
Review: Thread package API

• tid thread_create (void (*fn) (void *), void *arg);

- Create a new thread that calls fn with arg

• void thread_exit ();

• void thread_join (tid thread);

• The execution of multiple threads is interleaved
• Can have non-preemptive threads:

- One thread executes exclusively until it makes a blocking call

• Or preemptive threads (what we usually mean in this class):
- May switch to another thread between any two instructions.

• Using multiple CPUs is inherently preemptive
- Even if you don’t take CPU0 away from thread T, another thread on

CPU1 can execute “between” any two instructions of T

1 / 44

Program A

int flag1 = 0, flag2 = 0;

void p1 (void *ignored) {
flag1 = 1;
if (!flag2) { critical_section_1 (); }

}

void p2 (void *ignored) {
flag2 = 1;
if (!flag1) { critical_section_2 (); }

}

int main () {
tid id = thread_create (p1, NULL);
p2 ();
thread_join (id);

}

Q: Can both critical sections run?
2 / 44

Program B

int data = 0;
int ready = 0;

void p1 (void *ignored) {
data = 2000;
ready = 1;

}

void p2 (void *ignored) {
while (!ready)
;

use (data);
}

int main () { ... }

Q: Can use be called with value 0?
3 / 44

Program C

int a = 0;
int b = 0;

void p1 (void *ignored) {
a = 1;

}

void p2 (void *ignored) {
if (a == 1)
b = 1;

}

void p3 (void *ignored) {
if (b == 1)
use (a);

}

Q: If p1–3 run concurrently, can use be called with value 0?
4 / 44

Correct answers

[git push slides to web site now]

• Program A: I don’t know
• Program B: I don’t know
• Program C: I don’t know
• Why don’t we know?

- It depends on what machine you use
- If a system provides sequential consistency, then answers all No
- But not all hardware provides sequential consistency

• Note: Examples, other content from
• Another great reference:

5 / 44

Correct answers

• Program A: I don’t know

• Program B: I don’t know
• Program C: I don’t know
• Why don’t we know?

- It depends on what machine you use
- If a system provides sequential consistency, then answers all No
- But not all hardware provides sequential consistency

• Note: Examples, other content from
• Another great reference:

5 / 44

Correct answers

• Program A: I don’t know
• Program B: I don’t know

• Program C: I don’t know
• Why don’t we know?

- It depends on what machine you use
- If a system provides sequential consistency, then answers all No
- But not all hardware provides sequential consistency

• Note: Examples, other content from
• Another great reference:

5 / 44

Correct answers

• Program A: I don’t know
• Program B: I don’t know
• Program C: I don’t know
• Why don’t we know?

- It depends on what machine you use
- If a system provides sequential consistency, then answers all No
- But not all hardware provides sequential consistency

• Note: Examples, other content from [Adve & Gharachorloo]
• Another great reference: Why Memory Barriers

5 / 44

https://www.scs.stanford.edu/22wi-cs212/sched/readings/shmem-tut.pdf
https://www.scs.stanford.edu/22wi-cs212/sched/readings/why-memory-barriers.pdf

Outline

1 Memory consistency

2 The critical section problem

3 Mutexes and condition variables

4 Implementing synchronization

5 Alternate synchronization abstractions

6 / 44

Sequential Consistency

Definition
Sequential consistency: The result of execution is as if all operations
were executed in some sequential order, and the operations of each
processor occurred in the order specified by the program.
– Lamport

• Boils down to two requirements on loads and stores:
1. Maintaining program order of on individual processors
2. Ensuring write atomicity

• Without SC (Sequential Consistency), multiple CPUs can be
“worse”—i.e., less intuitive—than preemptive threads
- Result may not correspond to any instruction interleaving on 1 CPU

• Why doesn’t all hardware support sequential consistency?
7 / 44

https://www.scs.stanford.edu/22wi-cs212/sched/readings/sequential-consistency.pdf

SC thwarts hardware optimizations

• Complicates write buffers
- E.g., read flagn before flag(3− n) written through in Program A

• Can’t re-order overlapping write operations
- Concurrent writes to different memory modules
- Coalescing writes to same cache line

• Complicates non-blocking reads
- E.g., speculatively prefetch data in Program B

• Makes cache coherence more expensive
- Must delay write completion until invalidation/update (Program B)
- Can’t allow overlapping updates if no globally visible order

(Program C)

8 / 44

SC thwarts compiler optimizations

• Code motion
• Caching value in register

- Collapse multiple loads/stores of same address into one operation

• Common subexpression elimination
- Could cause memory location to be read fewer times

• Loop blocking
- Re-arrange loops for better cache performance

• Software pipelining
- Move instructions across iterations of a loop to overlap instruction

latency with branch cost

9 / 44

x86 consistency [intel 3a, §8.2]

• x86 supports multiple consistency/caching models
- Memory Type Range Registers (MTRR) specify consistency for

ranges of physical memory (e.g., frame buffer)
- Page Attribute Table (PAT) allows control for each 4K page

• Choices include:
- WB: Write-back caching (the default)
- WT: Write-through caching (all writes go to memory)
- UC: Uncacheable (for device memory)
- WC: Write-combining – weak consistency & no caching

(used for frame buffers, when sending a lot of data to GPU)

• Some instructions have weaker consistency
- String instructions (written cache-lines can be re-ordered)
- Special “non-temporal” store instructions (movnt∗) that bypass

cache and can be re-ordered with respect to other writes

10 / 44

http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3a-part-1-manual.pdf

x86WB consistency

• Old x86s (e.g, 486, Pentium 1) had almost SC
- Exception: A read could finish before an earlier write to a different

location
- Which of Programs A, B, C might be affected?

• Newer x86s also let a CPU read its own writes early
volatile int flag1; volatile int flag2;

int p1 (void) int p2 (void)
{ {

register int f, g; register int f, g;
flag1 = 1; flag2 = 1;
f = flag1; f = flag2;
g = flag2; g = flag1;
return 2*f + g; return 2*f + g;

} }

- E.g., both p1 and p2 can return 2:
- Older CPUs would wait at “f = ...” until store complete

11 / 44

x86WB consistency

• Old x86s (e.g, 486, Pentium 1) had almost SC
- Exception: A read could finish before an earlier write to a different

location
- Which of Programs A, B, C might be affected? Just A

• Newer x86s also let a CPU read its own writes early
volatile int flag1; volatile int flag2;

int p1 (void) int p2 (void)
{ {

register int f, g; register int f, g;
flag1 = 1; flag2 = 1;
f = flag1; f = flag2;
g = flag2; g = flag1;
return 2*f + g; return 2*f + g;

} }

- E.g., both p1 and p2 can return 2:
- Older CPUs would wait at “f = ...” until store complete

11 / 44

x86 atomicity

• lock prefix makes a memory instruction atomic
- Historically locks bus for duration of instruction (expensive!)
- Can avoid locking if memory already exclusively cached
- All lock instructions totally ordered
- Other memory instructions cannot be re-ordered with locked ones

• xchg instruction is always locked (even without prefix)
• Special barrier (or “fence”) instructions can prevent

re-ordering
- lfence – can’t be reordered with reads (or later writes)
- sfence – can’t be reordered with writes

(e.g., use after non-temporal stores, before setting a ready flag)
- mfence – can’t be reordered with reads or writes

12 / 44

Outline

1 Memory consistency

2 The critical section problem

3 Mutexes and condition variables

4 Implementing synchronization

5 Alternate synchronization abstractions

13 / 44

Assuming sequential consistency

• Often we reason about concurrent code assuming SC
• But for low-level code, know your memory model!

- May need to sprinkle barrier/fence instructions into your source
- Or may need compiler barriers to restrict optimization

• For most code, avoid depending on memory model
- Idea: If you obey certain rules (discussed later)

. . .system behavior should be indistinguishable from SC

• Let’s for now say we have sequential consistency
• Example concurrent code: Producer/Consumer

- buffer stores BUFFER_SIZE items
- count is number of used slots
- out is next empty buffer slot to fill (if any)
- in is oldest filled slot to consume (if any)

14 / 44

void producer (void *ignored) {
for (;;) {

item *nextProduced = produce_item ();
while (count == BUFFER_SIZE)

/* do nothing */;
buffer[in] = nextProduced;
in = (in + 1) % BUFFER_SIZE;
count++;

}
}

void consumer (void *ignored) {
for (;;) {

while (count == 0)
/* do nothing */;

item *nextConsumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;
count--;
consume_item (nextConsumed);

}
}

Q: What can go wrong in above threads (even with SC)?
15 / 44

Data races

• count may have wrong value
• Possible implementation of count++ and count--

register←count register←count
register←register + 1 register←register− 1
count←register count←register

• Possible execution (count one less than correct):
register←count
register←register + 1

register←count
register←register− 1

count←register
count←register

16 / 44

Data races (continued)

• What about a single-instruction add?
- E.g., i386 allows single instruction addl $1,_count
- So implement count++/-- with one instruction
- Now are we safe?

• A single instruction may encode a load and a store operation
- S.C. doesn’t make such read-modify-write instructions atomic
- So on multiprocessor, suffer same race as 3-instruction version

• Can make x86 instruction atomic with lock prefix
- But lock potentially very expensive
- Compiler assumes you don’t want penalty, doesn’t emit it

• Need solution to critical section problem
- Place count++ and count-- in critical section
- Protect critical sections from concurrent execution

17 / 44

Data races (continued)

• What about a single-instruction add?
- E.g., i386 allows single instruction addl $1,_count
- So implement count++/-- with one instruction
- Now are we safe? Not on multiprocessors!

• A single instruction may encode a load and a store operation
- S.C. doesn’t make such read-modify-write instructions atomic
- So on multiprocessor, suffer same race as 3-instruction version

• Can make x86 instruction atomic with lock prefix
- But lock potentially very expensive
- Compiler assumes you don’t want penalty, doesn’t emit it

• Need solution to critical section problem
- Place count++ and count-- in critical section
- Protect critical sections from concurrent execution

17 / 44

Desired properties of solution

• Mutual Exclusion
- Only one thread can be in critical section at a time

• Progress
- Say no process currently in critical section (C.S.)
- One of the processes trying to enter will eventually get in

• Bounded waiting
- Once a thread T starts trying to enter the critical section, there is a

bound on the number of times other threads get in

• Note progress vs. bounded waiting
- If no thread can enter C.S., don’t have progress
- If thread A waiting to enter C.S. while B repeatedly leaves and

re-enters C.S. ad infinitum, don’t have bounded waiting

18 / 44

Peterson’s solution

• Still assuming sequential consistency
• Assume two threads, T0 and T1

• Variables
- int not_turn; // not this thread’s turn to enter C.S.
- bool wants[2]; // wants[i] indicates if Ti wants to enter C.S.

• Code:
for (;;) { /* assume i is thread number (0 or 1) */
wants[i] = true;
not_turn = i;
while (wants[1-i] && not_turn == i)
/* other thread wants in and not our turn, so loop */;

Critical_section ();
wants[i] = false;
Remainder_section ();

}

19 / 44

Does Peterson’s solution work?
for (;;) { /* code in thread i */
wants[i] = true;
not_turn = i;
while (wants[1-i] && not_turn == i)
/* other thread wants in and not our turn, so loop */;

Critical_section ();
wants[i] = false;
Remainder_section ();

}
• Mutual exclusion – can’t both be in C.S.

- Would mean wants[0] == wants[1] == true,
so not_turn would have blocked one thread from C.S.

• Progress – given demand, one thread can always enter C.S.
- If T1−i doesn’t want C.S., wants[1-i] == false, so Ti won’t loop
- If both threads want in, one thread is not the not_turn thread

• Bounded waiting – similar argument to progress
- If Ti wants lock and T1−i tries to re-enter, T1−i will set
not_turn = 1 - i, allowing Ti in

20 / 44

Outline

1 Memory consistency

2 The critical section problem

3 Mutexes and condition variables

4 Implementing synchronization

5 Alternate synchronization abstractions

21 / 44

Mutexes

• Peterson expensive, only works for 2 processes
- Can generalize to n, but for some fixed n

• Must adapt to machine memory model if not SC
- If you need machine-specific barriers anyway, might as well take

advantage of other instructions helpful for synchronization

• Want to insulate programmer from implementing
synchronization primitives
• Thread packages typically providemutexes:
void mutex_init (mutex_t *m, ...);
void mutex_lock (mutex_t *m);
int mutex_trylock (mutex_t *m);
void mutex_unlock (mutex_t *m);

- Only one thread acquires m at a time, others wait

22 / 44

Thread API contract

• All global data should be protected by a mutex!
- Global = accessed by more than one thread, at least one write
- Exception is initialization, before exposed to other threads
- This is the responsibility of the application writer

• If you use mutexes properly, behavior should be
indistinguishable from Sequential Consistency
- This is the responsibility of the threads package (& compiler)
- Mutex is broken if you use properly and don’t see SC

• OS kernels also need synchronization
- Some mechanisms look like mutexes
- But interrupts complicate things (incompatible w. mutexes)

23 / 44

Same concept, many names

• Most popular application-level thread API: Pthreads
- Function names in this lecture all based on Pthreads
- Just add pthread_ prefix
- E.g., pthread_mutex_t, pthread_mutex_lock, . . .

• C11 uses mtx_ instead of mutex_, C++11 uses methods on mutex

• Pintos uses struct lock for mutexes:
void lock_init (struct lock *);
void lock_acquire (struct lock *);
bool lock_try_acquire (struct lock *);
void lock_release (struct lock *);

• Extra Pintos feature:
- Release checks that lock was acquired by same thread
- bool lock_held_by_current_thread (struct lock *lock);

24 / 44

http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/pthread.h.html#tag_13_35_07
http://port70.net/~nsz/c/c11/n1570.html#7.26.4
https://en.cppreference.com/w/c/thread
https://en.cppreference.com/w/cpp/thread/mutex
https://www.scs.stanford.edu/22wi-cs212/pintos/pintos_6.html#SEC103

Improved producer

mutex_t mutex = MUTEX_INITIALIZER;

void producer (void *ignored) {
for (;;) {

item *nextProduced = produce_item ();

mutex_lock (&mutex);
while (count == BUFFER_SIZE) {
mutex_unlock (&mutex);
thread_yield ();
mutex_lock (&mutex);

}

buffer [in] = nextProduced;
in = (in + 1) % BUFFER_SIZE;
count++;
mutex_unlock (&mutex);

}
}

25 / 44

Improved consumer

void consumer (void *ignored) {
for (;;) {

mutex_lock (&mutex);
while (count == 0) {
mutex_unlock (&mutex); /* <--- Why? */
thread_yield ();
mutex_lock (&mutex);

}

item *nextConsumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;
count--;
mutex_unlock (&mutex);

consume_item (nextConsumed);
}

}

26 / 44

Condition variables

• Busy-waiting in application is a bad idea
- Consumes CPU even when a thread can’t make progress
- Unnecessarily slows other threads/processes or wastes power

• Better to inform scheduler of which threads can run
• Typically done with condition variables
• struct cond_t; (pthread_cond_t or condition in Pintos)
• void cond_init (cond_t *, ...);

• void cond_wait (cond_t *c, mutex_t *m);

- Atomically unlock m and sleep until c signaled
- Then re-acquire m and resume executing

• void cond_signal (cond_t *c);
void cond_broadcast (cond_t *c);

- Wake one/all threads waiting on c

27 / 44

http://pubs.opengroup.org/onlinepubs/9699919799/functions/pthread_cond_destroy.html
https://www.scs.stanford.edu/22wi-cs212/pintos/pintos_6.html#SEC104

Improved producer

mutex_t mutex = MUTEX_INITIALIZER;
cond_t nonempty = COND_INITIALIZER;
cond_t nonfull = COND_INITIALIZER;

void producer (void *ignored) {
for (;;) {

item *nextProduced = produce_item ();

mutex_lock (&mutex);
while (count == BUFFER_SIZE)
cond_wait (&nonfull, &mutex);

buffer [in] = nextProduced;
in = (in + 1) % BUFFER_SIZE;
count++;
cond_signal (&nonempty);
mutex_unlock (&mutex);

}
}

28 / 44

Improved consumer

void consumer (void *ignored) {
for (;;) {

mutex_lock (&mutex);
while (count == 0)
cond_wait (&nonempty, &mutex);

item *nextConsumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;
count--;
cond_signal (&nonfull);
mutex_unlock (&mutex);

consume_item (nextConsumed);
}

}

29 / 44

Re-check conditions
• Always re-check condition on wake-up

while (count == 0) /* not if */
cond_wait (&nonempty, &mutex);

• Otherwise, breaks with spurious wakeup or two consumers
- Start where Consumer 1 has mutex but buffer empty, then:

Consumer 1 Consumer 2 Producer
cond_wait (...); mutex_lock (...);...

count++;
cond_signal (...);

mutex_lock (...); mutex_unlock (...);
if (count == 0)...
use buffer[out] . . .
count--;
mutex_unlock (...);

use buffer[out] . . . ←− No items in buffer
30 / 44

Condition variables (continued)

• Why must cond_wait both release mutex & sleep?
• Why not separate mutexes and condition variables?

while (count == BUFFER_SIZE) {
mutex_unlock (&mutex);
cond_wait (&nonfull);
mutex_lock (&mutex);

}

• Can end up stuck waiting when bad interleaving

Producer
while (count == BUFFER_SIZE)
mutex_unlock (&mutex);

cond_wait (&nonfull);

Consumer

mutex_lock (&mutex);
...
count--;
cond_signal (&nonfull);

• Problem: cond_wait & cond_signal do not commute

31 / 44

Condition variables (continued)

• Why must cond_wait both release mutex & sleep?
• Why not separate mutexes and condition variables?

while (count == BUFFER_SIZE) {
mutex_unlock (&mutex);
cond_wait (&nonfull);
mutex_lock (&mutex);

}
• Can end up stuck waiting when bad interleaving

Producer
while (count == BUFFER_SIZE)
mutex_unlock (&mutex);

cond_wait (&nonfull);

Consumer

mutex_lock (&mutex);
...
count--;
cond_signal (&nonfull);

• Problem: cond_wait & cond_signal do not commute
31 / 44

Other thread package features

• Alerts – cause exception in a thread
• Timedwait – timeout on condition variable
• Shared locks – concurrent read accesses to data
• Thread priorities – control scheduling policy

- Mutex attributes allow various forms of priority donation
(will be familiar concept after lab 1)

• Thread-specific global data
- Need for things like errno

• Different synchronization primitives (later in lecture)

32 / 44

Outline

1 Memory consistency

2 The critical section problem

3 Mutexes and condition variables

4 Implementing synchronization

5 Alternate synchronization abstractions

33 / 44

Implementing synchronization

• Implement mutex as straight-forward data structure?
typedef struct mutex {
bool is_locked; /* true if locked */
thread_id_t owner; /* thread holding lock, if locked */
thread_list_t waiters; /* threads waiting for lock */

};

- Fine, so long as we avoid data races on the mutex itself

• Need lower-level lock lk for mutual exclusion
- Internally, mutex_* functions bracket code with
lock(&mutex->lk) . . . unlock(&mutex->lk)

- Otherwise, data races! (E.g., two threads manipulating waiters)

• How to implement lower_level_lock_t?
- Could use Peterson’s algorithm, but typically a bad idea

(too slow and don’t know maximum number of threads)

34 / 44

Implementing synchronization

• Implement mutex as straight-forward data structure?
typedef struct mutex {
bool is_locked; /* true if locked */
thread_id_t owner; /* thread holding lock, if locked */
thread_list_t waiters; /* threads waiting for lock */
lower_level_lock_t lk; /* Protect above fields */

};

- Fine, so long as we avoid data races on the mutex itself

• Need lower-level lock lk for mutual exclusion
- Internally, mutex_* functions bracket code with
lock(&mutex->lk) . . . unlock(&mutex->lk)

- Otherwise, data races! (E.g., two threads manipulating waiters)

• How to implement lower_level_lock_t?
- Could use Peterson’s algorithm, but typically a bad idea

(too slow and don’t know maximum number of threads)
34 / 44

Approach #1: Disable interrupts

• Only for apps with n : 1 threads (1 kthread)
- Cannot take advantage of multiprocessors
- But sometimes most efficient solution for uniprocessors

• Typical setup: periodic timer signal caught by thread
scheduler
• Have per-thread “do not interrupt” (DNI) bit
• lock (lk): sets thread’s DNI bit
• If timer interrupt arrives

- Check interrupted thread’s DNI bit
- If DNI clear, preempt current thread
- If DNI set, set “interrupted” (I) bit & resume current thread

• unlock (lk): clears DNI bit and checks I bit
- If I bit is set, immediately yields the CPU

35 / 44

Approach #2: Spinlocks

• Most CPUs support atomic read-[modify-]write
• Example: int test_and_set (int *lockp);

- Atomically sets *lockp = 1 and returns old value
- Special instruction – no way to implement in portable C99

(C11 supports with explicit atomic_flag_tet_and_set function)
• Use this instruction to implement spinlocks:

#define lock(lockp) while (test_and_set (lockp))
#define trylock(lockp) (test_and_set (lockp) == 0)
#define unlock(lockp) *lockp = 0

• Spinlocks implement mutex’s lower_level_lock_t
• Can you use spinlocks instead of mutexes?

- Wastes CPU, especially if thread holding lock not running
- Mutex functions have short C.S., less likely to be preempted
- On multiprocessor, sometimes good to spin for a bit, then yield

36 / 44

https://port70.net/~nsz/c/c11/n1570.html#7.17.8
https://en.cppreference.com/w/c/atomic/atomic_flag

Synchronization on x86

• Test-and-set only one possible atomic instruction
• x86 xchg instruction, exchanges reg with mem

- Can use to implement test-and-set

_test_and_set:
movl 4(%esp), %edx # %edx = lockp
movl $1, %eax # %eax = 1
xchgl %eax, (%edx) # swap (%eax, *lockp)
ret

• CPU locks memory system around read and write
- Recall xchgl always acts like it has implicit lock prefix
- Prevents other uses of the bus (e.g., DMA)

• Usually runs at memory bus speed, not CPU speed
- Much slower than cached read/buffered write

37 / 44

Synchronization on alpha

• ldl_l – load locked
stl_c – store conditional (reg←0 if not atomic w. ldl_l)
_test_and_set:

ldq_l v0, 0(a0) # v0 = *lockp (LOCKED)
bne v0, 1f # if (v0) return
addq zero, 1, v0 # v0 = 1
stq_c v0, 0(a0) # *lockp = v0 (CONDITIONAL)
beq v0, _test_and_set # if (failed) try again
mb
addq zero, zero, v0 # return 0

1:
ret zero, (ra), 1

• Note: Alpha memory consistency weaker than x86
- Want all CPUs to think memory accesses in C.S. happened after

acquiring lock, before releasing
- Memory barrier instruction mb ensures this (c.f. mfence on x86)
- See Why Memory Barriers for why alpha still worth understanding

38 / 44

https://www.scs.stanford.edu/22wi-cs212/sched/readings/alphahb.pdf
https://www.scs.stanford.edu/22wi-cs212/sched/readings/why-memory-barriers.pdf

Kernel Synchronization

• Should kernel use locks or disable interrupts?
• Old UNIX had 1 CPU, non-preemptive threads, no mutexes

- Interface designed for single CPU, so count++ etc. not data race
- . . . Unless memory shared with an interrupt handler

int x = splhigh (); /* Disable interrupts */
/* touch data shared with interrupt handler ... */
splx (x); /* Restore previous state */

- C.f., intr_disable / intr_set_level in Pintos, and
preempt_disable / preempt_enable in linux

• Used arbitrary pointers like condition variables
- int [t]sleep (void *ident, int priority, ...);

put thread to sleep; will wake up at priority (∼cond_wait)
- int wakeup (void *ident);

wake up all threads sleeping on ident (∼cond_broadcast)
39 / 44

https://www.scs.stanford.edu/22wi-cs212/pintos/pintos_6.html#SEC101
https://git.kernel.org/cgit/linux/kernel/git/stable/linux-stable.git/tree/Documentation/preempt-locking.txt

Kernel locks

• Nowadays, should design for multiprocessors
- Even if first version of OS is for uniprocessor
- Someday may want multiple CPUs and need preemptive threads
- That’s why Pintos uses sleeping locks

(sleeping locks means mutexes, as opposed to spinlocks)

• Multiprocessor performance needs fine-grained locks
- Want to be able to call into the kernel on multiple CPUs

• If kernel has locks, should it ever disable interrupts?

- Yes! Can’t sleep in interrupt handler, so can’t wait for lock
- So even modern OSes have support for disabling interrupts
- Often uses DNI trick when cheaper than masking interrupts in

hardware

40 / 44

Kernel locks

• Nowadays, should design for multiprocessors
- Even if first version of OS is for uniprocessor
- Someday may want multiple CPUs and need preemptive threads
- That’s why Pintos uses sleeping locks

(sleeping locks means mutexes, as opposed to spinlocks)

• Multiprocessor performance needs fine-grained locks
- Want to be able to call into the kernel on multiple CPUs

• If kernel has locks, should it ever disable interrupts?
- Yes! Can’t sleep in interrupt handler, so can’t wait for lock
- So even modern OSes have support for disabling interrupts
- Often uses DNI trick when cheaper than masking interrupts in

hardware

40 / 44

Outline

1 Memory consistency

2 The critical section problem

3 Mutexes and condition variables

4 Implementing synchronization

5 Alternate synchronization abstractions

41 / 44

Semaphores [Dijkstra]

• A Semaphore is initialized with an integer N
• Provides two functions:

- sem_wait (S) (originally called P, called sema_down in Pintos)
- sem_signal (S) (originally called V , called sema_up in Pintos)

• Guarantees sem_wait will return only N more times than
sem_signal called
- Example: If N == 1, then semaphore acts as a mutex with
sem_wait as lock and sem_signal as unlock

• Semaphores give elegant solutions to some problems
- Unlike condition variables, wait & signal commute

• Linux primarily uses semaphores for sleeping locks
- sema_init, down_interruptible, up, . . .
- Also weird reader-writer semaphores, rw_semaphore [Love]

42 / 44

http://www.cs.utexas.edu/users/EWD/transcriptions/EWD01xx/EWD123.html
https://www.scs.stanford.edu/22wi-cs212/pintos/pintos_6.html#SEC102
https://www.scs.stanford.edu/22wi-cs212/pintos/pintos_6.html#SEC102
http://www.linuxjournal.com/article/5833

Semaphore producer/consumer

• Initialize full to 0 (block consumer when buffer empty)
• Initialize empty to N (block producer when queue full)

void producer (void *ignored) {
for (;;) {

item *nextProduced = produce_item ();
sem_wait (&empty);
buffer [in] = nextProduced;
in = (in + 1) % BUFFER_SIZE;
sem_signal (&full);

}
}
void consumer (void *ignored) {

for (;;) {
sem_wait (&full);
item *nextConsumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;
sem_signal (&empty);
consume_item (nextConsumed);

}
} 43 / 44

Various synchronizationmechanisms

• Other more esoteric primitives you might encounter
- Plan 9 used a rendezvous mechanism
- Haskell uses MVars (like channels of depth 1)

• Many synchronization mechanisms equally expressive
- Pintos implements locks, condition vars using semaphores
- Could have been vice versa
- Can even implement condition variables in terms of mutexes

• Why base everything around semaphore implementation?
- High-level answer: no particularly good reason
- If you want only one mechanism, can’t be condition variables

(interface fundamentally requires mutexes)
- Because sem_wait and sem_signal commute, eliminates problem

of condition variables w/o mutexes

44 / 44

http://doc.cat-v.org/plan_9/4th_edition/papers/sleep

	Memory consistency
	The critical section problem
	Mutexes and condition variables
	Implementing synchronization
	Alternate synchronization abstractions

