
CS212 – Operating Systems

Instructor: David Mazières
CAs: Matthew Hogan, Bharat Khandelwal, Jack Nichols,

Ailyn Tong, TBD

Stanford University

1 / 36

Outline

1 Administrivia

2 Substance

2 / 36

Remote teaching

• Please interrupt me if something is wrong!
- Chat not a great way to get my attention because font too small

• Class currently listed as remote fore entire quarter, but. . .
- I would like to add in-person lectures if practical and no

disadvantage for remote participation
• Use zoom raised hand to interact in lecture
• Enable your camera in class if you feel comfortable

- Please enable virtual backgrounds if available
• Feel free to join lecture under a pseudonym

- Don’t have to be logged into Stanford to join given link/password
• Audio quality can help with remote collaboration

- Wired lapel mics sound much better than bluetooth headsets like
the $22 Purple Panda PC/USB kit (financial assistance available)

3 / 36

CS212, CS140, or CS112?

• CS212 is the new (preferred) name for CS140
• Are there reasons to enroll in CS140? Yes, but not great ones

- Have a legacy program sheet & don’t want to petition for CS212
- Interviewing now, worried employers scan résumés for CS140

• What is CS112? Just the labs, few lectures, no exams
- CS112 students welcome to attend any lecture
- Recommended lectures/sections marked in syllabus
- Most CS212 lectures same as CS111
- You must not take CS112 unless you have already taken CS111
- You must not take CS212 if you have taken CS111

• Why split CS140 into CS111 and CS112?
- Given volume of material, 2 classes appropriate for undergrad
- Allow alternatives to CS112, such as CS140e

4 / 36

Administrivia

• Class web page: http://cs212.scs.stanford.edu/
- All assignments, handouts, lecture notes on-line

• Textbook: Operating System Concepts, 8th Edition,
by Silberschatz, Galvin, and Gagne

- Out of print and highly optional (weening class from textbook)
• Goal is to make lecture slides the primary reference

- Almost everything I talk about will be on slides
- PDF slides contain links to further reading about topics
- Please download slides from class web page
- Will try to post before lecture for taking notes

(but avoid calling out answers if you read them from slides)

5 / 36

Administrivia 2

• Edstem is the main discussion forum
• Staff mailing list: cs212-staff@scs.stanford.edu

- Please use edstem for any questions others could conceivably have
- Otherwise, please mail staff list, not individual staff members

• CA split office hours, first round-robin, then queuestatus
- Whenever possible, please ask non-private questions in RR portion

• Key dates:
- Lectures: MW 1:30pm–3:00pm, zoom only at first
- Section: 6 Fridays, starting this Friday 10am
- Midterm: Monday, February 7, in class (1:30pm-3:00pm)
- Final: Thursday, March 17, 12:15pm-3:15pm
- We’ll accommodate exam conflicts, email cs212-staff a week prior

• Exams open note, but not open book
- Bring notes, slides, any printed materials except textbook

6 / 36

Course topics

• Threads & Processes
• Concurrency & Synchronization
• Scheduling
• Virtual Memory
• I/O
• Disks, File systems
• Protection & Security
• Virtual machines
• Note: Lectures will often take Unix as an example

- Most current and future OSes heavily influenced by Unix
- Won’t talk much about Windows

7 / 36

Course goals

• Introduce you to operating system concepts
- Hard to use a computer without interacting with OS
- Understanding the OS makes you a more effective programmer

• Cover important systems concepts in general
- Caching, concurrency, memory management, I/O, protection

• Teach you to deal with larger software systems
- Programming assignments much larger than many courses
- Warning: Many people will consider course very hard
- In past, majority of people report ≥15 hours/week

• Prepare you to take graduate OS classes (CS240, 240[a-z])

8 / 36

Programming Assignments

• Implement parts of Pintos operating system
- Built for x86 hardware, you will use hardware emulators

• One setup homework (lab 0) due this Friday
• Four two-week implementation projects:

- Threads
- User processes
- Virtual memory
- File system

• Lab 1 distributed at end of this week
- Attend section this Friday for project 1 overview

• Implement projects in groups of up to 3 people
- CS112/CS212 mixed groups okay
- Disclose to partners if you are plan to take class pass/fail
- Use “Forming Teams” category on edstem to meet people

9 / 36

Grading

• No incompletes
- Talk to instructor ASAP if you run into real problems

• Final grades posted March 22
• 50% of CS212 grade based on exams using this quantity:
max

(
midterm > 0 ? final : 0, 1

2 (midterm + final)
)

• 50% of CS212 grade, 100% of CS112 grade from projects
- For each project, 50% of score based on passing test cases
- Remaining 50% based on design and style

• Most people’s projects pass most test cases
- Please, please, please turn in working code, or no credit here

• Means design and style matter a lot
- Large software systems not just about producing working code
- Need to produce code other people can understand
- That’s why we have group projects

10 / 36

Style

• Must turn in a design document along with code
- We supply you with templates for each project’s design doc

• CAs will manually inspect code for correctness
- E.g., must actually implement the design
- Must handle corner cases (e.g., handle malloc failure)

• Will deduct points for error-prone code w/o errors
- Don’t use global variables if automatic ones suffice
- Don’t use deceptive names for variables

• Code must be easy to read
- Indent code, keep lines and (when possible) functions short
- Use a uniform coding style (try to match existing code)
- Put comments on structure members, globals, functions
- Don’t leave in reams of commented-out garbage code

11 / 36

Assignment requirements

• Do not look at other people’s solutions to projects
- We reserve the right to run MOSS on present and past submissions
- Do not publish your own solutions in violation of the honor code
- That means using (public) github can get you in big trouble

• You may read but not copy other OSes
- E.g., Linux, OpenBSD/FreeBSD, etc.

• Cite any code that inspired your code
- As long as you cite what you used, it’s not cheating
- In worst case, we deduct points if it undermines the assignment

• Projects due 10am Fridays
- Free extension to 5pm if you attend/watch section

• Ask cs212-staff for extension if you run into trouble
- Be sure to tell us: How much have you done? How much is left?

When can you finish by?
12 / 36

Outline

1 Administrivia

2 Substance

13 / 36

What is an operating system?

• Layer between applications and hardware

Hardware

OS

emacs firefoxgcc

• Makes hardware useful to the programmer
• [Usually] Provides abstractions for applications

- Manages and hides details of hardware
- Accesses hardware through low/level interfaces unavailable to

applications
• [Often] Provides protection

- Prevents one process/user from clobbering another

14 / 36

Why study operating systems?

• Operating systems are a mature field
- Most people use a handful of mature OSes
- Hard to get people to switch operating systems
- Hard to have impact with a new OS

• Still open questions in operating systems
- Security – Hard to achieve security without a solid foundation
- Scalability – How to adapt concepts when hardware scales 10×

(fast networks, low service times, high core counts, big data. . .)
• High-performance servers are an OS issue

- Face many of the same issues as OSes, sometimes bypass OS
• Resource consumption is an OS issue

- Battery life, radio spectrum, etc.
• New “smart” devices need new OSes

15 / 36

Primitive Operating Systems

• Just a library of standard services [no protection]

OS

App

Hardware

- Standard interface above hardware-specific drivers, etc.
• Simplifying assumptions

- System runs one program at a time
- No bad users or programs (often bad assumption)

• Problem: Poor utilization
- . . .of hardware (e.g., CPU idle while waiting for disk)
- . . .of human user (must wait for each program to finish)

16 / 36

Multitasking

Hardware

OS

emacs firefox

• Idea: More than one process can be running at once
- When one process blocks (waiting for disk, network, user input,

etc.) run another process
• Problem: What can ill-behaved process do?

- Go into infinite loop and never relinquish CPU
- Scribble over other processes’ memory to make them fail

• OS provides mechanisms to address these problems
- Preemption – take CPU away from looping process
- Memory protection – protect processes’ memory from one another

17 / 36

Multitasking

Hardware

OS

emacs firefox

• Idea: More than one process can be running at once
- When one process blocks (waiting for disk, network, user input,

etc.) run another process
• Problem: What can ill-behaved process do?

- Go into infinite loop and never relinquish CPU
- Scribble over other processes’ memory to make them fail

• OS provides mechanisms to address these problems
- Preemption – take CPU away from looping process
- Memory protection – protect processes’ memory from one another

17 / 36

Multi-user OSes

Hardware

OS

emacs firefox

• Many OSes use protection to serve distrustful users/apps
• Idea: With N users, system not N times slower

- Users’ demands for CPU, memory, etc. are bursty
- Win by giving resources to users who actually need them

• What can go wrong?

- Users are gluttons, use too much CPU, etc. (need policies)
- Total memory usage greater than machine’s RAM (must virtualize)
- Super-linear slowdown with increasing demand (thrashing)

18 / 36

Multi-user OSes

Hardware

OS

emacs firefox

• Many OSes use protection to serve distrustful users/apps
• Idea: With N users, system not N times slower

- Users’ demands for CPU, memory, etc. are bursty
- Win by giving resources to users who actually need them

• What can go wrong?
- Users are gluttons, use too much CPU, etc. (need policies)
- Total memory usage greater than machine’s RAM (must virtualize)
- Super-linear slowdown with increasing demand (thrashing)

18 / 36

Protection

• Mechanisms that isolate bad programs and people
• Pre-emption:

- Give application a resource, take it away if needed elsewhere
• Interposition/mediation:

- Place OS between application and “stuff”
- Track all pieces that application allowed to use (e.g., in table)
- On every access, look in table to check that access legal

• Privileged & unprivileged modes in CPUs:
- Applications unprivileged (unprivileged usermode)
- OS privileged (privileged supervisor/kernelmode)
- Protection operations can only be done in privileged mode

19 / 36

Typical OS structure

P1 P2 P3 P4user
kernel

driver driver driver

NIC console disk

VM IPC
scheduler file

system
sockets
TCP/IP

• Most software runs as user-level processes (P[1-4])
- process ≈ instance of a program

• OS kernel runs in privilegedmode (orange)
- Creates/deletes processes
- Provides access to hardware

20 / 36

System calls

• Applications can invoke kernel through system calls
- Special instruction transfers control to kernel
- . . .which dispatches to one of few hundred syscall handlers

21 / 36

System calls (continued)

• Goal: Do things application can’t do in unprivileged mode
- Like a library call, but into more privileged kernel code

• Kernel supplies well-defined system call interface
- Applications set up syscall arguments and trap to kernel
- Kernel performs operation and returns result

• Higher-level functions built on syscall interface
- printf, scanf, fgets, etc. all user-level code

• Example: POSIX/UNIX interface
- open, close, read, write, ...

22 / 36

System call example

• Standard library implemented in terms of syscalls
- printf – in libc, has same privileges as application
- callswrite – in kernel, which can send bits out serial port

23 / 36

UNIX file system calls

• Applications “open” files (or devices) by name
- I/O happens through open files

• int open(char *path, int flags, /*int mode*/...);

- flags: O_RDONLY, O_WRONLY, O_RDWR
- O_CREAT: create the file if non-existent
- O_EXCL: (w. O_CREAT) create if file exists already
- O_TRUNC: Truncate the file
- O_APPEND: Start writing from end of file
- mode: final argument with O_CREAT

• Returns file descriptor—used for all I/O to file

24 / 36

Error returns

• What if open fails? Returns -1 (invalid fd)
• Most system calls return -1 on failure

- Specific kind of error in global int errno
- In retrospect, bad design decision for threads/modularity

• #include <sys/errno.h> for possible values
- 2 = ENOENT “No such file or directory”
- 13 = EACCES “Permission Denied”

• perror function prints human-readable message
- perror ("initfile");
→ “initfile: No such file or directory”

25 / 36

Operations on file descriptors

• int read (int fd, void *buf, int nbytes);

- Returns number of bytes read
- Returns 0 bytes at end of file, or -1 on error

• int write (int fd, const void *buf, int nbytes);

- Returns number of bytes written, -1 on error
• off_t lseek (int fd, off_t pos, int whence);

- whence: 0 – start, 1 – current, 2 – end
▷ Returns previous file offset, or -1 on error

• int close (int fd);

26 / 36

File descriptor numbers

• File descriptors are inherited by processes
- When one process spawns another, same fds by default

• Descriptors 0, 1, and 2 have special meaning
- 0 – “standard input” (stdin in ANSI C)
- 1 – “standard output” (stdout, printf in ANSI C)
- 2 – “standard error” (stderr, perror in ANSI C)
- Normally all three attached to terminal

• Example: type.c
- Prints the contents of a file to stdout

27 / 36

type.c

void
typefile (char *filename)
{
int fd, nread;
char buf[1024];

fd = open (filename, O_RDONLY);
if (fd == -1) {
perror (filename);
return;

}

while ((nread = read (fd, buf, sizeof (buf))) > 0)
write (1, buf, nread);

close (fd);
}

• Can see system calls using strace utility (ktrace on BSD)
28 / 36

Protection example: CPU preemption

• Protection mechanism to prevent monopolizing CPU
• E.g., kernel programs timer to interrupt every 10 ms

- Must be in supervisor mode to write appropriate I/O registers
- User code cannot re-program interval timer

• Kernel sets interrupt to vector back to kernel
- Regains control whenever interval timer fires
- Gives CPU to another process if someone else needs it
- Note: must be in supervisor mode to set interrupt entry points
- No way for user code to hijack interrupt handler

• Result: Cannot monopolize CPU with infinite loop
- At worst get 1/N of CPU with N CPU-hungry processes

29 / 36

Protection is not security

• How can you monopolize CPU?

• Use multiple processes
• For many years, could wedge most OSes with

int main() { while(1) fork(); }
- Keeps creating more processes until system out of proc. slots

• Other techniques: use all memory (chill program)
• Typically solved with technical/social combination

- Technical solution: Limit processes per user
- Social: Reboot and yell at annoying users
- Social: Ban harmful apps from play store

30 / 36

Protection is not security

• How can you monopolize CPU?
• Use multiple processes
• For many years, could wedge most OSes with

int main() { while(1) fork(); }
- Keeps creating more processes until system out of proc. slots

• Other techniques: use all memory (chill program)
• Typically solved with technical/social combination

- Technical solution: Limit processes per user
- Social: Reboot and yell at annoying users
- Social: Ban harmful apps from play store

30 / 36

Address translation

• Protect memory of one program from actions of another
• Definitions

- Address space: all memory locations a program can name
- Virtual address: addresses in process’ address space
- Physical address: address of real memory
- Translation: map virtual to physical addresses

• Translation done on every load and store
- Modern CPUs do this in hardware for speed

• Idea: If you can’t name it, you can’t touch it
- Ensure one process’s translations don’t include any other process’s

memory

31 / 36

More memory protection

• CPU allows kernel-only virtual addresses
- Kernel typically part of all address spaces,

e.g., to handle system call in same address space
- But must ensure apps can’t touch kernel memory

• CPU lets OS disable (invalidate) particular virtual addresses
- Catch and halt buggy program that makes wild accesses
- Make virtual memory seem bigger than physical

(e.g., bring a page in from disk only when accessed)
• CPU enforced read-only virtual addresses useful

- E.g., allows sharing of code pages between processes
- Plus many other optimizations

• CPU enforced execute disable of VAs
- Makes certain code injection attacks harder

32 / 36

Different system contexts

• At any point, a CPU (core) is in one of several contexts
• User-level – CPU in user mode running application
• Kernel process context – i.e., running kernel code on behalf of

a particular process
- E.g., performing system call, handling exception (memory fault,

numeric exception, etc.)
- Or executing a kernel-only process (e.g., network file server)

• Kernel code not associated with a process
- Timer interrupt (hardclock)
- Device interrupt
- “Softirqs”, “Tasklets” (Linux-specific terms)

• Context switch code – change which process is running
- Requires changing the current address space

• Idle – nothing to do (bzero pages, put CPU in low-power state)
33 / 36

Transitions between contexts

• User → kernel process context: syscall, page fault, . . .
• User/process context → interrupt handler: hardware
• Process context → user/context switch: return
• Process context → context switch: sleep
• Context switch → user/process context

34 / 36

Resource allocation & performance

• Multitasking permits higher resource utilization
• Simple example:

- Process downloading large file mostly waits for network
- You play a game while downloading the file
- Higher CPU utilization than if just downloading

• Complexity arises with cost of switching
• Example: Say disk 1,000 times slower than memory

- 1 GB memory in machine
- 2 Processes want to run, each use 1 GB
- Can switch processes by swapping them out to disk
- Faster to run one at a time than keep context switching

35 / 36

Useful properties to exploit

• Skew
- 80% of time taken by 20% of code
- 10% of memory absorbs 90% of references
- Basis behind cache: place 10% in fast memory, 90% in slow,

usually looks like one big fast memory
• Past predicts future (a.k.a. temporal locality)

- What’s the best cache entry to replace?
- If past ≈ future, then least-recently-used entry

• Note conflict between fairness & throughput
- Higher throughput (fewer cache misses, etc.) to keep running

same process
- But fairness says should periodically preempt CPU and give it to

next process

36 / 36

type.c Tue Mar 23 14:24:23 2021 1

#include <fcntl.h>

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

void

typefile (char *filename)

{

 int fd, nread;

 char buf[1024];

 fd = open (filename, O_RDONLY);

 if (fd == -1) {

 perror (filename);

 return;

 }

 while ((nread = read (fd, buf, sizeof (buf))) > 0)

 write (1, buf, nread);

 close (fd);

}

int

main (int argc, char **argv)

{

 int argno;

 for (argno = 1; argno < argc; argno++)

 typefile (argv[argno]);

 exit (0);

}

