
Web Caching with Consistent Hashing

Shreya Ravi
sravi2@stanford.edu

Yu Qing (Ivan) Zhou
ivanz@stanford.edu

Yu Liu
yul231@stanford.edu

Julius Zhang
juliuszh@stanford.edu

Abstract

A scable web caching system needs to be robust to
the dynamic changes of the cache server nodes while
ensuring high cache hit rates. This paper presents
an implementation of the consistent hashing algorithm
based on a hash ring to address issues of high cache
miss rates resulting from adding and removing cache
server nodes in a naive implementation of distributed
key hashing. Experiments with simulated internet traf-
fic on the Stanford myth cluster demonstrates that our
implementation supports flexible removal and creation
of cache server nodes and achieves high cache hit
rates compared to a benchmark naive implementation
of distributed caching.

1. Introduction

Caching web content improves the responsiveness
internet access, reduces network congestion, and op-
timizes data delivery over the Internet. By storing
web resources in the cache, one can use distributed re-
sources to handle future requests. A good implementa-
tion of web caching supports fault tolerance, scalabil-
ity, and high hit rates in order to serve a large number
of requests.

In this project, we implement a scalable web
caching mechanism using consistent hashing. We dis-
tribute web cache evenly among a set of cache servers
and adopt the consistent hashing technique to allow for
changes in the number of the cache servers in response
to flexible user demands. Section 2 is a literature re-
view of previous work on web caching. Section 3 cov-
ers both the high level design and key components in
our system architecture. In section 4, we give quan-

titative evaluation of our system and compare it with
the traditional hashing table. Finally, in section 5, we
present suggestions for the future work.

2. Previous Work

Implementing efficient web caching is key to en-
suring reliable internet content delivery [1]. One ap-
proach is to use dedicated cache servers to store cached
content, so that the master server forwards requests
to a specific cache server based on the hashed value
of the request. However, with this approach, a naive
implementation, in which one uses the hashed request
value modulo the number of cache servers to select the
cache server, is ineffective because it does not take into
account the overhead of removing and adding cache
server nodes, resulting in high cache miss rates. One
remedy is to use consistent hashing as proposed in [2]
and [3], which is based on the implementation of a
hash ring.

Figure 1. Illustration of a hash ring. [4]

In consistent hashing, cache servers are conceptu-
ally positioned along a hash ring of buckets, as shown

1



in Figure 1, where the numbers above the cache servers
represent the bucket numbers in the hash ring. The
master server then forwards a request to the cache
server that is closest clockwise to the bucket corre-
sponding to the hashed value of the request. The
consistent hashing with a hash ring implementation is
much more efficient and fault tolerant than a naive im-
plementation of web caching, because when a server
is removed or added, only the requests going to cache
server next to the added or removed server clockwise
are affected. In practice, the performance can be im-
proved even more by the use of virtual nodes [5] which
ensures that cache servers are distributed more evenly
on the hash ring, thereby ensuring lower cache miss
rates in expectation.

3. Architecture

In this section, we are going to go through our sys-
tem architecture. 3.1 talks about the high-level sys-
tem overview. 3.2 explains the consistent hashing and
heartbeats implementation in the master server.

3.1. System Overview

Figure 2. The system design

Figure 2 shows our system design. There are two
primary components. First, there is a master server
that listens to requests from our client, acting as a
proxy server. Second, there are a set of cached servers
that store cached web content in a distributed man-
ner. The cached servers communicate with the master
server through constant heartbeats to report their active
status.

Once receives a GET request from a client, the mas-
ter server will send it to one of the active cache server.
If the cache server contains a cached copy for the re-

quest, it will reply with the cached content. Otherwise,
it will query new content from the web server that cor-
responds to the request, return the fetched content back
to the master server, and meanwhile store a local copy
of the content in its cache. The master server will fi-
nally send the content back to the client who initiates
the request.

The client will be agnostic to whether the content
comes from the cached copy or fresh from the target
server.

For all the non-GET requests, the master server will
directly send to the servers of the target websites, with-
out going through any cached server.

3.2. Master

There are two critical components in the design of
the master server: the consistent hashing algorithm
that is used to assfign a GET request to one of the
cache servers based on the URL; heartbeats that are
used to monitor the status of cache servers and main-
tain a list of active cache servers.

3.2.1 Consistent Hashing

The master server maintains a hash ring, as shown in
1. When a new cache server is added to the system,
it gets registered by the master server. To distribute
the workload of cache servers more evenly, we create
100 virtual nodes per cache server. The 100 virtual
nodes are then added to the hash ring, with locations
determined by the hash value of the public IP address
of the cached server and the ID of the virtual node. We
use MD5 message-digest algorithm [6] as the hashing
function for consistent hashing. It is selected based on
its low computation requirement.

When a GET request is received, the master server
hashes the URL in the GET request and locates the
first virtual node that is closest to the hashed position
clockwise. The virtual node will then be mapped to
the physical cache server and the master server will
forward the GET request to that cache server.

3.2.2 Heartbeats

Cache servers send regular heartbeat messages to com-
municate with the master server to stay alive. On a
high level, a cache server sends heartbeats to the mas-
ter server at a pre-determined interval. On the mas-

2



ter server side, the master server calls a flush method
periodically to remove cache nodes whose heartbeat
messages have not been received for a given amount
of time.

In our implementation, a heartbeat message is im-
plemented as an encoded plaintext message for sim-
plicity, and there is a custom designed data structure
for storing metadata for each node. An example is as
follows.

node_meta = {
"hostname": hostname,
"instance": instance,
"nodename": nodename,
"port": port,
"vnodes":
number of virtual nodes,
"lastHeartbeat":
time of last heartbeat message,

}

The node metadata structures are stored in the hash
ring and benchmark single hash table implementa-
tions. The key attributes should be self-explanatory.
We use ’vnodes’ upon node initialization to determine
the number of virtual nodes needed for a node creation
as per [5]. When the master server receives a heart-
beat message, it updates the ’lastHeartbeat’ field in the
correspondent node metadata structure. Periodically,
the master server calls the flush method to mark in-
active servers (whose heartbeat message has not been
received for a specified amount of time) as dead and
remove them from the hash ring, or the single hash ta-
ble implementation in the benchmark. For our design
choice, we reduce communication overhead on the
server side since the server does not respond to each
heartbeat message. The flush method is needed for
both correctness and efficiency, as straggler nodes can
become a performance bottleneck and in even worse
situations cause deadlock. For example, a node for a
hashed key may never respond due to network parti-
tions or server errors. The periodic flushing provides
a simple interface that ensures liveness by removing
faulty and straggling nodes.

3.3. Cache Servers

Each cache stores the response from origin servers
in memory. GET requests are forwarded from the mas-

ter server to the single cache server that would hold the
data for that GET request, as determined by the con-
sistent hashing algorithm. If the cache does not hold
the response from that GET request, it forwards that
request to the origin server, stores the response in its
in-memory map, and sends the response back to the
master server. If the cache is forwarded that GET re-
quest again by the master server, it simply searches
its in-memory map for the response and sends that re-
sponse to the master server. Thus, the cache servers
work to serve the client its response faster, reduce net-
work traffic, and decrease load for the origin servers.

3.3.1 In-Memory Map

The in-memory map is implemented as a Python
dictionary, in which each key is the request and each
value is an object storing both the response that should
be forwarded back to the master server and a times-
tamp for when the cache serve got the response from
the origin server.

This in-memory map is used to provide a response
much faster than forwarding the request to the origin
server would. The map consists key-value pairs to
store the requests and responses (and associated meta-
data), and lookups are O(1), making them highly effi-
cient. In-memory lookups are several orders of magni-
tude faster than network speeds, even within the same
data center[7]. However, as the cache grows in size,
it will not be able to fit all its data in memory and
must page data out to disk. Reading from disk is sig-
nificantly slower than reading from memory, although
if the origin server is far away, we still improve per-
formance significantly by using the cache server that
reads from disk.

To both maintain correctness and improve perfor-
mance, we introduce timestamps as metadata stored
alongside the HTTP responses to expire cache entries
and flush them out periodically.

3.3.2 Expiration

The purpose of expiring cache entries is to maintain
correctness of the responses and improve performance
of the cache.

Imagine there exists a GET request x to an origin
server, and the corresponding response y is stored in a
cache server. Let’s say that the origin server changes

3



its response to GET request x to response z. Then, if
the client sends GET request x again to its proxy (the
master server), it will get back the outdated response
y rather than the new response z because the cache
still holds y. This correctness issue can be solved by
forcing cache entries to expire after a given amount of
time (e.g. 1 day) after the response was first fetched
from the origin server.

This expiration is enforced by only serving non-
expired cache entries to the client, and when a cache
server receives a GET request with a cache entry
whose response is expired, the cache will send the re-
quest to the origin server and update its cache entry
with the new response. This maintains correctness,
and, by periodically flushing the cache of expired en-
tries, we can reduce the cache size and keep more of
the cache in memory, improving performance by re-
ducing disk reads which are slower.

3.3.3 Multi-threading

Although a single threaded implementation is both
correct and performant, a multi-threaded implementa-
tion can improve performance of serving GET requests
by hiding network I/O latency. The main challenge is
making sure the shared data structure, the in-memory
map, does not serve as a limiting bottleneck while also
not introducing data races. Thus, we have developed
the following design.

We use two types of locks: one coarse-grained lock
used to synchronize accesses to the map and one fine-
grained lock per cache entry used to synchronize ac-
cesses to each cache entry. Both types of locks are
single-writer, multiple-reader locks (SWMR). Each in-
coming request from the master server is handled by its
own thread, which finishes execution once it sends its
response to the master server.

When serving a cache hit, the thread acquires the
coarse-grained lock as a reader and acquires the as-
sociated fine-grained lock (stored in the map as meta-
data associated with the request) as a reader. Thus, if
the client makes the same GET request several times
in quick succession, all of these requests (which are
cache hits) can be serviced simultaneously. When ser-
vicing a cache miss, the thread acquires the coarse-
grained lock as a writer and adds the GET request
as a key with an empty response to the app. Then,

the thread acquires the fine-grained lock as a writer
and demotes its writer coarse-grained lock to a reader
lock. Then, after receiving the response from the ori-
gin server, the thread writes the response data to the
cache entry and releases its locks. A separate thread
is also running to periodically flush the cache. This
thread attains the coarse-grained lock as a writer to re-
move entries from the cache.

For this implementation, it is important that the
SWMR locks are fair and don’t starve any threads so
that all requests can be served in a timely manner.

4. Evaluation

4.1. Setup

We have implemented our own web server to dis-
play large web page contents, which serves as the ori-
gin server as mentioned in the design scheme. We set
up one master server with four cache servers to start.
The way we used to interact with the master server is
to send multiple GET requests to query HTTP con-
tents from the master server. The test workflow was
shown below. For each step, we kept track of the cache
miss rate (measured in percentage) and the total time
to complete the step, where one hundred of requests
were sent.

1. Fetch all the contents. The purpose of this step
was to fetch all the contents from the origin server
and save in our cache servers. Since all cache
servers were newly added, we were supposed to
get 0% cache hits for both configurations. The
time in both configurations should be similar as
the only operation is to fetch contents from the
origin server.

2. Fetch all again. We were trying to show the
general benefit of using cache in this step. This
should produce 100% cache hits and faster fetch-
ing process in both configurations, as the contents
being fetched were saved in cache servers from
the previous step. The time in this step should
be smaller than that of step 1 in both configura-
tions, since fetching from cache memory should
be faster than fetching from the origin servers, no
matter what hashing scheme we used here.

3. Add a new cache server to the system. This step
is to show the benefit of using consistent hash-

4



ing when adding a new cache to the system com-
pared with traditional hashing. This should pro-
duce 80% of cache hits for consistent hashing,
and a much lower cache hits for traditional hash-
ing.

4. Remove the first added cache server, then fetch
again. This is to test the functionality of our sys-
tem when one of the cache servers crashed. This
should produce a much greater cache hits for con-
sistent hashing compared with that of traditional
hashing, as all keys need to be rehashed in the
other configuration.

4.2. Data

The text contents we used to display on our web
server is from https://www.gutenberg.org
[8] . We divided the contents into sections. We have
tried section size from 1kB to 10MB, but there was no
great change in latency test results. Hence, we used
1kB as the section size. The parameter at the end of
each test URL is used to specify the number of section
to fetch. Once the web server got the requests from
cache servers, it would send back the one section of
contents from the last fetch point.

4.3. Baseline

For the baseline, we implemented a single hash ta-
ble server that naively stores the cache server nodes
and forwards the request to the specific cache server
based on the hashed request value modulo the number
of cache servers. This is the naive approach for im-
plementing a cache server suggested by [3]. We chose
this implementation because it is particularly easy to
implement and illustrates the central problem that con-
sistent hashing attempts to solve, i.e. removing and
adding nodes affects the assignment of cache servers.

The benchmark was set to send the exactly the same
requests to a simple proxy, the only functionality of
which is to forward all the requests to the origin server.
The time to fetch one hundred requests in the bench-
mark is 0.161s. The baseline was set to be using the
traditional single hash table.

4.4. Results

The key metrics we use for evaluation in this sec-
tion are the cache hits rates and total time to fetch 100
requests for the each test step.

Step Consistent Hashing Traditional Hashing
1 0% 0%
2 100% 100%
3 80% 19%
4 83% 23%

Table 1. Cache hit rates to fetch 100 requests with
consistent hashing turned on and off.

Table 1 shows the cache hit rates. In step 1, we got
0% cache hit and 100% cache miss for both configu-
rations as expected. The cache hit rates of adding and
removing cache servers (step 4 and 5) for consistent
hashing are 80% and 83%. On the contrary, the cache
hit rates for traditional hashing are only 19% and 23%.
The cache hit rate using our consistent hashing is about
three times higher than that of traditional hashing case.
In traditional hashing, the hashing scheme is highly
dependent on the number of cache servers. Therefore,
when adding or removing cache servers from the sys-
tem, all the keys would be changed, increasing the load
on the origin server. This can be solved by consistent
hashing as the hashing scheme operated independently
of the number of cache servers in the hash table by as-
signing them a position on the hash ring.

Step Consistent Hashing Traditional Hashing
1 24.902s 25.003s
2 24.856s 24.967s
3 19.911s 19.978s
4 25.034s 24.428s
Table 2. Total time to fetch 100 requests with

consistent hashing turned on and off.

Table 2 shows the total time used to complete each
step in both configurations. The time for step 1 is much
higher compare with that of benchmark test. Com-
pared the time in the first two steps for both configura-
tions, there is only a slight improvement on the fetch-
ing speed. Fetching contents from master and cache
server did introduce latency to some extent. Also,
given the fact that all the servers were running on myth
machines, the time used to fetch from origin server
might be similar to the time used to fetch from our
master server.

5. Future work

There are a variety of possible directions in both al-
gorithms and the implementation worthy of possible

5

https://www.gutenberg.org


exploration. One direction is to investigate implement-
ing LRU cache with consistent hashing [9]. Our cur-
rent implementation of consistent hashing imposes an
upper limit on the number of cache servers that can be
added to the hash ring. It is interesting to design data
structures and algorithms that support consistent hash-
ing with an arbitrary number of cache servers. Another
approach focused more on applications is to use ideas
from consistent hashing to implement distributed hash
tables (see [10] and [11]). On the security side, it is
also interesting to examine applications built on top of
consistent hashing in the context of DDoS attacks [12].

In our current evaluation, the experiments are run
on the myth cluster with simulated internet traffic. For
future work, it is more illuminating to evaluate the per-
formance of consistent hashing on real network with
real internet requests. It is interesting how deployment
of consistent hashing servers across different geoloca-
tions affects performance.

6. Conclusion

In conclusion, our scalable web caching system us-
ing consistent hashing is able to handle repeated ac-
cess to the same web content in response to elas-
tic user demands. Our design consists of two major
parts, a master server and a group of cache servers.
The master server performs consistent hashing and for-
wards requests to corresponding cache servers. Each
cache server spawns off threads to process the request
from the master server and fetch contents from its in-
memory map or the origin server. The explain and
heartbeat logic in cache servers help maintains their
correctness.

We evaluated the performance of our web caching
system by logging the cache hit and total time to pro-
cess one hundred requests when adding and remov-
ing cache servers compared with traditional hashing
system. The results has shown that the cache rates
of our system is about three times higher than that of
traditional hashing system when the number of cache
servers changed. The improvement of time is not no-
ticeable in this case given the tests ran on myth ma-
chines with simulated traffic. For future optimization,
we can investigate LRU algorithm, distributed hash ta-
bles, security defense, and deployment across different
geolocations.

References

[1] Jia Wang. A survey of web caching schemes for
the internet. SIGCOMM Comput. Commun. Rev.,
29(5):36–46, oct 1999.

[2] David Karger, Alex Sherman, Andy Berkheimer,
Bill Bogstad, Rizwan Dhanidina, Ken Iwamoto,
Brian Kim, Luke Matkins, and Yoav Yerushalmi.
Web caching with consistent hashing. Computer
Networks, 31(11):1203–1213, 1999.

[3] Tim Roughgarden and Gregory Valiant. Cs168:
The modern algorithmic toolbox lecture 1 ... -
stanford university.

[4] Wikimedia Commons. File:consistent hashing
sample illustration.png — wikimedia commons,
the free media repository, 2021. [Online; ac-
cessed 1-June-2022].

[5] Ion Stoica, Robert Morris, David Liben-Nowell,
David R. Karger, M. Frans Kaashoek, Frank
Dabek, and Hari Balakrishnan. Chord: A
scalable peer-to-peer lookup protocol for in-
ternet applications. IEEE/ACM Trans. Netw.,
11(1):17–32, feb 2003.

[6] Ronald Rivest. The md5 message-digest algo-
rithm. Technical report, 1992.

[7] Jeff Dean. Designs, lessons and advice from
building large distributed systems, Oct 2009.

[8] Project gutenberg. [Online; accessed 1-June-
2022].

[9] Kaiyi Ji, Guocong Quan, and Jian Tan. Asymp-
totic miss ratio of lru caching with consistent
hashing. In IEEE INFOCOM 2018 - IEEE Con-
ference on Computer Communications, pages
450–458, 2018.

[10] Petar Maymounkov and David Mazières.
Kademlia: A peer-to-peer information system
based on the xor metric. In Revised Papers from
the First International Workshop on Peer-to-
Peer Systems, IPTPS ’01, page 53–65, Berlin,
Heidelberg, 2002. Springer-Verlag.

6



[11] Hao Zhang, Yonggang Wen, Haiyong Xie, and
Nenghai Yu. A survey on distributed hash table
(dht): Theory, platforms, and applications. 2013.

[12] Baruch Awerbuch and Christian Scheideler. A
denial-of-service resistant dht. In Andrzej Pelc,
editor, Distributed Computing, pages 33–47,
Berlin, Heidelberg, 2007. Springer Berlin Hei-
delberg.

7


	. Introduction
	. Previous Work
	. Architecture
	. System Overview
	. Master
	Consistent Hashing
	Heartbeats

	. Cache Servers
	In-Memory Map
	Expiration
	Multi-threading


	. Evaluation
	. Setup
	. Data
	. Baseline
	. Results

	. Future work
	. Conclusion

