CS212 - Operating Systems

Instructor: David Mazieres

CAs: Matthew Hogan, Bharat Khandelwal, Jack Nichols,
Ailyn Tong, TBD

Stanford University

1/36

@ Administrivia

@) Substance

2/36

Remote teaching

* Please interrupt me if something is wrong!
- Chat not a great way to get my attention because font too small
Class currently listed as remote fore entire quarter, but...

- lwould like to add in-person lectures if practical and no
disadvantage for remote participation

* Use zoom raised hand to interact in lecture
Enable your camera in class if you feel comfortable
- Please enable virtual backgrounds if available
Feel free to join lecture under a pseudonym
- Don’t have to be logged into Stanford to join given link/password
Audio quality can help with remote collaboration

- Wired lapel mics sound much better than bluetooth headsets like
the $22 Purple Panda PC/USB kit (financial assistance available)

3/36

https://www.amazon.com/Purple-Panda-Lavalier-Microphone-Computer/dp/B08PSPVF16

CS212,CS140, or CS112?

* CS212is the new (preferred) name for CS140

* Are there reasons to enrollin CS140? Yes, but not great ones
- Have a legacy program sheet & don’t want to petition for CS212
- Interviewing now, worried employers scan résumés for CS140

* What is CS112? Just the labs, few lectures, no exams

- CS112 students welcome to attend any lecture
Recommended lectures/sections marked in syllabus

Most CS212 lectures same as CS111

You must not take CS112 unless you have already taken CS111
You must not take CS212 if you have taken CS111

* Why split CS140 into CS111 and CS112?
- Given volume of material, 2 classes appropriate for undergrad
- Allow alternatives to CS112, such as CS140e

4/36

* Class web page: http://cs212.scs.stanford.edu/
- All assignments, handouts, lecture notes on-line

* Textbook: Operating System Concepts, 8th Edition,
by Silberschatz, Galvin, and Gagne

- Out of print and highly optional (weening class from textbook)

* Goal is to make lecture slides the primary reference
- Almost everything | talk about will be on slides
- PDF slides contain links to further reading about topics
- Please download slides from class web page

- Will try to post before lecture for taking notes
(but avoid calling out answers if you read them from slides)

5/36

http://cs212.scs.stanford.edu/
https://www.scs.stanford.edu/22wi-cs212/
https://www.scs.stanford.edu/22wi-cs212/notes/

Administrivia 2

e Edstem is the main discussion forum

Staff mailing list: cs212-staff@scs.stanford.edu
- Please use edstem for any questions others could conceivably have
- Otherwise, please mail staff list, not individual staff members

CA split office hours, first round-robin, then queuestatus
- Whenever possible, please ask non-private questions in RR portion

Key dates:
- Lectures: MW 1:30pm-3:00pm, zoom only at first
Section: 6 Fridays, starting this Friday 10am
Midterm: Monday, February 7, in class (1:30pm-3:00pm)
Final: Thursday, March 17, 12:15pm-3:15pm
We’ll accommodate exam conflicts, email cs212-staff a week prior

Exams open note, but not open book
- Bring notes, slides, any printed materials except textbook

6/36

https://edstem.org/us/join/kAWucB

e Threads & Processes

e Concurrency & Synchronization

Scheduling

Virtual Memory
* 1/0
Disks, File systems

Protection & Security

Virtual machines

Note: Lectures will often take Unix as an example

- Most current and future OSes heavily influenced by Unix
- Won’t talk much about Windows

7/36

Course goals

Introduce you to operating system concepts

- Hard to use a computer without interacting with OS
- Understanding the OS makes you a more effective programmer

Cover important systems concepts in general
- Caching, concurrency, memory management, |/0, protection

Teach you to deal with larger software systems
- Programming assignments much larger than many courses
- Warning: Many people will consider course very hard
- In past, majority of people report >15 hours/week

Prepare you to take graduate OS classes (CS240, 240[a-z])

8/36

Programming Assignments

Implement parts of Pintos operating system
- Built for x86 hardware, you will use hardware emulators
One setup homework (lab 0) due this Friday
Four two-week implementation projects:
- Threads
- User processes
- Virtual memory
- File system
Lab 1 distributed at end of this week
- Attend section this Friday for project 1 overview
Implement projects in groups of up to 3 people
- CS112/CS212 mixed groups okay
- Disclose to partners if you are plan to take class pass/fail
- Use “Forming Teams” category on edstem to meet people

9/36

e Noincompletes
- Talk to instructor ASAP if you run into real problems
* Final grades posted March 22
* 50% of CS212 grade based on exams using this quantity:
max (midterm > 07 final : 0, 1 (midterm + final))

* 50% of CS212 grade, 100% of CS112 grade from projects
- For each project, 50% of score based on passing test cases
- Remaining 50% based on design and style
* Most people’s projects pass most test cases
- Please, please, please turn in working code, or no credit here
* Means design and style matter a lot
- Large software systems not just about producing working code
- Need to produce code other people can understand
- That’s why we have group projects
10/36

Style

* Must turnin a design document along with code
- We supply you with templates for each project’s design doc

¢ CAs will manually inspect code for correctness
- E.g., must actually implement the design
- Must handle corner cases (e.g., handle malloc failure)
* Will deduct points for error-prone code wj/o errors
- Don’t use global variables if automatic ones suffice
- Don’t use deceptive names for variables
¢ Code must be easy to read

- Indent code, keep lines and (when possible) functions short
Use a uniform coding style (try to match existing code)

Put comments on structure members, globals, functions
Don’t leave in reams of commented-out garbage code

11/36

Assignment requirements

Do not look at other people’s solutions to projects
- We reserve the right to run MOSS on present and past submissions
- Do not publish your own solutions in violation of the honor code
- That means using (public) github can get you in big trouble

* You may read but not copy other OSes
- E.g., Linux, OpenBSD/FreeBSD, etc.

Cite any code that inspired your code

- Aslong as you cite what you used, it’s not cheating
- In worst case, we deduct points if it undermines the assignment

Projects due 10am Fridays
- Free extension to 5pm if you attend/watch section
* Ask cs212-staff for extension if you run into trouble

- Be sure to tell us: How much have you done? How much is left?
When can you finish by?

12/36

http://theory.stanford.edu/~aiken/publications/papers/sigmod03.pdf
http://honorcode.stanford.edu

@ Administrivia

@ Substance

13/36

What is an operating system?

* Layer between applications and hardware

* Makes hardware useful to the programmer

* [Usually] Provides abstractions for applications

- Manages and hides details of hardware

- Accesses hardware through low/level interfaces unavailable to
applications

» [Often] Provides protection
- Prevents one process/user from clobbering another

14/36

Why study operating systems?

Operating systems are a mature field
- Most people use a handful of mature OSes
- Hard to get people to switch operating systems
- Hard to have impact with a new OS

Still open questions in operating systems

- Security - Hard to achieve security without a solid foundation

- Scalability - How to adapt concepts when hardware scales 10x
(fast networks, low service times, high core counts, big data...)

High-performance servers are an OS issue
- Face many of the same issues as OSes, sometimes bypass 0OS

Resource consumption is an OS issue
- Battery life, radio spectrum, etc.

* New “smart” devices need new OSes

15/36

Primitive Operating Systems

e Just a library of standard services [no protection]

- Standard interface above hardware-specific drivers, etc.

» Simplifying assumptions

- System runs one program at a time

- No bad users or programs (often bad assumption)
* Problem: Poor utilization

- ...of hardware (e.g., CPU idle while waiting for disk)
- ...of human user (must wait for each program to finish)

16/36

¢ ldea: More than one process can be running at once

- When one process blocks (waiting for disk, network, user input,
etc.) run another process

* Problem: What canill-behaved process do?

17/36

* Idea: More than one process can be running at once

- When one process blocks (waiting for disk, network, user input,
etc.) run another process

* Problem: What can ill-behaved process do?

- Gointo infinite loop and never relinquish CPU

- Scribble over other processes’ memory to make them fail
* OS provides mechanisms to address these problems

- Preemption - take CPU away from looping process
- Memory protection - protect processes’ memory from one another

17/36

Multi-user OSes

0S

* Many OSes use protection to serve distrustful users/apps

¢ ldea: With N users, system not N times slower
- Users’ demands for CPU, memory, etc. are bursty
- Win by giving resources to users who actually need them

* What can go wrong?

18/36

Multi-user OSes

firefox

0S

* Many OSes use protection to serve distrustful users/apps
¢ ldea: With N users, system not N times slower
- Users’ demands for CPU, memory, etc. are bursty
- Win by giving resources to users who actually need them
* What can go wrong?
- Users are gluttons, use too much CPU, etc. (need policies)
- Total memory usage greater than machine’s RAM (must virtualize)

- Super-linear slowdown with increasing demand (thrashing) 18/%

* Mechanisms that isolate bad programs and people
* Pre-emption:

- Give application a resource, take it away if needed elsewhere
* Interposition/mediation:

- Place OS between application and “stuff”
- Track all pieces that application allowed to use (e.g., in table)
- On every access, look in table to check that access legal

* Privileged & unprivileged modes in CPUs:

- Applications unprivileged (unprivileged user mode)
- OS privileged (privileged supervisor/kernel mode)
- Protection operations can only be done in privileged mode

19/36

Typical OS structure

user P1| |P2| |P3| |P4

kernel VM IPC

sockets file
TCP/ip Scheduler system

drlver drlver drlver

= B P

* Most software runs as user-level processes (P[1-4])
- process ~ instance of a program

* OS kernel runs in privileged mode (orange)

- Creates/deletes processes
- Provides access to hardware

20/36

System calls

user application
open ()
user

mode
4{ system call interface }7
kernel

mode A

L | open ()
Implementation
i » of open ()
system call

return

* Applications can invoke kernel through system calls

- Special instruction transfers control to kernel
- ...which dispatches to one of few hundred syscall handlers

21/36

System calls (continued)

Goal: Do things application can’t do in unprivileged mode

- Like a library call, but into more privileged kernel code

Kernel supplies well-defined system call interface

- Applications set up syscall arguments and trap to kernel
- Kernel performs operation and returns result

Higher-level functions built on syscall interface
- printf, scanf, fgets, etc.all user-level code

Example: POSIX/UNIX interface

- open, close, read, write, ...

22/36

System call example

#include <stdio.h>
int main ()

{

+— printf ("Greetings");
.
return o;

}

user

mode
standard C library }—
kernel
mode
(Nrite ()
write ()
system call

¢ Standard library implemented in terms of syscalls
- printf-in libc, has same privileges as application
- calls write - in kernel, which can send bits out serial port

23/36

UNIX file system calls

» Applications “open” files (or devices) by name
- 1/0 happens through open files

® int open(char *path, int flags, /*int modex/...);
- flags: O_RDONLY, 0_WRONLY, O_RDWR

0_CREAT: create the file if non-existent

O_EXCL: (w. 0_CREAT) create if file exists already

0_TRUNC: Truncate the file

0_APPEND: Start writing from end of file

- mode: final argument with 0_CREAT

¢ Returns file descriptor—used for all /O to file

24/36

What if open fails? Returns -1 (invalid fd)

Most system calls return -1 on failure

- Specific kind of error in global int errno
- In retrospect, bad design decision for threads/modularity

#include <sys/errno.h> for possible values
- 2 =ENQENT “No such file or directory”
- 13 =EACCES “Permission Denied”
 perror function prints human-readable message

- perror ("initfile");
— “initfile: No such file or directory”

25/36

Operations on file descriptors

® int read (int fd, void *buf, int nbytes);
- Returns number of bytes read
- Returns 0 bytes at end of file, or -1 on error

® int write (int fd, const void *buf, int nbytes);
- Returns number of bytes written, -1 on error

¢ off_t 1seek (int fd, off_t pos, int whence);

- whence: 0 - start, 1 - current, 2 - end
> Returns previous file offset, or -1 on error

® int close (int fd);

26/36

File descriptor numbers

* File descriptors are inherited by processes
- When one process spawns another, same fds by default

* Descriptors 0, 1, and 2 have special meaning
- 0 - “standard input” (stdin in ANSI C)
- 1-“standard output” (stdout, printf in ANSIC)
- 2-“standard error” (stderr, perror in ANSIC)
- Normally all three attached to terminal
* Example: type.c
- Prints the contents of a file to stdout

27/36

void
typefile (char *filename)

int fd, nread;
char buf[1024];

fd = open (filename, O_RDONLY);

if (fd == -1) {
perror (filename);
return;

}

while ((nread = read (fd, buf, sizeof (buf))) > 0)
write (1, buf, nread);

close (fd);
}

* Can see system calls using strace utility (ktrace on BSD)
28/36

Protection example: CPU preemption

* Protection mechanism to prevent monopolizing CPU

* E.g., kernel programs timer to interrupt every 10 ms
- Must be in supervisor mode to write appropriate I/0 registers
- User code cannot re-program interval timer
* Kernel sets interrupt to vector back to kernel
- Regains control whenever interval timer fires
- Gives CPU to another process if someone else needs it
- Note: must be in supervisor mode to set interrupt entry points
- No way for user code to hijack interrupt handler
* Result: Cannot monopolize CPU with infinite loop
- At worst get 1/N of CPU with N CPU-hungry processes

29/36

Protection is not security

* How can you monopolize CPU?

30/36

Protection is not security

How can you monopolize CPU?

Use multiple processes

For many years, could wedge most OSes with

int main() { while(1) fork(); }
- Keeps creating more processes until system out of proc. slots

Other techniques: use all memory (chill program)

Typically solved with technical/social combination

- Technical solution: Limit processes per user
- Social: Reboot and yell at annoying users
- Social: Ban harmful apps from play store

30/36

Address translation

Protect memory of one program from actions of another

Definitions

Address space: all memory locations a program can name
Virtual address: addresses in process’ address space
Physical address: address of real memory

Translation: map virtual to physical addresses

Translation done on every load and store
- Modern CPUs do this in hardware for speed

Idea: If you can’t name it, you can’t touch it

- Ensure one process’s translations don’tinclude any other process’s
memory

31/36

More memory protection

* CPU allows kernel-only virtual addresses

- Kernel typically part of all address spaces,
e.g., to handle system call in same address space

- But must ensure apps can’t touch kernel memory
* CPU lets OS disable (invalidate) particular virtual addresses

- Catch and halt buggy program that makes wild accesses

- Make virtual memory seem bigger than physical
(e.g., bring a page in from disk only when accessed)

* CPU enforced read-only virtual addresses useful

- E.g., allows sharing of code pages between processes
- Plus many other optimizations

* CPU enforced execute disable of VAs
- Makes certain code injection attacks harder

32/36

Different system contexts

At any point, a CPU (core) is in one of several contexts
User-level - CPU in user mode running application

Kernel process context - i.e., running kernel code on behalf of
a particular process

- E.g., performing system call, handling exception (memory fault,
numeric exception, etc.)

- Or executing a kernel-only process (e.g., network file server)

Kernel code not associated with a process
- Timer interrupt (hardclock)
- Deviceinterrupt
- “Softirgs”, “Tasklets” (Linux-specific terms)
Context switch code - change which process is running
- Requires changing the current address space

Idle - nothing to do (bzero pages, put CPU in low-power state)
33/36

Transitions between contexts

User — kernel process context: syscall, page fault, ...

User/process context — interrupt handler: hardware
* Process context — user/context switch: return

* Process context — context switch: sleep

Context switch — user/process context

34/36

Resource allocation & performance

¢ Multitasking permits higher resource utilization
¢ Simple example:
- Process downloading large file mostly waits for network

- You play a game while downloading the file
- Higher CPU utilization than if just downloading

* Complexity arises with cost of switching

e Example: Say disk 1,000 times slower than memory
1 GB memory in machine

2 Processes want to run, each use 1 GB

Can switch processes by swapping them out to disk
Faster to run one at a time than keep context switching

35/36

Useful properties to exploit

e Skew

- 80% of time taken by 20% of code
- 10% of memory absorbs 90% of references
- Basis behind cache: place 10% in fast memory, 90% in slow,
usually looks like one big fast memory
* Past predicts future (a.k.a. temporal locality)

- What’s the best cache entry to replace?
- If past ~ future, then least-recently-used entry

* Note conflict between fairness & throughput

- Higher throughput (fewer cache misses, etc.) to keep running
same process

- But fairness says should periodically preempt CPU and give it to
next process

36/36

	Administrivia
	Substance

