* Disk = First state we’ve seen that doesn’t go away

* File systems: traditionally hardest part of 0OS
- More papers on FSes than any other single topic

* Main tasks of file system:

- Associate bytes with name (files)
- Associate names with each other (directories)

- So: Where all important state ultimately resides
¢ Slow (milliseconds access vs. nanoseconds for memory)

- Don’t go away (ever) normg':l)légg Processor speed: 2 x/18mo
- Can implement file systems on disk, over network, in memory, in Disk I
non-volatile ram (NVRAM), on tape, w/ paper. isk access time: 7%/yr

- We'll focus on disk and generalize later

year
* Today: files, directories, and a bit of performance * Huge (100-1,000x bigger than memory)
- How to organize large collection of ad hoc information?
- File System: Hierarchical directories, Metadata, Search

1/38 2/38

» Disk reads/writes in terms of sectors, not bytes

MLC NAND - Read/write single sector or adjacent groups
Disk Flash DRAM
Smallest write sector sector byte @
Atomic write sector sector byte/word
Random read 8ms 3-10 ps 50 ns * How to write a single byte? “Read-modify-write”
Random‘wrlte 8 ms 9-11 s 50ns - Read in sector containing the byte :-:
Sequential read 200 MB/s 550-2500 MB/s | > 10 GB/s - Modify that byte
Sequential write 200 MB/s | 520-1500 MB/s* | > 10 GB/s . . . :-:
Cost $0.02/GB $0.07-0.20/GB $4/GiB - erte. entire sector E)ack to disk .
Persistence Non-volatile | Non-volatile Volatile - Key: if cached, don’t need to read in
* Sector = unit of atomicity. I]

*Flash write performance degrades over time - Sector write done completely, even if crash in middle
(disk saves up enough momentum to complete)

e Larger atomic units have to be synthesized by 0S
3/38 4/38

Some useful trends Files: named bytes on disk

* Disk bandwidth and cost/bit improving exponentially
- Similar to CPU speed, memory size, etc. * File abstraction:

Seek time and rotational delay improving very slowly - User’s view: named sequence of bytes

- Why? require moving physical object (disk arm) foo.c E g
’ L=

* Disk accesses a huge system bottleneck & getting worse

- Bandwidth increase lets system (pre-)fetch large chunks for about - FS’sview: collection of disk blocks
the same cost as small chunk. - File system’s job: translate name & offset to disk blocks:
- Trade bandwidth for latency if you can get lots of related stuff. {file, oﬁset}—>—>disk address
* Desktop memory size increasing faster than typical workloads . .
- More and more of workload fits in file cache * File operations:
- Disk traffic changes: mostly writes and new data - Create afile, delete afile
* Memory and CPU resources increasing - Read from file, write to file
- Use memory and CPU to make better decisions * Want: operations to have as few disk accesses as possible &
- Complex prefetching to support more 10 patterns have minimal space overhead (group related things)

- Delay data placement decisions reduce random |0
5/38 6/38

¢ In both settings, want location transparency

o Like page tables, file system metadata are simply data - Application shouldn’t care about particular disk blocks or physical
structures used to construct mappings memory locations

* In some ways, FS has easier job than than VM:

- CPU time to do FS mappings not a big deal (= no TLB)
- Page tables deal with sparse address spaces and random access,
files often denser (0. . . filesize — 1), ~sequentially accessed

- Page table: map virtual page # to physical page #

- File metadata: map byte offset to disk block address
512—>—>8003121 * In some ways FS’s problem is harder:

Directory: map name to disk address of file # - Each layer of translation = potential disk access
y: map - Space a huge premium! (But disk is huge?!?!) Reason?

foo.c—>—>44 Cache space never enough; amount of data you can get in one
fetch never enough

- Range very extreme: Many files <10 KB, some files many GB

7/38 8/38

Some working intuitions Common addressing patterns

* FS performance dominated by # of disk accesses
- Say each access costs ~10 milliseconds
- Touch the disk 100 extra times = 1 second
- Cando billions of ALU ops in same time!

* Sequential:
- File data processed in sequential order
- By far the most common mode

. - Example: editor writes out new file, compiler reads in file, etc
* Access cost dominated by movement, not transfer:

seek time + rotational delay + # bytes/disk-bw

* Random access:
- Address any block in file directly without passing through

- 1sector: 5ms+4ms+ 5us (~ 512 B/(100 MB/s)) ~ 9ms predecessors
- 50 sectors: 5ms +4ms +.25ms = 9.25ms - Examples: data set for demand paging, databases
- Can get 50x the data for only ~3% more overhead! * Keyed access
* Observations that might be helpful: - Search for block with particular values
- All blocks in file tend to be used together, sequentially - Examples: associative data base, index
- Allfiles in a directory tend to be used together - Usually not provided by 0S

- Allnames in a directory tend to be used together
9/38 10/38

Problem: how to track file’s data Straw man: contiguous allocation

o “Extent-based”: allocate files like segmented memory

¢ Disk management: - When creating a file, make the user pre-specify its length and
allocate all space at once

- Inode contents: location and size

- Need to keep track of where file contents are on disk
- Must be able to use this to map byte offset to disk block)
what happens if

- Structure tracking a file’s sectors is called an index node or inode file ¢ needs 2
- Inodes must be stored on disk, too ? F: sectors???
* Things to keep in mind while designing file structure: file a/(bqse=1,|en=3) file b (base=5,len=2)

- Most files are small
- Much of the disk is allocated to large files
- Many of the I/O operations are made to large files * Pros?

- Want good sequential and good random access
(what do these require?)

* Example: IBM 0S/360

e Cons? (Think of corresponding VM scheme)

11/38 12/38

Straw man: contiguous allocation Straw man #2: Linked files

* “Extent-based”: allocate files like segmented memory
- When creating a file, make the user pre-specify its length and
allocate all space at once
- Inode contents: location and size
what happens if
file ¢ needs 2
/: | sectors???
file a (base=1,len=3) file b (base=5,len=2)

* Example: IBM 0S/360
* Pros?
- Simple, fast access, both sequential and random

e Cons? (Think of corresponding VM scheme)
- External fragmentation

Straw man #2: Linked files Example: DOS FS (simplified)

* Basically a linked list on disk.
- Keep a linked list of all free blocks
- Inode contents: a pointer to file’s first block
- In each block, keep a pointer to the next one

how do you find
he last block in a?

v

[]
L LT
__J

|
e)
file a (base=1) file b (base=5)

* Examples (sort-of): Alto, TOPS-10, DOS FAT
* Pros?
- Easy dynamic growth & sequential access, no fragmentation
e Cons?
- Linked lists on disk a bad idea because of access times
- Random very slow (e.g., traverse whole file to find last block)
- Pointers take up room in block, skewing alignment

FAT discussion FAT discussion

* Entry size = 16 bits
- What’s the maximum size of the FAT?
- Given a 512 byte block, what’s the maximum size of FS?
- One solution: go to bigger blocks. Pros? Cons?
* Space overhead of FAT is trivial:
- 2 bytes /512 byte block = ~ 0.4% (Compare to Unix)
 Reliability: how to protect against errors?
- Create duplicate copies of FAT on disk
- State duplication a very common theme in reliability
* Bootstrapping: where is root directory?

- Fixed location on disk: | FAT| (op?) FATlroot dirl |

¢ Basically a linked list on disk.
- Keep a linked list of all free blocks

- Inode contents: a pointer to file’s first block
- In each block, keep a pointer to the next one

v

[]
L LT
| S—

e ,
file a (base=1) file b (base=5)

how do you find
he last block in a?

* Examples (sort-of): Alto, TOPS-10, DOS FAT

* Pros?

e Cons?

12/38

13/38

¢ Linked files with key optimization: puts links in fixed-size “file
allocation table” (FAT) rather than in the blocks.

Directory (5) FAT (16-bit entries)

a:6 0| free
b: 2 eof
1
eof
3
eof
4

o b WN -

filea

e Still do pointer chasing, but can cache entire FAT so can be

cheap compared to disk access

13/38

e Entry size = 16 bits

14/38

- What’s the maximum size of the FAT? 65,536 entries
- Given a 512 byte block, what’s the maximum size of FS? 32 MiB
- One solution: go to bigger blocks. Pros? Cons?

* Space overhead of FAT is trivial:

- 2 bytes /512 byte block = ~ 0.4% (Compare to Unix)

* Reliability: how to protect against errors?

- Create duplicate copies of FAT on disk

- State duplication a very common theme in reliability

* Bootstrapping: where is root directory?

- Fixed location on disk: | FATl (opt) FAT Ir‘oo‘r dirl |

15/38

15/38

Another approach: Indexed files Another approach: Indexed files

e Each file has an array holding all of its block pointers e Each file has an array holding all of its block pointers
- Just like a page table, so will have similar issues - Just like a page table, so will have similar issues
- Max file size fixed by array’s size (static or dynamic?) - Max file size fixed by array’s size (static or dynamic?)
- Allocate array to hold file’s block pointers on file creation - Allocate array to hold file’s block pointers on file creation
- Allocate actual blocks on demand using free list - Allocate actual blocks on demand using free list

e Pros? filea file b ¢ Pros? filea file b

- Both sequential and random access easy

* Cons? e Cons?
- Mapping table requires large chunk of contiguous space
...Same problem we were trying to solve initially

16/38 16/38

Indexed files Multi-level indexed files (old BSD FS)

* Solve problem of first block access slow

* Issues same as in page tables

with another array, ... Downside?

—— [1Tndirect blks
le
ptr2 — [

ptr 13
pir 14

FTCTCI T TTTTTTTT1+—2720 entries! * inode = 14 block pointers + “stuff”
(LT T e doteblocks Tndirect biock
stuff I

2732 file size / 4K blocks - Brr] _/-

; e file cive = . Ptr 1 1 ptr 2

Large possible file size = lots of unused entries /-
- Large actual size? table needs large contiguous disk chunk —%év- ptr 128/-
¢ Solve identically: small regions with index array, this array otr 4

e I
pir 128 Double indirect block

17/38 18/38

Old BSD FS discussion More about inodes

* Inodes are stored in a fixed-size array
- Size of array fixed when disk is initialized; can’t be changed
- Lives in known location, originally at one side of disk:

* Pros:
- Simple, easy to build, fast access to small files @ ———
- Maximum file length fixed, but large. Inode array| file blocks ... L
¢ Cons: - Now is smeared across it (why?)
- What is the worst case # of accesses?
- What is the worst-case space overhead? (e.g., 13 block file) /\ /\ /\
* An empirical problem: \ 2 A 2 PR
\ _

- Because you allocate blocks by taking them off unordered freelist,

metadata and data get strewn across disk - Theindex of an inode in the inode array called an i-number

- Internally, the OS refers to files by inumber
- When file is opened, inode brought in memory
- Written back when modified and file closed or time elapses

19/38 20/38

e Approach 1: Single directory for entire system

- Put directory at known location on disk

- Directory contains (name, inumber) pairs
- “Spend all day generating data, come back the next morning, want - If one user uses a name, no one else can
to use it.” - F. Corbatd, on why files/dirs invented

Problem:

- Many ancient personal computers work this way

* Approach 0: Users remember where on disk their files are « Approach 2: Single directory for each user

- E.g., like remembering your social security or bank account # - still clumsy, and 1s on 10,000 files is a real pain

Yuck. People want human digestible names
- We use directories to map names to file blocks

e Approach 3: Hierarchical name spaces
- Allow directory to map names to files or other dirs
Next: What is in a directory and why? - File system forms a tree (or graph, if links allowed)

- Large name spaces tend to be hierarchical (ip addresses, domain
names, scoping in programming languages, etc.)

21/38 22/38
Hierarchical Unix Naming magic
* Used since CTSS (1960s) afs bin cdrom dev skin tmp * Bootstrapping: Where do you start looking?
- Unix picked up and used really nicely awk chmod chown - Root directory always inode #2 (0 and 1 historically reserved)
* Directories stored on disk just like regular files Special names:
- Special inode type byte setto directory <name. inode#> - Root dil’eCtOl’y: “m (fIXed by kernel—e.g., inode 2)
- Users can read just like any other file <afs,1021> - Current directory: “.” (actual directory entry on disk)
(historically) <tmp, 1020> - Parentdirectory: “..” (actual directory entry on disk)
- Only special syscalls can write (why?) <bin,1022> * Some special names are provided by shell, not FS:
- Inodes at fixed disk location <cdrom,4123> - User’s home directory: “~”
<dev,1001> . . .
- File pointed to by the index may be <sbi1‘i 1011> - Globbing: “foo.*” expands to all files starting “foo.”
another directory : e Using the given names, only need two operations to navigate
- Makes FS into hierarchical tree (what : the entire name space:

needed to make a DAG?)

« simple, plus speeding up file ops speeds up dir ops! - cd name: move into (change context to) directory name
) .

- 1s: enumerate all names in current directory (context)

23/38 24/38

Unix example: /a/b/c.c Default context: working directory

Name space Physical organization

° Cumbersome to constantly specify full path names

disk - In Unix, each process has a “current working directory” (cwd)

- File names not beginning with “/” are assumed to be relative to
cwd; otherwise translation happens as before

- Editorial: root, cwd should be regular fds (like stdin, stdout, ...)
with openat syscall instead of open

wun

¢ Shells track a default list of active contexts

What inode holds file for - A“search path” for programs you run
a b?cc? - Given a search path A : B : C, a shell will check in A, then check in B,

then checkin C
- Can escape using explicit paths: “./foo”

c.c

e Example of locality

25/38 26/38

Hard and soft links (synonyms) Case study: speeding up FS

* More than one dir entry can refer to a given file

- Unix stores count of pointers
(“hard links”) to inode

- Tomake: “1n foo bar” createsa
synonym (bar) for file foo

foo bar «..

N/

inode #31279
refcount=2

* Soft/symbolic links = synonyms for names

- Point to a file (or dir) name, but object can be deleted from

underneath it (or never even exist).

- Unix implements like directories: inode has special)
“symlink” bit set and contains name of link target ..~

1n -s /bar baz

baz

—

"/1)211”'
refcount=1

- When the file system encounters a symbolic link it automatically
translates it (if possible).

A plethora of performance costs Problem: Internal fragmentation

* Blocks too small (512 bytes)

- File index too large

- Too many layers of mapping indirection
- Transfer rate low (get one block at time)

* Poor clustering of related objects:

Consecutive file blocks not close together
Inodes far from data blocks
Inodes for files in same directory not close together

Poor enumeration performance: e.g., “1s -1”, “grep foo *.c”

¢ Usability problems
- 14-character file names a pain
- Can’t atomically update file in crash-proof way

* Next: how FFS fixes these (to a degree) [McKusic]

Solution: fragments Clustering related objects in FFS

* BSD FFS:
- Has large block size (4096 or 8192)

- Allow large blocks to be chopped into small ones (“fragments”)

- Used for little files and pieces at the ends of files

y

e
I “urE

* Best way to eliminate internal fragmentation?

- Variable sized splits of course
- Why does FFS use fixed-sized fragments (1024, 2048)?

27/38

29/38

31/38

¢ Original Unix FS: Simple and elegant:

I inodes

data blocks (512 bytes)

sup'erblock

* Components:
- Data blocks

disk

- Inodes (directories represented as files)

- Hard links

- Superblock. (specifies number of blks in FS, counts of max # of

files, pointer to head of free list)

* Problem: slow

- Only gets 20Kb/sec (2% of disk maximum) even for sequential disk

transfers!

28/38

* Block size was too small in Unix FS

* Why not just make block size bigger?

Block size
512

1024
2048
4096

1MB

space wasted
6.9%

11.8%

22.4%

45.6%

99.0%

file bandwidth
2.6%

3.3%

6.4%

12.0%

97.2%

* Bigger block increases bandwidth, but how to deal with
wastage (“internal fragmentation”)?

- Use idea from malloc: split unused portion.

30/38

* Group sets of consecutive cylinders into “cylinder groups”

Cylinder group 1

cylinder group 2\

- Key: can access any block in a cylinder without performing a seek.
Next fastest place is adjacent cylinder.

- Tries to put everything related in same cylinder group
- Tries to put everything not related in different group

32/38

Clustering in FFS What does disk layout look like?

Tries to put sequential blocks in adjacent sectors
- (Access one block, probably access next)

file b

Tries to keep inode in same cylinder group as file data:
- (If you look at inode, most likely will look at data too)

file a

Tries to keep all inodes in a dir in same cylinder group
- Access one name, frequently access many, e.g., “1s -1”

Old Unix (& DOS): Linked list of free blocks
- Just take a block off of the head. Easy.

(]

head— >

33/38

- Bad: free list gets jumbled over time. Finding adjacent blocks hard

and slow

FFS: switch to bit-map of free blocks
- 1010101111111000001111111000101100
- Easier to find contiguous blocks.
- Small, so usually keep entire thing in memory
- Time to find free block increases if fewer free blocks

Performance improvements:
- Able to get 20-40% of disk bandwidth for large files
- 10-20x original Unix file system!
- Better small file performance (why?)

Is this the best we can do? No.

Block based rather than extent based
- Could have named contiguous blocks with single pointer and
length (Linux ext[2-4]fs, XFS)
Writes of metadata done synchronously

- Really hurts small file performance

- Make asynchronous with write-ordering (“soft updates”) or
logging/journaling... more next lecture

- Play with semantics (/tmp file systems)

35/38

37/38

¢ Each cylinder group basically a mini-Unix file system:

oy
l P superblocks
/?ﬁ%k#neSM

inodes data blocks

° How how to ensure there’s space for related stuff?
- Place different directories in different cylinder groups
- Keep a “free space reserve” so can allocate near existing things

- When file grows too big (1MB) send its remainder to different
cylinder group.

34/38

e Usually keep entire bitmap in memory:
- 4G disk / 4K byte blocks. How big is map?

* Allocate block close to block x?
- Check for blocks near bmap [x/32]
- If disk almost empty, will likely find one near
- As disk becomes full, search becomes more expensive and less
effective
* Trade space for time (search time, file access time)
* Keep areserve (e.g, 10%) of disk always free, ideally scattered
across disk
- Don’t tell users (df can get to 110% full)
- Only root can allocate blocks once FS 100% full
- With 10% free, can almost always find one of them free

36/38

¢ Obvious:
- Bigfile cache
Fact: no rotation delay if get whole track.
- How to use?
Fact: transfer cost negligible.
- Recall: Can get 50x the data for only ~3% more overhead
- 1sector: 5ms+4ms+ 5us (~ 512 B/(100 MB/s)) ~ 9ms
- 50 sectors: 5ms +4ms +.25ms =9.25ms
- How to use?
Fact: if transfer huge, seek + rotation negligible
- LFS: Hoard data, write out MB at a time
Next lecture:
- FFSin more detail
- More advanced, modern file systems

38/38

