
Outline

1 FFS in more detail

2 Crash recovery

3 Soft updates

4 Journaling

5 F2FS

1 / 42

Review: FFS disk layout

superblocks
cylindergroups

inodes data blocks

informationbookkeeping

• Each cylinder group has its own:
- Superblock
- Bookkeeping information
- Set of inodes
- Data/directory blocks

2 / 42

Superblock

• Contains file system parameters
- Disk characteristics, block size, CG info
- Information necessary to locate inode given i-number

• Replicated once per cylinder group
- At shifting offsets, so as to span multiple platters
- Contains magic number 0x011954 to find replicas if 1st superblock

dies (Kirk McKusick’s birthday?)
• Contains non-replicated “summary information”

- # blocks, fragments, inodes, directories in FS
- Flag stating if FS was cleanly unmounted

3 / 42

Bookkeeping information

• Block map
- Bit map of available fragments
- Used for allocating new blocks/fragments

• Summary info within CG
- # free inodes, blocks/frags, files, directories
- Used when picking cylinder group from which to allocate

• # free blocks by rotational position (8 positions)
- Was reasonable in 1980s when disks weren’t commonly zoned
- Back then OS could do stuff to minimize rotational delay

4 / 42

Inodes and data blocks

data

data

data

data

name
i-number

...

contents

directory

...

inode

...

indirectblock

...
double indir
indirect ptr

...

metadata

...

...

data ptr
data ptr

data ptr
data ptr

. . .

• Each CG has fixed # of inodes (default one per 2K data)
- Each inode maps offset → disk block for one file
- Also contains metadata: permissions, mod times, link count, . . .

5 / 42

Allocation

• Place inode of new file in same CG as directory
- New directories go in new CG (with above average # free inodes)

• Allocate blocks to optimize for sequential access
- If available, use rotationally close block in same cylinder (obsolete)
- Otherwise, use block in same CG
- If CG totally full, find other CG with quadratic hashing

i.e., if CG #n is full, try n+ 12,n+ 22,n+ 32, . . . (mod #CGs)
- Otherwise, search all CGs for some free space
- Break big files over multiple CGs

• Fragment allocation could require moving last block a lot
- (Partial) soution: new stat struct field st_blksize
- stdio library buffers this much data before writing

6 / 42



Directories

• Directories have normal inodes with different type bits
• Contents considered as 512-byte chunks
• Each chunk has direct structure(s) with:

- 32-bit inumber
- 16-bit size of directory entry
- 8-bit file type (added later)
- 8-bit length of file name

• Coalesce when deleting
- If first direct in chunk deleted, set inumber = 0

• Periodically compact directory chunks
- But can never move directory entries across chunks
- Recall only 512-byte sector writes atomic w. power failure

7 / 42

Outline

1 FFS in more detail

2 Crash recovery

3 Soft updates

4 Journaling

5 F2FS

8 / 42

Fixing corruption – fsck

• Must run FS check (fsck) program after crash
• Summary info usually bad after crash

- Scan to check free block map, block/inode counts
• System may have corrupt inodes (not simple crash)

- Bad block numbers, cross-allocation, etc.
- Do sanity check, clear inodes containing garbage

• Fields in inodes may be wrong
- Count number of directory entries to verify link count, if no entries

but count ̸= 0, move to lost+found
- Make sure size and used data counts match blocks

• Directories may be bad
- Holes illegal, . and .. must be valid, file names must be unique
- All directories must be reachable

9 / 42

Crash recovery permeates FS code

• Have to ensure fsck can recover file system
• Strawman: just write all data asynchronously

- Any subset of data structures may be updated before a crash
• Delete/truncate a file, append to other file, crash?

- New file may reuse block from old
- Old inode may not be updated
- Cross-allocation!
- Often inode with older mtime wrong, but can’t be sure

• Append to file, allocate indirect block, crash?
- Inode points to indirect block
- But indirect block may contain garbage!

10 / 42

Crash recovery permeates FS code

• Have to ensure fsck can recover file system
• Strawman: just write all data asynchronously

- Any subset of data structures may be updated before a crash
• Delete/truncate a file, append to other file, crash?

- New file may reuse block from old
- Old inode may not be updated
- Cross-allocation!
- Often inode with older mtime wrong, but can’t be sure

• Append to file, allocate indirect block, crash?

- Inode points to indirect block
- But indirect block may contain garbage!

10 / 42

Crash recovery permeates FS code

• Have to ensure fsck can recover file system
• Strawman: just write all data asynchronously

- Any subset of data structures may be updated before a crash
• Delete/truncate a file, append to other file, crash?

- New file may reuse block from old
- Old inode may not be updated
- Cross-allocation!
- Often inode with older mtime wrong, but can’t be sure

• Append to file, allocate indirect block, crash?
- Inode points to indirect block
- But indirect block may contain garbage!

10 / 42



Sidenote: kernel-internal disk write routines

• BSD has three ways of writing a block to disk
1. bdwrite – delayed write

- Marks cached copy of block as dirty, does not write it
- Will get written back in background within 30 seconds
- Used if block likely to be modified again soon

2. bawrite – asynchronous write
- Start write but return immediately before it completes
- E.g., use when appending to file and block is full

3. bwrite – synchronous write
- Start write, sleep and do not return until safely on disk

11 / 42

Ordering of updates

• Must be careful about order of updates
- Write new inode to disk before directory entry
- Remove directory name before deallocating inode
- Write cleared inode to disk before updating CG free map

• Solution: Many metadata updates synchronous (bwrite)
- Doing one write at a time ensures ordering
- Of course, this hurts performance
- E.g., untar much slower than disk bandwidth

• Note: Cannot update buffers on the disk queue
- E.g., say you make two updates to same directory block
- But crash recovery requires first to be synchronous
- Must wait for first write to complete before doing second
- Makes bawrite as slow as bwrite for many updates to same block

12 / 42

Performance vs. consistency

• FFS crash recoverability comes at huge cost
- Makes tasks such as untar easily 10-20 times slower
- All because youmight lose power or reboot at any time

• Even slowing normal case does not make recovery fast
- If fsck takes one minute, then disks get 10× bigger, then 100× . . .

• One solution: battery-backed RAM
- Expensive (requires specialized hardware)
- Often don’t learn battery has died until too late
- A pain if computer dies (can’t just move disk)
- If OS bug causes crash, RAM might be garbage

• Better solution: Advanced file system techniques
- Next: two advanced techniques

13 / 42

Outline

1 FFS in more detail

2 Crash recovery

3 Soft updates

4 Journaling

5 F2FS

14 / 42

First attempt: Ordered updates

• Want to avoid crashing after “bad” subset of writes
• Must follow 3 rules in ordering updates [Ganger]:

1. Never write pointer before initializing the structure it points to
2. Never reuse a resource before nullifying all pointers to it
3. Never clear last pointer to live resource before setting new one

• If you do this, file system will be recoverable
• Moreover, can recover quickly

- Might leak free disk space, but otherwise correct
- So start running after reboot, scavenge for space in background

• How to achieve?
- Keep a partial order on buffered blocks

15 / 42

Ordered updates (continued)

• Example: Create file A
- Block X contains an inode
- Block Y contains a directory block
- Create file A in inode block X, dir block Y
- By rule #1, must write X before writing Y

• We say Y → X, pronounced “Y depends on X”
- Means Y cannot be written before X is written
- X is called the dependee, Y the depender

• Can delay both writes, so long as order preserved
- Say you create a second file B in blocks X and Y
- Only have to write each out once for both creates

16 / 42



Problem: Cyclic dependencies

• Suppose you create file A, unlink file B, but delay writes
- Both files in same directory block Y & inode block X

• Rule #1: Must write A’s inode before dir. entry (Y → X)
- Otherwise, after crash directory will point to bogus inode
- Worse yet, same inode # might be re-allocated
- So could end up with file name A being an unrelated file

• Rule #2: Must clear B’s dir. entry before writing inode (X → Y)
- Otherwise, B could end up with too small a link count
- File could be deleted while links to it still exist

• Otherwise, fsck has to be slow
- Check every directory entry and every inode link count

17 / 42

Cyclic dependencies illustrated
X

inode block
inode #4
inode #5
inode #6
inode #7

Y
directory block

⟨–,#0⟩
⟨B,#5⟩
⟨C,#7⟩

Original organization

in use

free

original

modified

inode block
inode #4
inode #5
inode #6
inode #7

directory block
⟨A,#4⟩
⟨B,#5⟩
⟨C,#7⟩

Create file A

inode block
inode #4
inode #5
inode #6
inode #7

directory block
⟨A,#4⟩
⟨–,#5⟩
⟨C,#7⟩

Remove file B
18 / 42

More problems

• Crash might occur between ordered but related writes
- E.g., summary information wrong after block freed

• Block aging
- Block that always has dependency will never get written back

• Solution: Soft updates [Ganger]
- Write blocks in any order
- But keep track of dependencies
- When writing a block, temporarily roll back any changes you can’t

yet commit to disk
- I.e., can’t write block with any arrows pointing to dependees

. . . but can temporarily undo whatever change requires the arrow

19 / 42

Breaking dependencies with rollback

Buffer cache
inode block

inode #4
inode #5
inode #6
inode #7

directory block
⟨A,#4⟩
⟨–,#0⟩
⟨C,#7⟩

Disk
inode block

inode #4
inode #5
inode #6
inode #7

directory block
⟨–,#0⟩
⟨B,#5⟩
⟨C,#7⟩

• Created file A and deleted file B
• Now say we decide to write directory block. . .
• Can’t write file name A to disk—has dependee

20 / 42

Breaking dependencies with rollback

Buffer cache
inode block

inode #4
inode #5
inode #6
inode #7

directory block
⟨A,#4⟩
⟨–,#0⟩
⟨C,#7⟩

Disk
inode block

inode #4
inode #5
inode #6
inode #7

directory block
⟨–,#0⟩
⟨B,#5⟩
⟨C,#7⟩
⟨–,#0⟩

• Undo file A before writing dir block to disk
- Even though we just wrote it, directory block still dirty

• But now inode block has no dependees
- Can safely write inode block to disk as-is. . .

20 / 42

Breaking dependencies with rollback

Buffer cache
inode block

inode #4
inode #5
inode #6
inode #7

directory block
⟨A,#4⟩
⟨–,#0⟩
⟨C,#7⟩

Disk
inode block

inode #4
inode #5
inode #6
inode #7

directory block
⟨–,#0⟩
⟨B,#5⟩
⟨C,#7⟩
⟨–,#0⟩inode #5

• Now inode block clean (same in memory as on disk)
• But have to write directory block a second time.. .

20 / 42



Breaking dependencies with rollback

Buffer cache
inode block

inode #4
inode #5
inode #6
inode #7

directory block
⟨A,#4⟩
⟨–,#0⟩
⟨C,#7⟩

Disk
inode block

inode #4
inode #5
inode #6
inode #7

directory block
⟨–,#0⟩
⟨B,#5⟩
⟨C,#7⟩
⟨–,#0⟩inode #5
⟨A,#4⟩

• All data stably on disk
• Crash at any point would have been safe

20 / 42

Soft updates

• Structure for each updated field or pointer, contains:
- old value
- new value
- list of updates on which this update depends (dependees)

• Can write blocks in any order
- But must temporarily undo updates with pending dependencies
- Must lock rolled-back version so applications don’t see it
- Choose ordering based on disk arm scheduling

• Some dependencies better handled by postponing in-memory
updates

- E.g., when freeing block (e.g., because file truncated), just mark
block free in bitmap after block pointer cleared on disk

21 / 42

Simple example

• Say you create a zero-length file A
• Depender: Directory entry for A

- Can’t be written untill dependees on disk
• Dependees:

- Inode – must be initialized before dir entry written
- Bitmap – must mark inode allocated before dir entry written

• Old value: empty directory entry
• New value: ⟨filename A, inode #⟩
• Can write directory block to disk any time

- Must substitute old value until inode & bitmap updated on disk
- Once dir block on disk contains A, file fully created
- Crash before A on disk, worst case might leak the inode

22 / 42

Operations requiring soft updates (1)

1. Block allocation
- Must write: disk block, free map, & pointer (in inode or ind. block)
- Disk block & free map must be written before pointer
- Use Undo/redo on pointer (& possibly file size)

2. Block deallocation
- Must write: cleared pointer & free map
- Just update free map after pointer written to disk
- Or just immediately update free map if pointer not on disk

• Say you quickly append block to file then truncate
- You will know pointer to block not written because of the allocated

dependency structure
- So both operations together require no disk I/O!

23 / 42

Operations requiring soft updates (2)

3. Link addition (see simple example)
- Must write: directory entry, inode, & free map (if new inode)
- Inode and free map must be written before dir entry
- Use undo/redo on i# in dir entry (because i# 0 ignored in dirent)

4. Link removal
- Must write: directory entry, inode & free map (if nlinks==0)
- Must decrement nlinks only after pointer cleared
- Clear directory entry immediately
- Decrement in-memory nlinks after directory written
- If directory entry was never written, decrement immediately

(again will know by presence of dependency structure)
• Note: Quick create/delete requires no disk I/O

24 / 42

Soft update issues

• fsync – sycall to flush file changes to disk
- Must also flush directory entries, parent directories, etc.

• unmount – flush all changes to disk on shutdown
- Some buffers must be flushed multiple times to get clean

• Deleting large directory trees frighteningly fast
- unlink syscall returns even if inode/indir block not cached!
- Dependencies allocated faster than blocks written
- Cap # dependencies allocated to avoid exhausting memory

• Useless write-backs
- Syncer flushes dirty buffers to disk every 30 seconds
- Writing all at once means many dependencies unsatisfied
- Fix syncer to write blocks one at a time
- Tweak LRU buffer eviction to know about dependencies

25 / 42



Soft updates fsck

• Split into foreground and background parts
• Foreground must be done before remounting FS

- Need to make sure per-cylinder summary info makes sense
- Recompute free block/inode counts from bitmaps – very fast
- Will leave FS consistent, but might leak disk space or inodes

• Background does traditional fsck operations
- Do after mounting to recuperate free space
- Can be using the file system while this is happening
- Must be done in forground after a media failure

• Difference from traditional FFS fsck:
- May have many, many inodes with non-zero link counts
- Don’t stick them all in lost+found (unless media failure)

26 / 42

Outline

1 FFS in more detail

2 Crash recovery

3 Soft updates

4 Journaling

5 F2FS

27 / 42

An alternative: Journaling

• Biggest crash-recovery challenge is inconsistency
- Have one logical operation (e.g., create or delete file)
- Requires multiple separate disk writes
- If only some of them happen, end up with big problems

• Most of these problematic writes are to metadata
• Idea: Use a write-ahead log to journal metadata

- Reserve a portion of disk for a log
- Write any metadata operation first to log, then to disk
- After crash/reboot, re-play the log (efficient)
- May re-do already committed change, but won’t miss anything

28 / 42

Journaling (continued)

• Group multiple operations into one log entry
- E.g., clear directory entry, clear inode, update free map—

either all three will happen after recovery, or none
• Performance advantage:

- Log is consecutive portion of disk
- Multiple operations can be logged at disk b/w
- Safe to consider updates committed when written to log

• Example: delete directory tree
- Record all freed blocks, changed directory entries in log
- Return control to user
- Write out changed directories, bitmaps, etc. in background

(sort for good disk arm scheduling)

29 / 42

Journaling details

• Must find oldest relevant log entry
- Otherwise, redundant and slow to replay whole log

• Use checkpoints
- Once all records up to log entry N have been processed and

affected blocks stably committed to disk. . .
- Record N to disk either in reserved checkpoint location, or in

checkpoint log record
- Never need to go back before most recent checkpointed N

• Must also find end of log
- Typically circular buffer; don’t play old records out of order
- Can include begin transaction/end transaction records
- Also typically have checksum in case some sectors bad

30 / 42

Case study: XFS [Sweeney]

• Main idea: Think big
- Big disks, files, large # of files, 64-bit everything
- Yet maintain very good performance

• Break disk up into Allocation Groups (AGs)
- 0.5 – 4 GiB regions of disk
- New directories go in new AGs
- Within directory, inodes of files go in same AG
- Unlike cylinder groups, AGs too large to minimize seek times
- Unlike cylinder groups, no fixed # of inodes per AG

• Advantages of AGs:
- Parallelize allocation of blocks/inodes on multiprocessor

(independent locking of different free space structures)
- Can use 32-bit block pointers within AGs

(keeps data structures smaller)
31 / 42



B+-trees

p
t
r

p
t
r

p
t
r

p
t
r

K K K

p
t
r

p
t
r

K
V V

KK
V

p
t
r

p
t
r

K
V V

KK
V

p
t
r

p
t
r

K
V V

KK
V

• XFS makes extensive use of B+-trees
- Indexed data structure stores ordered Keys & Values
- Keys must have an ordering defined on them
- Stored data in blocks for efficient disk access

• For B+-tree with n items, all operations O(log n):
- Retrieve closest ⟨key, value⟩ to target key k
- Insert a new ⟨key, value⟩ pair
- Delete ⟨key, value⟩ pair

32 / 42

B+-trees continued

• See any algorithms book for details (e.g., [Cormen])
• Some operations on B-tree are complex:

- E.g., insert item into completely full B+-tree
- May require “splitting” nodes, adding new level to tree
- Would be bad to crash & leave B+tree in inconsistent state

• Journal enables atomic complex operations
- First write all changes to the log
- If crash while writing log, incomplete log record will be discarded,

and no change made
- Otherwise, if crash while updating B+-tree, will replay entire log

record and write everything

33 / 42

B+-trees in XFS

• B+-trees are complex to implement
- But once you’ve done it, might as well use everywhere

• Use B+-trees for directories (keyed on filename hash)
- Makes large directories efficient

• Make each inode a B+-tree
- No more FFS-style fixed block pointers
- Instead, B+-tree maps: file offset → ⟨start block, # blocks⟩
- Ideally file is one or small number of contiguous extents
- Allows small inodes & no indirect blocks even for huge files

• Use B+-tree to map inumber to location of inode
- High bits of inumber specify AG, middle bits are key in per-AG

B+-tree, last few bits are position in a block of inodes
- B+-tree in AG maps: starting i# → ⟨block #, free-map⟩
- So free inodes tracked right in leaf of B+-tree

34 / 42

More B+-trees in XFS

• Free extents tracked by two B+-trees
1. start block # → # free blocks
2. # free blocks → start block #

• Use journal to update both atomically & consistently
• #1 allows you to coalesce adjacent free regions
• #1 allows you to allocate near some target

- E.g., when extending file, put next block near previous one
- When first writing to file, put data near inode

• #2 allows you to do best fit allocation
- Leave large free extents for large files

35 / 42

Contiguous allocation

• Ideally want each file contiguous on disk
- Sequential file I/O should be as fast as sequential disk I/O

• But how do you know how large a file will be?
• Idea: delayed allocation

- write syscall only affects the buffer cache
- Allow write into buffers before deciding where to place on disk
- Assign disk space only when buffers are flushed

• Other advantages:
- Short-lived files never need disk space allocated
- mmaped files often written in random order in memory, but will be

written to disk mostly contiguously
- Write clustering: find other nearby stuff to write to disk

36 / 42

Journaling vs. soft updates

• Both much better than FFS alone
• Some limitations of soft updates

- Very specific to FFS data structures (E.g., couldn’t easily add
B-trees like XFS—even directory rename not quite right)

- Metadata updates may proceed out of order (E.g., create A, create
B, crash—maybe only B exists after reboot)

- Still need slow background fsck to reclaim space
• Some limitations of journaling

- Disk write required for every metadata operation (whereas
create-then-delete might require no I/O with soft updates)

- Possible contention for end of log on multi-processor
- fsyncmust sync other operations’ metadata to log, too

37 / 42



Outline

1 FFS in more detail

2 Crash recovery

3 Soft updates

4 Journaling

5 F2FS

38 / 42

Flash-Friendly File System (F2FS) [Lee]

• File system targeted at flash devices with FTL (e.g., SSDs)
- Try to do mostly large sequential writes
- Don’t attempt to do wear leveling (since have FTL anyway)
- See also [Brown]

• Break disk up into:
- Blocks – 4 KiB
- Segments – 512 blocks, chosen so one block fits segment summary
- Sections – 2i segments (default i = 0), unit of log cleaning
- Zones – n sections (default n = 1), if device internally comprises

“subdevices,” send parallel IO to different zones
• Split device in two parts:

- Main area, in which to perform large sequential writes
- Smaller metadata area has random writes, relies on FTL

39 / 42

F2FS layout

• CP – Valid SIT/NAT sets, list of orphan (open+deleted) inodes
- Place version # in header+footer, use consistent CP with highest #

• SIT – Per-segment block validity bitmap and count
- Two SIT areas and a small journal avoids updating in place
- CP says which SIT area is active

• NAT – Translates node numbers to actual block storing node
- Updated like SIT

• SSA – Parent info for each block (e.g., inode+offset)
- Just updated in place, CP records active ones to recover

40 / 42

F2FS inode

• Small files (<3,692 bytes) stored “inline” inside inode
• Node pointers use NAT table for level of indirection

- Lets F2FS move a node without updating parent pointers
41 / 42

Multi-head logging

• Two kinds of cleaning foreground and background
- Foreground (only if needed) greedily cleans most free section
- Background just loads blocks into buffer cache and marks dirty

• With no disk head, can efficiently maintain multiple logs
- Group data by similar expected lifetime (see above)
- Means can clean empty or mostly empty sections

42 / 42


