaction with two cohorts is around 0.33 USD
[23] (see Appendix A for breakdowns).

3.1.2 Database. We designed the DatabaseAda-
pter interface and implemented the methods with
LMDB primitives. LMDB provides process-oriented
functions like open(), begin(), commit(), put(),
get(). Our object-oriented C++ implementation
has almost 500 lines of code. We chose LMDB be-
cause it is fast, lightweight and easy to test in mem-
ory. The interface is extensible to other databases
like SQLite [24].

3.1.3 Coordinator. The coordinator determin-
istically computes a global identifier for the trans-
action based on the client’s provided identifier and
the client’s hostname and port. This allows the co-
ordinator to avoid sending duplicate (potentially
non-idempotent) requests to cohorts if the client
sends the same request multiple times. This can
happen if the client does not hear the response for
its original request from the coordinator in time and
tries to resend it. By using SHA256 to generate the
transaction identifiers, it is extremely unlikely for
transactions from different clients or with different
client identifiers to have the same global identifier.

3.1.4 Cohort. One optimization we used for the
cohort is that the PrepareTransactionRequest()
includes an indicator if this is the only cohort for
the transaction. In such cases, we avoid the expen-
sive requests to the blockchain and the cohort can
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immediately commit a valid transaction as soon as
it finishes preparing it in the database. This is safe
because it knows that no other cohort can abort the
transaction and that it is guaranteed to be atomic
within its own database.

4 Discussion
4.0.1 Latency tradeoffs. Our approach enables
the client to tradeoff between latency and the likeli-
hood of committing a transaction. When the client
sets a longer time for the vote timeout time, it’s
more likely to collect sufficient votes from all cohorts
to make a commit decision but may have higher
latency if a cohort crashes. There is a limit to the
minimum timeout, which can be no shorter than
the time it takes to finalize a new blockchain block.
As part of a future effort, we can extend the sys-

tem to tradeoff between further latency reductions
and safety by having cohorts send their votes to
the coordinator and to the blockchain. If the coor-
dinator receives commit votes from all cohorts, it
can update the decision in the blockchain and tell
all cohorts to commit. In this procedure, we would
not need to wait for a new block to be mined in
the blockchain to commit a transaction. The loss of
safety comes from edge cases where the blockchain
is slow to process the transaction and it ends up
not receiving the votes in time and thus deciding
to abort. If some cohorts received commit messages
from the coordinator and others did not and then
asked the blockchain for the decision, the cohorts
who received commit messages would commit, while
the others would abort the transaction. As we ex-
pect this to only affect a very small number of
transactions, clients would be able to indicate if
their transaction can tolerate a small chance of
non-atomicity for much faster latency.

4.0.2 Distributed coordinator. Currently the
coordinator is stateless, so it is easy to add new co-
ordinator servers, as long as each one handles a dis-
joint set of transactions. However, if a coordinator
crashes, then clients cannot ask other coordinators
for the Get responses of a transaction, since those
coordinators will not know how to find the cohorts
for the transaction. As part of a future effort, we
could have the coordinators send each other the
cohorts for each transaction so they can respond to
client requests even if the original coordinator for
that request crashes.
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Appendices

A Blockchain Gas Used

Table 1. Gas used, cost in ETH/USD per
blockchain transaction for a successful 2PC commit
with 2 cohorts. Data as of 2022/05/30.

Gas Used
(Gwei)

Cost in
ETH

Cost in
USD

StartVoting 73441 0.000073441 0.143
Vote 1 56451 0.000056451 0.110
Vote 2 39513 0.000039513 0.077
Total 169405 0.000169405 0.330
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