Review: Thread package API

® tid thread_create (void (*fn) (void *), void *arg);

- Create a new thread that calls £n with arg
® void thread_exit ();
¢ void thread_join (tid thread);
* The execution of multiple threads is interleaved

e Can have non-preemptive threads:
- One thread executes exclusively until it makes a blocking call

e Or preemptive threads (what we usually mean in this class):
- May switch to another thread between any two instructions.

¢ Using multiple CPUs is inherently preemptive

- Even if you don’t take CPU, away from thread T, another thread on
CPU, can execute “between” any two instructions of T

1/44

int flagl = 0, flag2 = 0;

void pl (void *ignored) {

flagl = 1;

if (1flag2) { critical_section_1 (); }
}

void p2 (void *ignored) {

flag2 = 1;

if (!'flagl) { critical_section_2 (); %}
}

int main O {
tid id = thread_create (pl, NULL);
p2 O;
thread_join (id);

}

Q: Can both critical sections run?

2/44

int data = 0;
int ready = O;

void pl (void *ignored) {
data = 2000;

ready = 1;
X

void p2 (void *ignored) {
while (!ready)

use (data);

}

int main) { ... }

Q: Can use be called with value 0?

3/44

int a = 0;

int b = 0;

void pl (void *ignored) {
a=1;

3

void p2 (void *ignored) {
if (a == 1)
b=1,;
}

void p3 (void *ignored) {
if (b == 1)
use (a);

Q: If p1-3 run concurrently, can use be called with value 0?

4/44

Correct answers

[git push slides to web site now]

5/44

Correct answers

* Program A: I don’t know

5/44

Correct answers

* Program A: I don’t know
* Program B: | don’t know

5/44

Correct answers

Program A: 1 don’t know

Program B: | don’t know

Program C: | don’t know

Why don’t we know?

- It depends on what machine you use
- If a system provides sequential consistency, then answers all No
- But not all hardware provides sequential consistency

* Note: Examples, other content from [Adve & Gharachorloo]

* Another great reference: Why Memory Barriers

5/44

https://www.scs.stanford.edu/22wi-cs212/sched/readings/shmem-tut.pdf
https://www.scs.stanford.edu/22wi-cs212/sched/readings/why-memory-barriers.pdf

@ Memory consistency

@ The critical section problem

© Mutexes and condition variables
@ Implementing synchronization

© Alternate synchronization abstractions

6/44

Sequential Consistency

Definition

Sequential consistency: The result of execution is as if all operations
were executed in some sequential order, and the operations of each
processor occurred in the order specified by the program.

- Lamport

* Boils down to two requirements on loads and stores:
1. Maintaining program order of on individual processors
2. Ensuring write atomicity

* Without SC (Sequential Consistency), multiple CPUs can be
“worse”—i.e., less intuitive—than preemptive threads

- Result may not correspond to any instruction interleaving on 1 CPU

* Why doesn’t all hardware support sequential consistency?

7/44

https://www.scs.stanford.edu/22wi-cs212/sched/readings/sequential-consistency.pdf

SC thwarts hardware optimizations

Complicates write buffers
- E.g., read flagn before flag(3 — n) written through in Program A

Can’tre-order overlapping write operations

- Concurrent writes to different memory modules
- Coalescing writes to same cache line

Complicates non-blocking reads
- E.g., speculatively prefetch data in Program B

Makes cache coherence more expensive

- Must delay write completion until invalidation/update (Program B)
- Can’t allow overlapping updates if no globally visible order
(Program C)

8/44

SC thwarts compiler optimizations

Code motion

Caching value in register
- Collapse multiple loads/stores of same address into one operation

* Common subexpression elimination
- Could cause memory location to be read fewer times

Loop blocking
- Re-arrange loops for better cache performance

Software pipelining

- Move instructions across iterations of a loop to overlap instruction
latency with branch cost

9/44

x86 consistency [intel 3a, §8.2]

* x86 supports multiple consistency/caching models
- Memory Type Range Registers (MTRR) specify consistency for
ranges of physical memory (e.g., frame buffer)
- Page Attribute Table (PAT) allows control for each 4K page

e Choicesinclude:

WB: Write-back caching (the default)
WT: Write-through caching (all writes go to memory)
UC: Uncacheable (for device memory)

WC: Write-combining - weak consistency & no caching
(used for frame buffers, when sending a lot of data to GPU)

* Some instructions have weaker consistency

- String instructions (written cache-lines can be re-ordered)

- Special “non-temporal” store instructions (movnt*) that bypass
cache and can be re-ordered with respect to other writes

10/44

http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3a-part-1-manual.pdf

x86 WB consistency

* Old x86s (e.g, 486, Pentium 1) had almost SC

- Exception: A read could finish before an earlier write to a different
location

- Which of Programs A, B, C might be affected?

11/44

x86 WB consistency

* Old x86s (e.g, 486, Pentium 1) had almost SC

- Exception: A read could finish before an earlier write to a different
location

- Which of Programs A, B, C might be affected? JustA
* Newer x86s also let a CPU read its own writes early

volatile int flagil; volatile int flag2;
int pl (void) int p2 (void)
{ {
register int f, g; register int f, g;
flagl = 1; flag2 = 1;
f = flagl; f = flag2;
g = flag2; g = flagl;
return 2*f + g; return 2*f + g;
X X

- E.g., both p1 and p2 can return 2:
- Older CPUs would waitat “f = ...” until store complete

11/44

x86 atomicity

* lock prefix makes a memory instruction atomic

Historically locks bus for duration of instruction (expensive!)

Can avoid locking if memory already exclusively cached

All lock instructions totally ordered

Other memory instructions cannot be re-ordered with locked ones

* xchg instruction is always locked (even without prefix)

* Special barrier (or “fence”) instructions can prevent
re-ordering
- 1fence - can’t be reordered with reads (or later writes)

- sfence - can’t be reordered with writes
(e.g., use after non-temporal stores, before setting a ready flag)

- mfence - can’t be reordered with reads or writes

12/44

€ Memory consistency

@ The critical section problem

© Mutexes and condition variables
@ Implementing synchronization

© Alternate synchronization abstractions

13/44

Assuming sequential consistency

* Often we reason about concurrent code assuming SC

But for low-level code, know your memory model!

- May need to sprinkle barrier/fence instructions into your source
- Or may need compiler barriers to restrict optimization

For most code, avoid depending on memory model

- Idea: If you obey certain rules (discussed later)
...system behavior should be indistinguishable from SC

Let’s for now say we have sequential consistency

Example concurrent code: Producer/Consumer
- buffer stores BUFFER_SIZE items
- count is number of used slots
- out is next empty buffer slot to fill (if any)
- inisoldest filled slot to consume (if any)

14/ 44

void producer (void *ignored) {
for (;;) {
item *nextProduced = produce_item ();
while (count == BUFFER_SIZE)
/* do nothing */;
buffer[in] = nextProduced;
in = (in + 1) % BUFFER_SIZE;

count++;
}
¥
void consumer (void *ignored) {
for (;5;) A{
while (count == 0)

/* do nothing */;
item *nextConsumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;
count--;
consume_item (nextConsumed) ;

}
Q: What can go wrong in above threads (even with SC)?

15/44

* count may have wrong value

¢ Possible implementation of count++ and count--

register<—count register<—count
register«register + 1 register«register — 1
count«register count«register

* Possible execution (count one less than correct):

register<—count
register<register + 1
register<—count
register<register — 1
count«register
count«register

16/44

Data races (continued)

* What about a single-instruction add?

- E.g.,i386 allows single instruction add1l $1,_count
- So implement count++/-- with one instruction
- Now are we safe?

17/44

Data races (continued)

* What about a single-instruction add?
- E.g.,i386 allows single instruction add1 $1,_count
- So implement count++/-- with one instruction
- Now are we safe? Not on multiprocessors!
* Asingle instruction may encode a load and a store operation
- S.C. doesn’t make such read-modify-write instructions atomic
- So on multiprocessor, suffer same race as 3-instruction version
e Can make x86 instruction atomic with 1ock prefix
- But lock potentially very expensive
- Compiler assumes you don’t want penalty, doesn’t emit it
* Need solution to critical section problem
- Place count++ and count-- in critical section
- Protect critical sections from concurrent execution

17/44

Desired properties of solution

* Mutual Exclusion
- Only one thread can be in critical section at a time

* Progress

- Say no process currently in critical section (C.S.)

- One of the processes trying to enter will eventually get in
* Bounded waiting

- Once a thread T starts trying to enter the critical section, there is a
bound on the number of times other threads get in

* Note progress vs. bounded waiting

- If no thread can enter C.S., don’t have progress

- If thread A waiting to enter C.S. while B repeatedly leaves and
re-enters C.S. ad infinitum, don’t have bounded waiting

18/44

Peterson’s solution

« Still assuming sequential consistency
¢ Assume two threads, T; and T;

¢ Variables

- int not_turn; //notthisthread’sturnto enterC.S.
- bool wants[2]; //wants[i] indicates if T; wants to enter C.S.

e Code:

for (;;) { /* assume i is thread number (0 or 1) */
wants[i] = true;
not_turn = i;
while (wants[1-i] && not_turn == i)
/* other thread wants in and not our turn, so loop */;
Critical_section ();
wants[i] = false;
Remainder_section ();

19/44

Does Peterson’s solution work?

for (;;) { /* code in thread i */
wants[i] = true;
not_turn = i;
while (wants[1-i] && not_turn == i)
/* other thread wants in and not our turn, so loop */;
Critical_section ();
wants[i] = false;
Remainder_section ();

}
e Mutual exclusion - can’t both be in C.S.
- Would mean wants[0] == wants[1] == true,

so not_turn would have blocked one thread from C.S.

* Progress - given demand, one thread can always enter C.S.
- If T,_;doesn’t want C.S., wants[1-i] == false, S0 T; won’t loop
- If both threads want in, one thread is not the not_turn thread

* Bounded waiting - similar argument to progress

- If T; wants lock and T, _; tries to re-enter, T;_; will set
not_turn = 1 - i,allowingT;in
20/44

€ Memory consistency

@ The critical section problem

©® Mutexes and condition variables
@ Implementing synchronization

© Alternate synchronization abstractions

21/44

* Peterson expensive, only works for 2 processes
- Can generalize to n, but for some fixed n

e Must adapt to machine memory model if not SC
- If you need machine-specific barriers anyway, might as well take
advantage of other instructions helpful for synchronization

* Want to insulate programmer from implementing
synchronization primitives

* Thread packages typically provide mutexes:
void mutex_init (mutex_t *m, ...);
void mutex_lock (mutex_t *m);
int mutex_trylock (mutex_t *m);
void mutex_unlock (mutex_t *m);

- Only one thread acquires m at a time, others wait

22/44

Thread API contract

¢ All global data should be protected by a mutex!

- Global = accessed by more than one thread, at least one write
- Exception is initialization, before exposed to other threads
- This is the responsibility of the application writer

¢ If you use mutexes properly, behavior should be
indistinguishable from Sequential Consistency

- This is the responsibility of the threads package (& compiler)
- Mutex is broken if you use properly and don’t see SC

¢ OS kernels also need synchronization
- Some mechanisms look like mutexes
- Butinterrupts complicate things (incompatible w. mutexes)

23/44

Same concept, many names

* Most popular application-level thread API: Pthreads

- Function names in this lecture all based on Pthreads
- Just add pthread_ prefix
- E.g., pthread_mutex_t, pthread_mutex_lock,...

e Cl1lusesmtx_instead of mutex_, C++11 uses methods on mutex

* Pintos uses struct lock for mutexes:
void lock_init (struct lock *);
void lock_acquire (struct lock *);
bool lock_try_acquire (struct lock *);
void lock_release (struct lock *);

¢ Extra Pintos feature:

- Release checks that lock was acquired by same thread
- bool lock_held_by_current_thread (struct lock *lock);

24/44

http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/pthread.h.html#tag_13_35_07
http://port70.net/~nsz/c/c11/n1570.html#7.26.4
https://en.cppreference.com/w/c/thread
https://en.cppreference.com/w/cpp/thread/mutex
https://www.scs.stanford.edu/22wi-cs212/pintos/pintos_6.html#SEC103

Improved producer

mutex_t mutex = MUTEX_INITIALIZER;

void producer (void *ignored) {
for (53) {
item *nextProduced = produce_item ();

mutex_lock (&mutex);

while (count == BUFFER_SIZE) {
mutex_unlock (&mutex);
thread_yield ();
mutex_lock (&mutex) ;

¥

buffer [in] = nextProduced;
in = (in + 1) % BUFFER_SIZE;
count++;

mutex_unlock (&mutex);

25/44

Improved consumer

void consumer (void *ignored) {
for (5;) {
mutex_lock (&mutex);
while (count == 0) {
mutex_unlock (&mutex); /* <--- Why? */
thread_yield ();
mutex_lock (&mutex);

}

item *nextConsumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;
count--;

mutex_unlock (&mutex);

consume_item (nextConsumed) ;

26 /44

Condition variables

* Busy-waiting in application is a bad idea
- Consumes CPU even when a thread can’t make progress
- Unnecessarily slows other threads/processes or wastes power

o Better to inform scheduler of which threads can run
» Typically done with condition variables

® struct cond_t; (pthread_cond_t OF condition in Pintos)

® void cond_init (cond_t *, ...);

® void cond_wait (cond_t *c, mutex_t *m);
- Atomically unlock m and sleep until c signaled
- Then re-acquire m and resume executing
® void cond_signal (cond_t *c);
void cond_broadcast (cond_t *c);
- Wake one/all threads waiting on c

27/44

http://pubs.opengroup.org/onlinepubs/9699919799/functions/pthread_cond_destroy.html
https://www.scs.stanford.edu/22wi-cs212/pintos/pintos_6.html#SEC104

Improved producer

mutex_t mutex = MUTEX_INITIALIZER;
cond_t nonempty = COND_INITIALIZER;
cond_t nonfull = COND_INITIALIZER;

void producer (void *ignored) {
for (53) {

item *nextProduced = produce_item ();

mutex_lock (&mutex);
while (count == BUFFER_SIZE)
cond_wait (&nonfull, &mutex);

buffer [in] = nextProduced;
in = (in + 1) % BUFFER_SIZE;
count++;

cond_signal (&nonempty);
mutex_unlock (&mutex);

28 /44

Improved consumer

void consumer (void *ignored) {
for (5;) {
mutex_lock (&mutex);
while (count == 0)
cond_wait (&nonempty, &mutex);

item *nextConsumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;
count--;

cond_signal (&nonfull);
mutex_unlock (&mutex);

consume_item (nextConsumed) ;

29/44

Re-check conditions

* Always re-check condition on wake-up
while (count == 0) /* not if */
cond_wait (&nonempty, &mutex);
¢ Otherwise, breaks with spurious wakeup or two consumers

- Start where Consumer 1 has mutex but buffer empty, then:

Consumer1 Consumer 2 Producer
cond_wait (...); mutex_lock (...);
count++;
cond_signal (...);
mutex_lock (...); mutex_unlock (...);

if (count == 0)

use buffer[out] ...
count--;
mutex_unlock (...);
use buffer[out] ... +— Noitemsin buffer
30/44

Condition variables (continued)

* Why must cond_wait both release mutex & sleep?

* Why not separate mutexes and condition variables?
while (count == BUFFER_SIZE) {
mutex_unlock (&mutex);
cond_wait (&nonfull);
mutex_lock (&mutex);

by

31/44

Condition variables (continued)

* Why must cond_wait both release mutex & sleep?

* Why not separate mutexes and condition variables?
while (count == BUFFER_SIZE) {
mutex_unlock (&mutex);
cond_wait (&nonfull);
mutex_lock (&mutex);

}
* Can end up stuck waiting when bad interleaving

Producer Consumer
while (count == BUFFER_SIZE)
mutex_unlock (&mutex);
mutex_lock (&mutex);
count--;
cond_signal (&nonfull);
cond_wait (&nonfull);

* Problem: cond_wait & cond_signal do not commute
31/44

Other thread package features

Alerts - cause exception in a thread

Timedwait - timeout on condition variable

Shared locks - concurrent read accesses to data

Thread priorities - control scheduling policy

- Mutex attributes allow various forms of priority donation
(will be familiar concept after lab 1)

Thread-specific global data
- Need for things like errno

Different synchronization primitives (later in lecture)

32/44

€ Memory consistency

@ The critical section problem

© Mutexes and condition variables
@ Implementing synchronization

© Alternate synchronization abstractions

33/44

* Implement mutex as straight-forward data structure?

typedef struct mutex {
bool is_locked;
thread_id_t owner;
thread_list_t waiters;

/* true if locked */
/* thread holding lock, if locked */
/* threads waiting for lock */

};

34/44

Implementing synchronization

* Implement mutex as straight-forward data structure?

typedef struct mutex {

bool is_locked; /* true if locked */

thread_id_t owner; /* thread holding lock, if locked */
thread_list_t waiters; /* threads waiting for lock */
lower_level_lock_t 1lk; /* Protect above fields */

};

- Fine, so long as we avoid data races on the mutex itself

* Need lower-level lock 1k for mutual exclusion

- Internally, mutex_x functions bracket code with
lock(&mutex->1k) ... unlock (&mutex->1k)

- Otherwise, data races! (E.g., two threads manipulating waiters)
* How to implement lower_level_lock_t?

- Could use Peterson’s algorithm, but typically a bad idea
(too slow and don’t know maximum number of threads)

34/44

Approach #1: Disable interrupts

e Only for apps with n : 1 threads (1 kthread)
- Cannot take advantage of multiprocessors
- But sometimes most efficient solution for uniprocessors

* Typical setup: periodic timer signal caught by thread
scheduler

* Have per-thread “do not interrupt” (DNI) bit
® lock (1k): setsthread’s DNI bit

¢ If timer interrupt arrives

- Check interrupted thread’s DNI bit

- If DNI clear, preempt current thread

- If DNI set, set “interrupted” (l) bit & resume current thread
* unlock (1k): clears DNI bit and checks I bit

- If I bitis set, immediately yields the CPU

35/44

Approach #2: Spinlocks

* Most CPUs support atomic read-[modify-]write

Example: int test_and_set (int *lockp);
- Atomically sets *lockp = 1 and returns old value

- Special instruction - no way to implement in portable C99
(C11 supports with explicit atomic_flag_tet_and_set function)

Use this instruction to implement spinlocks:

#define lock(lockp) while (test_and_set (lockp))
#define trylock(lockp) (test_and_set (lockp) == 0)
#define unlock(lockp) *lockp = O

Spinlocks implement mutex’s lower_level_lock_t

¢ Can you use spinlocks instead of mutexes?
- Wastes CPU, especially if thread holding lock not running
- Mutex functions have short C.S., less likely to be preempted
- On multiprocessor, sometimes good to spin for a bit, then yield

36/44

https://port70.net/~nsz/c/c11/n1570.html#7.17.8
https://en.cppreference.com/w/c/atomic/atomic_flag

Synchronization on x86

Test-and-set only one possible atomic instruction

x86 xchg instruction, exchanges reg with mem
- Can use to implement test-and-set

_test_and_set:

movl 4(%esp), hedx # Jedx = lockp

movl $1, Yeax # Y%eax = 1

xchgl Y%eax, (%edx) # swap (%eax, *lockp)
ret

CPU locks memory system around read and write

- Recall xchgl always acts like it has implicit 1ock prefix
- Prevents other uses of the bus (e.g., DMA)

Usually runs at memory bus speed, not CPU speed
- Much slower than cached read/buffered write

37/44

Synchronization on alpha

® 1d1_1 - load locked
st1l_c - store conditional (reg«0 if not atomic w. 1d1_1)

_test_and_set:
1dg_1 v0, 0(a0) # vO = *lockp (LOCKED)
bne v0, 1f # if (v0O) return
addq zero, 1, vO # v0 =1
stq_c v0, 0(a0) # xlockp = vO (CONDITIONAL)
beq v0, _test_and_set # if (failed) try again

mb

addq zero, zero, vO0 # return O
1:

ret zero, (ra), 1

* Note: Alpha memory consistency weaker than x86

- Want all CPUs to think memory accesses in C.S. happened after
acquiring lock, before releasing

- Memory barrier instruction mb ensures this (c.f. mfence on x86)
- See Why Memory Barriers for why alpha still worth understanding

38/44

https://www.scs.stanford.edu/22wi-cs212/sched/readings/alphahb.pdf
https://www.scs.stanford.edu/22wi-cs212/sched/readings/why-memory-barriers.pdf

Kernel Synchronization

e Should kernel use locks or disable interrupts?

* Old UNIX had 1 CPU, non-preemptive threads, no mutexes
- Interface designed for single CPU, so count++ etc. not data race
- ...Unless memory shared with an interrupt handler
int x = splhigh (); /* Disable interrupts */

/* touch data shared with interrupt handler ... */
splx (x); /* Restore previous state */

- C.f, intr_disable /intr_set_level in Pintos, and
preempt_disable / preempt_enable in linux

* Used arbitrary pointers like condition variables

- int [t]lsleep (void *ident, int priority, ...);

put thread to sleep; will wake up at priority (~cond_wait)
- int wakeup (void *ident);

wake up all threads sleeping on ident (~cond_broadcast)

39/44

https://www.scs.stanford.edu/22wi-cs212/pintos/pintos_6.html#SEC101
https://git.kernel.org/cgit/linux/kernel/git/stable/linux-stable.git/tree/Documentation/preempt-locking.txt

* Nowadays, should design for multiprocessors

- Evenif first version of OS is for uniprocessor
- Someday may want multiple CPUs and need preemptive threads

- That’s why Pintos uses sleeping locks
(sleeping locks means mutexes, as opposed to spinlocks)

e Multiprocessor performance needs fine-grained locks
- Want to be able to call into the kernel on multiple CPUs

¢ If kernel has locks, should it ever disable interrupts?

40/44

* Nowadays, should design for multiprocessors
- Evenif first version of OS is for uniprocessor

- Someday may want multiple CPUs and need preemptive threads
- That’s why Pintos uses sleeping locks
(sleeping locks means mutexes, as opposed to spinlocks)

e Multiprocessor performance needs fine-grained locks
- Want to be able to call into the kernel on multiple CPUs
¢ If kernel has locks, should it ever disable interrupts?

- Yes! Can’t sleep in interrupt handler, so can’t wait for lock
- So even modern OSes have support for disabling interrupts

- Often uses DNI trick when cheaper than masking interrupts in
hardware

40/44

€ Memory consistency

@ The critical section problem

© Mutexes and condition variables
@ Implementing synchronization

© Alternate synchronization abstractions

41/44

Semaphores [Dijkstra]

A Semaphore is initialized with an integer N

Provides two functions:

- sem_wait (S) (originally called P, called sema_down in Pintos)
- sem_signal (S) (originally called V, called sema_up in Pintos)

Guarantees sem_wait will return only N more times than
sem_signal called

- Example: If N == 1, then semaphore acts as a mutex with
sem_wait as lock and sem_signal as unlock

Semaphores give elegant solutions to some problems
- Unlike condition variables, wait & signal commute
Linux primarily uses semaphores for sleeping locks

- sema_init, down_interruptible,up,...

- Also weird reader-writer semaphores, rw_semaphore [Love]

42/44

http://www.cs.utexas.edu/users/EWD/transcriptions/EWD01xx/EWD123.html
https://www.scs.stanford.edu/22wi-cs212/pintos/pintos_6.html#SEC102
https://www.scs.stanford.edu/22wi-cs212/pintos/pintos_6.html#SEC102
http://www.linuxjournal.com/article/5833

Semaphore producer/consumer

¢ Initialize full to 0 (block consumer when buffer empty)
* Initialize empty to N (block producer when queue full)

void producer (void *ignored) {
for (5;) {
item *nextProduced = produce_item ();
sem_wait (&empty);
buffer [in] = nextProduced;
in = (in + 1) % BUFFER_SIZE;
sem_signal (&full);

¥
}
void consumer (void *ignored) {
for (5;) {
sem_wait (&full);
item *nextConsumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;
sem_signal (&empty);
consume_item (nextConsumed);
}
}

43/44

Various synchronization mechanisms

* Other more esoteric primitives you might encounter

- Plan 9 used a rendezvous mechanism
- Haskell uses MVars (like channels of depth 1)

* Many synchronization mechanisms equally expressive
- Pintos implements locks, condition vars using semaphores
- Could have been vice versa
- Can even implement condition variables in terms of mutexes

* Why base everything around semaphore implementation?

- High-level answer: no particularly good reason

- If you want only one mechanism, can’t be condition variables
(interface fundamentally requires mutexes)

- Because sem_wait and sem_signal commute, eliminates problem
of condition variables w/o mutexes

44/44

http://doc.cat-v.org/plan_9/4th_edition/papers/sleep

	Memory consistency
	The critical section problem
	Mutexes and condition variables
	Implementing synchronization
	Alternate synchronization abstractions

