@ PC system architecture 1880Mbps 1056Mbps /0 bus
————————— ——————
@ Driver architecture
© Disks
@ Disk scheduling
O Flash * CPU accesses physical memory over a bus
* Devices access memory over 1/O bus with DMA
* Devices can appear to be a region of memory
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CPU now entirely subsumes IOH [intel] AMD EPYC is essentially an SoC

Intel®
Core™ X-series

Processor ~ b aceaa-
Family

8 Gb/s each x 1

Intel® X299
Chipset

Intel® Rapid Storage
Technology with RAID

Technology
® 4094 pins: both memory controller and 128 lanes PCle

Intel® Extreme Tuning R i ip!
. oo directly on chip!
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What is memory? What is /O bus? E.g., PCI

* SRAM - Static RAM

- Like two NOT gates circularly wired input-to-output
- 4-6 transistors per bit, actively holds its value
- Very fast, used to cache slower memory

* DRAM - Dynamic RAM
- A capacitor + gate, holds charge to indicate bit value
- 1transistor per bit - extremely dense storage
- Charge leaks - need slow comparator to decide if bit 1 or 0
- Must re-write charge after reading, and periodically refresh
* VRAM - “Video RAM”
- Dual ported DRAM, can write while someone else reads
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@ PC system architecture

@ Driver architecture

© Disks

@ Disk scheduling

O Flash
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x86 1/0 instructions Example: parallel port (LPT1)

static inline uint8_t

inb (uint16_t port)

{
uint8_t data;
asm volatile ("inb %wl, %b0" : "=a" (data) : "Nd" (port));
return data;

}

static inline void
outb (uintl6_t port, uint8_t data)
{

asm volatile ("outb %b0, %wil" : :
}

"a" (data), "Nd" (port));

static inline void
insw (uint16_t port, void *addr, size_t cnt)
{
asm volatile ("rep insw" : "+D" (addr), "+c" (cnt)
: "d" (port) : "memory");
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° Memory-mapped device registers
- Certain physical addresses correspond to device registers
- Load/store gets status/sends instructions - not real memory

* Device memory - device may have memory OS can write to
directly on other side of I/O bus
e Special I/O instructions

- Some CPUs (e.g., x86) have special I/O instructions
- Like load & store, but asserts special I/O pin on CPU
- 0S can allow user-mode access to I/O ports at byte granularity

* DMA - place instructions to card in main memory

- Typically then need to “poke” card by writing to register

- Overlaps unrelated computation with moving data over (typically
slower than memory) 1/0 bus
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¢ Simple hardware has three control registers:

Lo, [ 0s | bs | 0a] 03 [ D] D] 1y |
read/write data register (port 0x378)

[ Bsv | AcK | pap JoFoN] ERR | - | - [ - ]
read-only status register (port 0x379)

[ -] -] - [wq|psL [INI[ALF | STR| [Messmer]
read/write control register (port 0x37a)

* Every bit except IRQ corresponds to a pin on 25-pin connector:
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void IDE_ReadSector(int disk, int off, void *buf)

void t . ‘
sendbyte (uint8_t byte) outb(0x1F6, disk == 0 ? OxEO : 0xFO); // Select Drive
F - IDEWait ()
/% Wait until BSY bit is 1. */ outb(0x1F2, 1); // Read length (1 sector = 512 B)
while ((inb (0x379) & 0x80) == 0) outb(0xiF3, off); =~ // LBA low
delay O; outb(0x1F4, off >> 8); // LBA mid
’ outb(0x1F5, off >> 16); // LBA high
. . outb(0x1F7, 0x20); // Read command
/ *tiu'zoig%byget:;’.wmh to send on pins D7-0. */ insw(0x1FO, buf, 256); // Read 256 words
ou , byte); 3
/* Pulse STR (s’_crobe).line to inform the printer void IDEWait()
* that a byte is available */ {
uint8_t ctrlval = inb (0x37a); // Discard status 4 times
outb (0x37a, ctrlval | 0x01); inb(0x1F7); inb(0x1F7);
delay QO; inb(0x1F7); inb(0x1F7);
outb (0x37a, ctrlval); // Wait for status BUSY flag to clear
} while ((inb(0x1F7) & 0x80) !'= 0)
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* in/out instructions slow and clunky “ﬂ“i’“ buffers

- Instruction format restricts what registers you can use —
- Only allows 21 different port numbers

- Per-port access control turns out not to be useful
(any port access allows you to disable all interrupts) y

* Devices can achieve same effect with physical addresses, e.g.:

volatile int32_t *device_control

= (int32_t *) (0xc0100 + PHYS_BASE); J
*device_control = 0x80;
int32_t status = *device_control; Buffer
descriptor

list
¢ Idea: only use CPU to transfer control requests, not data
¢ Include list of buffer locations in main memory
- Device reads list and accesses buffers through DMA
- Descriptions sometimes allow for scatter/gather 1/0
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Example: Network Interface Card Example: IDE disk read w. DMA

- OS must map physical to virtual addresses, ensure non-cachable
* Assign physical addresses at boot to avoid conflicts. PCI:

- Slow/clunky way to access configuration registers on device
- Use that to assign ranges of physical addresses to device

1. device driver is told
to transfer disk data CPU
to buffer at address X
5. DMA controller 2. device driver tells
2 transfers 'bytes tg disk controller to
2 N K link buffer X, increasing  transfer C bytes
Q - cowork in memory address from disk to buffer o
= — T and decreasing C at address X
= untilC =0 P
us;
Adaptor 6. when C = 0, DMA = | = x-
interrupts CPU to signal ;gﬁ:gfll:r )— CEUmemorybus I SIoLY W
transfer completion |
e Link interface talks to wire/fiber/antenna f | ' PCl bus )
- Typically does framing, link-layer CRC | 3. disk controller initiates
i : IDE disk DMA transfer
* FIFOs on card provide small amount of buffering i i A —
* Bus interface logic uses DMA to move packets to and from sach byte to DMA
buffers in main memory @ @
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Driver architecture Driver architecture

* Device driver provides several entry points to kernel * Device driver provides several entry points to kernel
- Reset, ioctl, output, interrupt, read, write, strategy ... - Reset, ioctl, output, interrupt, read, write, strategy ...
* How should driver synchronize with card? * How should driver synchronize with card?
- E.g., Need to know when transmit buffers free or packets arrive - E.g., Need to know when transmit buffers free or packets arrive
- Need to know when disk request complete - Need to know when disk request complete
* One approach: Polling * One approach: Polling
- Sent a packet? Loop asking card when buffer is free - Sent a packet? Loop asking card when buffer is free
- Waiting to receive? Keep asking card if it has packet - Waiting to receive? Keep asking card if it has packet
- Disk 1/0? Keep looping until disk ready bit set - Disk I/0? Keep looping until disk ready bit set
» Disadvantages of polling? * Disadvantages of polling?

- Can’t use CPU for anything else while polling

- Schedule poll in future? High latency to receive packet or process
disk block bad for response time
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* Instead, ask card to interrupt CPU on events
- Interrupt handler runs at high priority @ PC system architecture
- Asks card what happened (xmit buffer free, new packet)
- This is what most general-purpose OSes do

@ Driver architecture
* Bad under high network packet arrival rate

- Packets can arrive faster than OS can process them © Disks

- Interrupts are expensive

- Interrupt handlers have high priority

- In worst case, can spend 100% of time in interrupt handler and
never make any progress - receive livelock

- Best: Adaptive switching between interrupts and polling O Flash

@ Disk scheduling

* Very good for disk requests
* Rest of today: Disks (network devices in 3 lectures)
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» Stack of magnetic platters
- Rotate together on a central spindle @3,600-15,000 RPM
- Drive speed drifts slowly over time
- Can’t predict rotational position after 100-200 revolutions

* Disk arm assembly
- Arms rotate around pivot, all move together
- Pivot offers some resistance to linear shocks
- One disk head per recording surface (2xplatters)
- Sensitive to motion and vibration [Gregg] (demo on youtube)
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Storage on a magnetic platter Cylinders, tracks, & sectors

track t le— spindle
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» Platters divided into concentric tracks g < 4
<— arm assembly

* Astack of tracks of fixed radius is a cylinder sector s

* Heads record and sense data along cylinders
- Significant fractions of encoded stream for error correction

* Generally only one head active at a time
- Disks usually have one set of read-write circuitry
- Must worry about cross-talk between channels
- Hard to keep multiple heads exactly aligned

cylinder ¢

|

|

|

| read-write
} head
I

|

. | =

rotation
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Disk positioning system Seek details

¢ Head switches comparable to short seeks

- May also require head adjustment
- Settles take longer for writes than for reads - Why?

* Move head to specific track and keep it there
- Resist physical shocks, imperfect tracks, etc.

* Aseek consists of up to four phases:
- speedup-accelerate arm to max speed or half way point
- coast-at max speed (for long seeks) « Disk keeps table of pivot motor power
- slowdown-stops arm near destination

k ‘ - Maps seek distance to power and time
- settle-adjusts head to actual desired track

- Disk interpolates over entries in table

» Very short seeks dominated by settle time (~1 ms) - Table set by periodic “thermal recalibration”
o Short (200-400 cyl.) seeks dominated by speedup - But, e.g., ~500 ms recalibration every ~25 min bad for AV
- Accelerations of 40g * “Average seek time” quoted can be many things

- Time to seek 1/3 disk, 1/3 time to seek whole disk
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* Head switches comparable to short seeks
- May also require head adjustment
- Settles take longer for writes than for reads
If read strays from track, catch error with checksum, retry
If write strays, you’ve just clobbered some other track

* Disk keeps table of pivot motor power

- Maps seek distance to power and time

- Disk interpolates over entries in table

- Table set by periodic “thermal recalibration”

- But, e.g., ~500 ms recalibration every ~25 min bad for AV

* “Average seek time” quoted can be many things
- Time to seek 1/3 disk, 1/3 time to seek whole disk

» Disk interface presents linear array of sectors
- Historically 512 B, but 4 KiB in “advanced format” disks
- Written atomically (even if there is a power failure)

* Disk maps logical sector #s to physical sectors
- Zoning-puts more sectors on longer tracks

- Track skewing-sector 0 pos. varies by track (sequential access speed

- Sparing-flawed sectors remapped elsewhere

* 0S doesn’t know logical to physical sector mapping
- Larger logical sector # difference means longer seek time
- Highly non-linear relationship (and depends on zone)
- 0S has no info on rotational positions
- Can empirically build table to estimate times

__ Oiskperformance ] outine

* Placement & ordering of requests a huge issue
- Sequential I/0 much, much faster than random
- Long seeks much slower than short ones
- Power might fail any time, leaving inconsistent state
* Must be careful about order for crashes
- More on this in next two lectures
e Try to achieve contiguous accesses where possible
- E.g., make big chunks of individual files contiguous
e Try to order requests to minimize seek times
- OS canonly do this if it has multiple requests to order

- Requires disk I/O concurrency
- High-performance apps try to maximize 1/O concurrency

* Next: How to schedule concurrent requests
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* Disk interface presents linear array of sectors
- Historically 512 B, but 4 KiB in “advanced format” disks
- Written atomically (even if there is a power failure)

* Disk maps logical sector #s to physical sectors

- Zoning-puts more sectors on longer tracks
- Track skewing-sector 0 pos. varies by track (why?)
- Sparing-flawed sectors remapped elsewhere

e 0S doesn’t know logical to physical sector mapping

- Larger logical sector # difference means longer seek time
- Highly non-linear relationship (and depends on zone)

- 0OS has no info on rotational positions

- Can empirically build table to estimate times
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¢ Controls hardware, mediates access

Computer, disk often connected by bus (e.g., ATA, SCSI, SATA)
- Multiple devices may contentd for bus

Possible disk/interface features:

Disconnect from bus during requests

Command queuing: Give disk multiple requests
- Disk can schedule them using rotational information
Disk cache used for read-ahead

- Otherwise, sequential reads would incur whole revolution
- Cross track boundaries? Can’t stop a head-switch

Some disks support write caching
- But data not stable—not suitable for all requests
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@ PCsystem architecture

@ Driver architecture

© Disks

@ Disk scheduling

© Flash
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Scheduling: FCFS Scheduling: FCFS

* “First Come First Served” * “First Come First Served”
- Process disk requests in the order they are received - Process disk requests in the order they are received
¢ Advantages ¢ Advantages

- Easy to implement
- Good fairness

* Disadvantages ¢ Disadvantages

- Cannot exploit request locality
- Increases average latency, decreasing throughput
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FCFS example Shortest positioning time first (SPTF)
queue = 98, 183, 37, 122, 14, 124, 65, 67 ¢ Shortest positioning time first (SPTF)
head starts at 53 - Always pick request with shortest seek time

1

(I) 4 317 5?6?I67 918 122“124 1?31?9 ¢ Also called Shortest Seek Time First (SSTF)
' ¢ Advantages

¢ Disadvantages

33/45 34/45

Shortest positioning time first (SPTF) Shortest positioning time first (SPTF)

e Shortest positioning time first (SPTF) ¢ Shortest positioning time first (SPTF)

- Always pick request with shortest seek time - Always pick request with shortest seek time
* Also called Shortest Seek Time First (SSTF) ¢ Also called Shortest Seek Time First (SSTF)
¢ Advantages ¢ Advantages

- Exploits locality of disk requests - Exploits locality of disk requests

- Higher throughput - Higher throughput
* Disadvantages ¢ Disadvantages

- Starvation - Starvation

- Don’t always know what request will be fastest - Don’t always know what request will be fastest
* Improvement? * Improvement: Aged SPTF

- Give older requests higher priority
- Adjust “effective” seek time with weighting factor:
Teﬁ = Tpos -Ww- Twait
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SPTF example “Elevator” scheduling (SCAN)

queue = 98, 183, 37, 122, 14, 124, 65, 67

head starts at 53
0 14 37 536567 98 122124 183199
| | | 11 | 11 | |
| |

“Elevator” scheduling (SCAN) CSCAN example

* Sweep across disk, servicing all requests passed
- Like SPTF, but next seek must be in same direction
- Switch directions only if no further requests

¢ Advantages
- Takes advantage of locality
- Bounded waiting

* Disadvantages
- Cylinders in the middle get better service
- Might miss locality SPTF could exploit

* CSCAN: Only sweep in one direction
Very commonly used algorithm in Unix

* Also called LOOK/CLOOK in textbook
- (Textbook uses [C]SCAN to mean scan entire disk uselessly)
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e Sweep across disk, servicing all requests passed
- Like SPTF, but next seek must be in same direction
- Switch directions only if no further requests

¢ Advantages

¢ Disadvantages

36/45

queue 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53
0 14 37 536567 98 122124 183199
|
[

| | 11l | 1l | I
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e Continuum between SPTF and SCAN

- Like SPTF, but slightly changes “effective” positioning time
If request in same direction as previous seek: Togr = Tpos
Otherwise: Tegr = Tpos + I+ Trnax

- when r=0, get SPTF, when r=1, get SCAN

- E.g.,r=0.2 works well

* Advantages and disadvantages
- Those of SPTF and SCAN, depending on how r is set

* See [Worthington] for good description and evaluation of
various disk scheduling algorithms
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@ PCsystem architecture

@ Driver architecture

© Disks

@ Disk scheduling

O Flash
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L Flshmemory Types of lash memory

* Today, people increasingly using flash memory * NAND flash (most prevalent for storage)

* Completely solid state (no moving parts) - Higher density (most used for storage)
- Remembers data by storing charge - Faster erase and write
- Lower power consumption and heat - More errors internally, so need error correction
- No mechanical seek times to worry about + NOR flash

* Limited # overwrites possible - Faster reads in smaller data units

- Blocks wear out after 10,000 (MLC) - 100,000 (SLC) erases - Can execute code straight out of NOR flash

- Requires flash translation layer (FTL) to provide wear leveling, so
repeated writes to logical block don’t wear out physical block
- FTL can seriously impact performance * Single-level cell (SLC) vs. Multi-level cell (MLC)

- In particular, random writes very expensive [Birrell] - MLC encodes multiple (two) bits in voltage level
* Limited durability - MLC slower to write than SLC
. - MLC has lower durability (bits decay faster)
- Charge wears out over time

- Turn off device for a year, you can potentially lose data ° Nowadays, most flash drives are TLC (or even QLC)
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Flash device has 2112-byte pages

- Significantly slower erases

- 2048 bytes of data + 64 bytes metadata & ECC Parameter SLC MLC

 Blocks contain 64 (SLC) or 128 (MLC) pages Density Per Die (GB) 4 8
Page Size (Bytes) | 2048+32 | 2048+64

* Blocks segregated into 2-4 planes Block Size (Pages) 64 128

- All planes contend for same package pins Read Latency (us) 25 25

- But can access their blocks in parallel to overlap latencies Write Latency (us) 200 800
e Can read one page at a time Erase Latency (us) 2000 2000

40MHz, 16-bit bus Read b/w (MB/s) 75.8 75.8

- Takes 25 usec + time to get data off chip Program b/w (MB/s) 20.1 5.0
* Must erase whole block before programing 133MHz Read b/w (MB/s) | 126.4 126.4

- Erase sets all bits to 1—very expensive (2 msec) Program b/w (MB/s) 20.1 5.0

- Programming pre-erased block requires moving data to internal

buffer, then 200 (SLC)-800 (MLC) usec
42/45 43/45

e Keep in-memory map of logical — physical page # o Keep in-memory map of logical — physical page #

- On write, pick unused page, mark previous physical page free - On write, pick unused page, mark previous physical page free

- Repeated writes of a logical page will hit different physical pages - Repeated writes of a logical page will hit different physical pages
e Store map in device memory, but must rebuild on power-up e Store map in device memory, but must rebuild on power-up
¢ Idea: Put header on each page, scan all headers on power-up: ¢ Idea: Put header on each page, scan all headers on power-up:

(logical page #, Allocated bit, Written bit, Obsolete bit) (logical page #, Allocated bit, Written bit, Obsolete bit)

- A-W-O = 1-1-1: free page - A-W-0 = 1-1-1: free page

- A-W-0 = 0-1-1: about to write page - A-W-0 = 0-1-1: about to write page

- A-W-O = 0-0-1: successfully written page - A-W-O = 0-0-1: successfully written page

- A-W-O = 0-0-0: obsolete page (can erase block without copying) - A-W-0O = 0-0-0: obsolete page (can erase block without copying)
* Why the 0-1-1 state? * Why the 0-1-1 state? After power failure partly written # free
* What’s wrong still? * What’s wrong still?
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FTL straw man: in-memory map More realistic FTL

* Keep in-memory map of logical — physical page #

- On write, pick unused page, mark previous physical page free

- Repeated writes of a logical page will hit different physical pages
e Store map in device memory, but must rebuild on power-up
* Idea: Put header on each page, scan all headers on power-up:

e Store the FTL map in the flash device itself
- Add one header bit to distinguish map page from data page
- Logical read may miss map cache, require 2 flash reads
- Keep smaller “map-map” in memory, cache some map pages

(logical page #, Allocated bit, Written bit, Obsolete bit) ° Must garbage-collect blocks with obsolete pages
- A-W-0 = 1-1-1: free page - Copy live pages to a new block, erase old block
- A-W-0 =0-1-1: about to write page - Always need free blocks, can’t use 100% physical storage
- A-W-0 = 0-0-1: successfully written page * Problem: write amplification
- A-W-O = 0-0-0: obsolete page (can erase block without copying) - Small random writes punch holes in many blocks
* Why the 0-1-1 state? After power failure partly written # free - If small writes require garbage-collecting a 90%-full blocks
* What’s wrong still? ...means you are writing 10x more physical than logical data!
- FTLrequires a lot of RAM on device, plus time to scan all headers  Must also periodically re-write even blocks w/o holes
- Some blocks still get erased more than others (w. long-lived data) - Wear leveling ensures active blocks don’t wear out first

- Blocks with obsolete pages may also contain live pages
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