
CS 112/212: Final Review
March 11, 2022



To be covered Today

• Memory Allocation
• Device I/O
• File Systems
• Security
• Virtual Machines

Topics
Covered in Midterm Review

• Processes and Threads
• Virtual Memory
• Concurrency
• Synchronization
• Linking



Memory Allocation

• Dynamically give programs arbitrary size chucks of memory

• The core fight: minimize fragmentation

• Allocation have different sizes and life-times leaving “holes” in the  
memory space

• Various allocation policies to try to mitigate

• Can use garbage collection in languages that control pointers



Ways for OS (drivers) to do IO
• Memory-mapped device registers

• Regular memory read/write interface except access go directly to a device’s  
registers

• Memory-mapped device memory

• Regular memory read/write interface except access go directly to a device’s  
internal memory

• Special instructions (e.g. inb, outb)

• Communicates with devices using specified “port” numbers

• DMA (Direct Memory Access)

• CPU offloads read/write of main memory to device/DMA engine



File systems

• Need a way to persist and organize data between restarts

• Associates names with bytes on disk

• Want an organization and naming that humans can remember

• Most file systems designed around disks

• Optimized for fast sequential access and slow random access

• Need to handle unexpected crashes



File systems on Disk
• How do you track the blocks associated with a file?

• Contiguous allocation “extent-based”

• Linked files

• Each block contains the location of the next block

• FAT (File Allocation Table)

• Like linked files but keep link information for all files in one (or two) blocks

• Indexed Files

• Keep an index for each file (inode)



Muti-level indexed files
• Files divided into blocks of 4 Kbytes

• Blocks of each file managed with multi-  
level arrays of block pointers

• File descriptor (i-node) = 14 block  
pointers, initially 0 ("no block")

• First 12 point to data blocks (direct blocks)

• Next entry points to an indirect block  
(contains 1024 4-byte block pointers)

• Last entry points to a doubly-indirect block

• Maximum file length is fixed, but large

• Indirect blocks aren't allocated until  
needed



File Naming and Directories

• Directory contains a mapping from name to an inode

• Directories are just files with a specified format

• Multiple directories can contain file names that point to the same  
inode (hard-links)

• Names can also point to a string that resolves at time of access  
(soft-links)



Handling Crashes

• Machine could shut down at literally any point

• Need to make sure that the file system is never corrupted

• Ok with (some) data loss

• NOT ok with corruption

• Possible solution: Fix corruption (fsck)

• After crash fsck can be run to try to fix disk corruption and clean up the disk

• Scans over the entire disk looking for orphaned files, leaked disk blocks, etc

• Issue: need to make sure that no corruption can occur that is beyond repair



Minimizing Corruption
• Ordered Updates

• Ensure write are permitted back to disk in an order that is recoverable

• e.g. add the new inode before updating the directory

• Soft Updates

• Update order may create cycles

• Break cycles by temporarily roll back all changes that created the cycle

• Journaling

• Allow operations the act as though they are atomic

• Use a write-ahead log to persist the intent; replay the log if there is a crash



Networking

• Allow two applications on different machines to communicate

• OS provides abstraction for communication

• Handles packaging, sending, unpacking, and delivering of information

• TCP implemented by the kernel to provide a “reliable pipe”  
abstraction over an unreliable network

• The user-level interface provided is called a socket

• Endpoints are named by an IP-address and 16-bit port



Network Layering
• Networking protocols are organized in layers

• Application data wrapped in TCP layer

• Contains information for implementing reliable delivery

• TCP packet wrapped in IP packet

• Contains information for routing packets between networks

• IP packet wrapped in link layer protocol (typically ethernet)

• Contains information for delivering packets within a network

• Layers are unwrapped to deliver data to the application



Networking Implementation
• mbuf used to store packet data

• Packets made up of multiple mbufs

• mbufs are basically linked-lists of small buffers

• protosw structure as abstract network protocol interface

• Goal: abstract away differences between protocols

• In C++, might use virtual functions on a generic socket struct

• Here just put function pointers in protosw structure



• How do you limit access to resources (files, devices, etc.)?

• Access Control Lists

• Each “object” has an associated list of who has access

• OS checks that a user is on the list before granting access to the object

Basic Security



Basic Security Issues
• setuid: how to allow partial privileges?

• e.g. what to allow the user to change their own password in the  
password file but don’t want the allow reading the password file

• setuid allows a program to run at with the effective permissions of the  
files owner

• TOCTOU (Time-of-check, Time-of-use) bug

• e.g. first check if you are allowed to execute, then execute

• Problem: attacker can change the state between the check and the  
execution



Advanced Security

• Discretionary Access Control (DAC)

• Prevents unauthorized access to resource

• Does NOT prevent authorized access from leaking information

• e.g. ACL

• Mandatory Access Control (MAC)

• Prevents both unauthorized access and unauthorized disclosure

• e.g. stop a infected virus scanner from leaking your data



Mandatory Access Control (MAC)
• A security level or label is a pair(c,s) where:

• c=classification – E.g., 1=unclassified,2=secret,3=topsecret

• s=category-set – E.g., Nuclear, Crypto

• (c1,s1) dominates (c2,s2) iff c1≥c2 and s1⊇s2

• Subjects and objects are assigned security levels

• Prevent leaking classified by checking the dominates relationship

• e.g. kill any process that attempts to write to a with security level (c′,s′) if it has  
already read from a file with security level (c,s) where (c,s) dominates (c′,s′)



LOMAC (Low water Mark Access Control)

• LOMAC’s goal: make MAC more palatable

• Concentrates on Integrity

• More important goal for many settings

• E.g., don’t want viruses tampering with all your file

• Security: Low-integrity subjects cannot write to high integrity objects

• Subjects are jobs (essentially processes)

• Each subject labeled with an integrity number (e.g., 1, 2)

• Higher numbers mean more integrity



Advanced Security Issue: Side Channels
• Even with access controls process can communicate in an  

unauthorized manner

• Covert storage channels

• e.g., high program inherits file descriptor-Can pass 4-bytes of information  
to low program in file offset

• Timing channels

• e.g. use high and low CPU utilization to single 1s and 0s; monitor  
progress of busy loop to detect CPU utilization

• In general, can only hope to bound bandwidth of covert  
channels



Operating Systems vs Virtual Machines
• OS and Virtual Machine allow sharing of hardware with 

protections

• OS exposes hardware through a process abstraction

• Makes finite resources (memory, # CPU cores) appear much larger

• Abstracts hardware to makes applications portable

• Protects processes and users from one another

• Virtual machine exposes hardware through a hardware abstraction

• Makes hardware resources appear larger or smaller

• Allows almost any software {OS + Apps} to run

• Protects {OS + Apps} from each other



Virtual Machine
• Thin layer of software that virtualizes the hardware

Hardware

Virtual Machine Monitor (VMM)

OS OS OS

App App App App App



Virtual Machines
• Benefits

• Software compatibility: any OS/App can run (even really old ones)

• Hardware sharing: allow multiple servers to run on the same hardware

• Ways to virtualize

• Complete Machine Simulation (too slow)

• Basics

• Binary Translation

• Hardware-assisted virtualization



VMM Basics
• CPU Virtualization

• Guest OS to runs in user mode

• Trap to VMM when Guest OS does sensitive things

• Virtual Memory Virtualization

• Guest OS to controls Guest Virtual to Guest Physical Address mapping

• VMM controls Guest Physical to Host Physical Mapping

• I/O Device Virtualization

• Simulate device behavior



Virtual Machine Implementations
• Binary translation

• Dynamically rewrite code to replace sensitive instructions with jumps  
into the VMM

• Most instructions are not sensitive so they can be translated identically

• Hardware-assisted virtualization

• Hardware supports “guest mode”

• VMM transfers control to guest using new “vmrun” instruction

• Hardware defines VMCB control bits to tell the CPU which instructions  
should cause guest mode to “EXIT”



• Memory Allocation
• Device I/O
• File Systems
• Security
• Virtual Machines

Topics

• Processes and Threads
• Virtual Memory
• Concurrency
• Synchronization
• Linking



Good luck!


