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Old-school memory and 1/O buses

1/O bus

1880Mbps 1056Mbps
3 e S

* CPU accesses physical memory over a bus
* Devices access memory over I/O bus with DMA
* Devices can appear to be a region of memory
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Realistic ~2005 PC architecture
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Modern PC architecture (intel)
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http://www.intel.com/content/dam/doc/datasheet/x58-express-chipset-datasheet.pdf
http://www.intel.com/content/www/us/en/io/io-controller-hub-10-family-datasheet.html

CPU now entirely subsumes IOH [intel]

Intel® _ Up to 4 Channel DDR4

S Core™ X-series « 2667 1DPC
ess* 3.0 Processor « 2400 2DPC
Family « UDIMM non-E

Up to 24 x PCl Express* 3.0

Intel® X299
Chipset

8 Gb/s eachx 1
Up to
6 Gb/s

Up to 10 x USB 3.0 Ports

USB 2.0 Ports
Cl; USB Por able
l; USB Port Disable Intel® Rapid Storage
Technology with RAID

Integrate:
MAC )
Intel® Smart Connect
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(SMsus) e and

Intel® Ethernet Connection

- Optional
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https://www.intel.com/content/www/us/en/products/chipsets/desktop-chipsets/x299.html

AMD EPYC is essentially an SoC

® 4094 pins: both memory controller and 128 lanes PCle
directly on chip!
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What is memory?

* SRAM - Static RAM
- Like two NOT gates circularly wired input-to-output
- 4-6 transistors per bit, actively holds its value
- Very fast, used to cache slower memory

* DRAM - Dynamic RAM

- A capacitor + gate, holds charge to indicate bit value

- 1transistor per bit - extremely dense storage

- Charge leaks - need slow comparator to decide if bit 1 or 0

- Must re-write charge after reading, and periodically refresh
* VRAM - “Video RAM”

- Dual ported DRAM, can write while someone else reads
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What is 1/0 bus? E.g., PCI

monitor processor

| }—{ cache ‘
graphics bridge/memory SCSI controller
controller controller

(} - PCI bus )

2006

IDE disk controller expansion bus keyboard
interface

|
) L——expansion bus— )
@ @ —

@ @ parallel serial
port port
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Communicating with a device

* Memory-mapped device registers
- Certain physical addresses correspond to device registers
- Load/store gets status/sends instructions - not real memory

* Device memory - device may have memory OS can write to
directly on other side of 1/0 bus
¢ Special I/O instructions

- Some CPUs (e.g., x86) have special I/0 instructions
- Like load & store, but asserts special I/O pin on CPU
- 0S can allow user-mode access to I/0 ports at byte granularity

* DMA - place instructions to card in main memory

- Typically then need to “poke” card by writing to register

- Overlaps unrelated computation with moving data over (typically
slower than memory) I/0 bus
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x861/0ins

static inline uint8_t

inb (uintl6_t port)

{
uint8_t data;
asm volatile ("inb %wl, %b0" : "=a" (data) : "Nd" (port));
return data;

}

static inline void
outb (uintl6_t port, uint8_t data)
{
asm volatile ("outb %b0, %wl" : : "a" (data), "Nd" (port));
}

static inline void
insw (uint16_t port, void *addr, size_t cnt)
{
asm volatile ("rep insw" : "+D" (addr), "+c" (cnt)
"d" (port) : "memory");
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Example: parallel port (LPT1)

* Simple hardware has three control registers:

| 0y | 0e | D5 | Dy | D5 [ Do | Dy | Dy |
read/write data register (port 0x378)

| BSY | ACK | PAP oFON| ERR | - | - | - |
read-only status register (port 0x379)

| - | - | - | rQ| psL [N | ALF | STR|  [Messmer]
read/write control register (port 0x37a)

e Every bit except IRQ corresponds to a pin on 25-pin connector:

T

.__
24— @ g 11BSY

Ground 224—@

[image credits: Wikipedial]
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https://searchworks.stanford.edu/view/3475233

Writing bit to parallel port [osdev]

void
sendbyte(uint8_t byte)
{

/* Wait until BSY bit is 1. */
while ((inb (0x379) & 0x80) == 0)
delay ();

/* Put the byte we wish to send on pins D7-0. */
outb (0x378, byte);

/* Pulse STR (strobe) line to inform the printer
* that a byte is available */

uint8_t ctrlval = inb (0x37a);

outb (0x37a, ctrlval | 0x01);

delay QO;

outb (0x37a, ctrlval);
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http://wiki.osdev.org/Parallel_port

IDE disk driver

void IDE_ReadSector(int disk, int off, void *buf)

{
outb(0x1F6, disk == 0 ? OxEO : 0xFO); // Select Drive
IDEWait () ;
outb(0x1F2, 1); // Read length (1 sector = 512 B)
outb(0x1F3, off); // LBA low

outb(0x1F4, off >> 8); // LBA mid

outb(0x1F5, off >> 16); // LBA high

outb(0x1F7, 0x20); // Read command

insw(0x1F0, buf, 256); // Read 256 words
}

void IDEWait ()
{

// Discard status 4 times

inb(0x1F7); inb(0x1F7);

inb(0x1F7); inb(0x1F7);

// Wait for status BUSY flag to clear
while ((inb(0x1F7) & 0x80) !'= 0)

>
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Memory-mapped 10

¢ infout instructions slow and clunky

- Instruction format restricts what registers you can use
- Only allows 21¢ different port numbers
- Per-port access control turns out not to be useful
(any port access allows you to disable all interrupts)
» Devices can achieve same effect with physical addresses, e.g.:

volatile int32_t *device_control
= (int32_t *) (0xc0100 + PHYS_BASE);
*device_control = 0x80;
int32_t status = *device_control;
- 0S must map physical to virtual addresses, ensure non-cachable
* Assign physical addresses at boot to avoid conflicts. PCI:
- Slow/clunky way to access configuration registers on device
- Use that to assign ranges of physical addresses to device
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DMA buffers

Memory buffers

T

Buffer
descriptor
list

* Idea: only use CPU to transfer control requests, not data
¢ Include list of buffer locations in main memory

- Device reads list and accesses buffers through DMA

- Descriptions sometimes allow for scatter/gather 1/0
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Example: Network Interface Card

Network link

Host 1/0 bus

Adaptor

)
¢ Link interface talks to wire/fiber/antenna
- Typically does framing, link-layer CRC
* FIFOs on card provide small amount of buffering

* Bus interface logic uses DMA to move packets to and from
buffers in main memory
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Example: IDE disk read w. DMA

1. device driver is told
to transfer disk data CPU
to buffer at address X
5. DMA controller 2. device driver tells
transfers bytes to disk controller to

buffer X, increasing transfer C bytes
memory address from disk to buffer cache
and decreasing C at address X

untilC =0
= DMA/bus/ .
: m?;?ugts_ c(:)Isl[JmtnoAsignm interrupt }— CPU memory bus —| memory
transfer completion °°"tI°"9r
i ' PCI bus )

3. disk controller initiates
IDE disk DMA transfer

controller 4. disk controller sends
each byte to DMA

@ @ controller
(i) g
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Driver architecture

* Device driver provides several entry points to kernel
- Reset, ioctl, output, interrupt, read, write, strategy ...

* How should driver synchronize with card?
- E.g., Need to know when transmit buffers free or packets arrive
- Need to know when disk request complete

* One approach: Polling

- Sent a packet? Loop asking card when buffer is free
- Waiting to receive? Keep asking card if it has packet
- Disk 1/0? Keep looping until disk ready bit set

» Disadvantages of polling?
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Driver architecture

* Device driver provides several entry points to kernel
- Reset, ioctl, output, interrupt, read, write, strategy ...

* How should driver synchronize with card?
- E.g., Need to know when transmit buffers free or packets arrive
- Need to know when disk request complete

* One approach: Polling

- Sent a packet? Loop asking card when buffer is free
- Waiting to receive? Keep asking card if it has packet
- Disk 1/0? Keep looping until disk ready bit set

» Disadvantages of polling?

- Can’t use CPU for anything else while polling

- Schedule pollin future? High latency to receive packet or process
disk block bad for response time
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Interrupt driven devices

* Instead, ask card to interrupt CPU on events
- Interrupt handler runs at high priority
- Asks card what happened (xmit buffer free, new packet)
- This is what most general-purpose OSes do

* Bad under high network packet arrival rate

- Packets can arrive faster than OS can process them
- Interrupts are expensive
- Interrupt handlers have high priority

- In worst case, can spend 100% of time in interrupt handler and
never make any progress - receive livelock

- Best: Adaptive switching between interrupts and polling
* Very good for disk requests
* Rest of today: Disks (network devices in 3 lectures)
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Anatomy of a disk [Ruemmler]

e Stack of magnetic platters

- Rotate together on a central spindle @3,600-15,000 RPM

- Drive speed drifts slowly over time

- Can’t predict rotational position after 100-200 revolutions
¢ Disk arm assembly

- Arms rotate around pivot, all move together

- Pivot offers some resistance to linear shocks

- One disk head per recording surface (2xplatters)
- Sensitive to motion and vibration [Gregg] (demo on youtube)
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https://www.scs.stanford.edu/22wi-cs212/sched/readings/diskmodel.pdf
http://dtrace.org/blogs/brendan/2008/12/31/unusual-disk-latency/
https://www.youtube.com/watch?v=tDacjrSCeq4
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Storage on a magnetic platter

Platters divided into concentric tracks

A stack of tracks of fixed radius is a cylinder

Heads record and sense data along cylinders
- Significant fractions of encoded stream for error correction

Generally only one head active at a time

- Disks usually have one set of read-write circuitry
- Must worry about cross-talk between channels
- Hard to keep multiple heads exactly aligned
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Cylinders, tracks, & sectors

track t «— spindle
s
S U e
| L <« arm assembly
sector s I !
-
= < d
T !
|
| |
| | .
cylinder ¢ —»! | read-write
| ! head
|
| \
platter

rotation
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Disk positioning system

* Move head to specific track and keep it there
- Resist physical shocks, imperfect tracks, etc.
* Aseek consists of up to four phases:

- speedup-accelerate arm to max speed or half way point
- coast-at max speed (for long seeks)

- slowdown-stops arm near destination

- settle-adjusts head to actual desired track

* Very short seeks dominated by settle time (~1 ms)

* Short (200-400 cyl.) seeks dominated by speedup
- Accelerations of 40g
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Seek details

¢ Head switches comparable to short seeks

- May also require head adjustment
- Settles take longer for writes than for reads - Why?

* Disk keeps table of pivot motor power

- Maps seek distance to power and time

- Disk interpolates over entries in table

- Table set by periodic “thermal recalibration”

- But, e.g., ~500 ms recalibration every ~25 min bad for AV
* “Average seek time” quoted can be many things

- Time to seek 1/3 disk, 1/3 time to seek whole disk

27/45



Seek details

¢ Head switches comparable to short seeks
- May also require head adjustment
- Settles take longer for writes than for reads
If read strays from track, catch error with checksum, retry
If write strays, you’ve just clobbered some other track

* Disk keeps table of pivot motor power
- Maps seek distance to power and time
Disk interpolates over entries in table
Table set by periodic “thermal recalibration”
- But, e.g., ~500 ms recalibration every ~25 min bad for AV

* “Average seek time” quoted can be many things
- Time to seek 1/3 disk, 1/3 time to seek whole disk
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* Disk interface presents linear array of sectors

- Historically 512 B, but 4 KiB in “advanced format” disks
- Written atomically (even if there is a power failure)

» Disk maps logical sector #s to physical sectors
- Zoning-puts more sectors on longer tracks
- Track skewing-sector 0 pos. varies by track (why?)
- Sparing-flawed sectors remapped elsewhere

* OS doesn’t know logical to physical sector mapping

- Larger logical sector # difference means longer seek time
- Highly non-linear relationship (and depends on zone)

- 0S has no info on rotational positions

- Can empirically build table to estimate times
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http://www.idema.org/?page_id=98

* Disk interface presents linear array of sectors

- Historically 512 B, but 4 KiB in “advanced format” disks
- Written atomically (even if there is a power failure)

» Disk maps logical sector #s to physical sectors
- Zoning-puts more sectors on longer tracks
- Track skewing-sector 0 pos. varies by track (sequential access speed
- Sparing-flawed sectors remapped elsewhere

* OS doesn’t know logical to physical sector mapping
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http://www.idema.org/?page_id=98

Disk interface

Controls hardware, mediates access

Computer, disk often connected by bus (e.g., ATA, SCSI, SATA)
- Multiple devices may contentd for bus

Possible disk/interface features:

Disconnect from bus during requests

Command queuing: Give disk multiple requests
- Disk can schedule them using rotational information

Disk cache used for read-ahead

- Otherwise, sequential reads would incur whole revolution
- Cross track boundaries? Can’t stop a head-switch

Some disks support write caching
- But data not stable—not suitable for all requests
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Disk performance

* Placement & ordering of requests a huge issue
- Sequential I/O much, much faster than random
- Long seeks much slower than short ones
- Power might fail any time, leaving inconsistent state

Must be careful about order for crashes
- More on this in next two lectures

Try to achieve contiguous accesses where possible
- E.g., make big chunks of individual files contiguous

Try to order requests to minimize seek times
- 0S can only do this if it has multiple requests to order
- Requires disk I/O concurrency
- High-performance apps try to maximize 1/0O concurrency

Next: How to schedule concurrent requests
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Scheduling: FCFS

* “First Come First Served”
- Process disk requests in the order they are received

¢ Advantages

* Disadvantages
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Scheduling: FCFS

* “First Come First Served”

- Process disk requests in the order they are received
¢ Advantages

- Easy to implement

- Good fairness
* Disadvantages

- Cannot exploit request locality
- Increases average latency, decreasing throughput
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FCFS example

queue = 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53

0 14 37 536567 98 122124 183199
|
|
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Shortest positioning time first (SPTF)

* Shortest positioning time first (SPTF)
- Always pick request with shortest seek time

¢ Also called Shortest Seek Time First (SSTF)
¢ Advantages

* Disadvantages
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* Shortest positioning time first (SPTF)
- Always pick request with shortest seek time

¢ Also called Shortest Seek Time First (SSTF)

¢ Advantages

- Exploits locality of disk requests
- Higher throughput

* Disadvantages

- Starvation
- Don’t always know what request will be fastest

* Improvement?
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Shortest positioning time first (SPTF)

* Shortest positioning time first (SPTF)
- Always pick request with shortest seek time

¢ Also called Shortest Seek Time First (SSTF)

¢ Advantages

- Exploits locality of disk requests

- Higher throughput
* Disadvantages

- Starvation

- Don’t always know what request will be fastest
* Improvement: Aged SPTF

- Give older requests higher priority
- Adjust “effective” seek time with weighting factor:
Téﬁ = Tﬁos'_ w ’71Naﬂ
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SPTF example

queue = 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53
0 14 37 536567 98 122124 183199
| 1l
|
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“Elevator” scheduling (SCAN)

* Sweep across disk, servicing all requests passed

- Like SPTF, but next seek must be in same direction
- Switch directions only if no further requests

¢ Advantages

¢ Disadvantages
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“Elevator” scheduling (SCAN)

* Sweep across disk, servicing all requests passed
- Like SPTF, but next seek must be in same direction
- Switch directions only if no further requests

¢ Advantages
- Takes advantage of locality
- Bounded waiting

¢ Disadvantages
- Cylinders in the middle get better service
- Might miss locality SPTF could exploit

® CSCAN: Only sweep in one direction
Very commonly used algorithm in Unix

¢ Also called LOOK/CLOOK in textbook
- (Textbook uses [C]SCAN to mean scan entire disk uselessly)
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CSCAN example

queue 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53
0 14 37 536567 98 122124 183199
|
|
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e Continuum between SPTF and SCAN

- Like SPTF, but slightly changes “effective” positioning time
If request in same direction as previous seek: Tegr = Tpos

Otherwise: Tegr = Tpos + I+ Tinax
- whenr=0, get SPTF, when r=1, get SCAN

- E.g.,r=0.2 works well

* Advantages and disadvantages
- Those of SPTF and SCAN, depending on how r is set

* See [Worthington] for good description and evaluation of
various disk scheduling algorithms
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Flash memory

Today, people increasingly using flash memory

Completely solid state (no moving parts)
- Remembers data by storing charge
- Lower power consumption and heat
- No mechanical seek times to worry about

Limited # overwrites possible
- Blocks wear out after 10,000 (MLC) - 100,000 (SLC) erases

Requires flash translation layer (FTL) to provide wear leveling, so
repeated writes to logical block don’t wear out physical block

- FTL can seriously impact performance
- In particular, random writes very expensive [Birrell]

Limited durability
- Charge wears out over time
- Turn off device for a year, you can potentially lose data
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http://research.microsoft.com/pubs/63681/TR-2005-176.pdf

Types of flash memory

* NAND flash (most prevalent for storage)

- Higher density (most used for storage)

- Faster erase and write

- More errors internally, so need error correction
* NOR flash

- Faster reads in smaller data units
- Can execute code straight out of NOR flash
- Significantly slower erases
» Single-level cell (SLC) vs. Multi-level cell (MLC)

- MLC encodes multiple (two) bits in voltage level
- MLC slower to write than SLC
- MLC has lower durability (bits decay faster)
* Nowadays, most flash drives are TLC (or even QLC)

41/45



NAND Flash Overview

* Flash device has 2112-byte pages
- 2048 bytes of data + 64 bytes metadata & ECC

Blocks contain 64 (SLC) or 128 (MLC) pages
Blocks segregated into 2-4 planes

- All planes contend for same package pins
- But can access their blocks in parallel to overlap latencies

Can read one page at a time
- Takes 25 usec + time to get data off chip

Must erase whole block before programing

- Erase sets all bits to 1—very expensive (2 msec)

- Programming pre-erased block requires moving data to internal
buffer, then 200 (SLC)-800 (MLC) usec
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Flash Characteristics [Caulfield’09]

Parameter SLC MLC
Density Per Die (GB) 4 8
Page Size (Bytes) | 2048+32 | 2048+64

Block Size (Pages) 64 128
Read Latency (us) 25 25

Write Latency (us) 200 800

Erase Latency (us) 2000 2000

40MHz, 16-bit bus Read b/w (MB/s) | 75.8 75.8
Program b/w (MB/s) 20.1 5.0

133MHz Read b/w (MB/s) | 126.4 126.4
Program b/w (MB/s) 20.1 5.0
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http://cseweb.ucsd.edu/~swanson/papers/Asplos2009Gordon.pdf

FTL straw man: in-memory map

* Keep in-memory map of logical — physical page #

- On write, pick unused page, mark previous physical page free

- Repeated writes of a logical page will hit different physical pages
¢ Store map in device memory, but must rebuild on power-up
¢ Idea: Put header on each page, scan all headers on power-up:

(logical page #, Allocated bit, Written bit, Obsolete bit)

- A-W-0 =1-1-1: free page

- A-W-0 =0-1-1: about to write page

- A-W-0 = 0-0-1: successfully written page

- A-W-0 =0-0-0: obsolete page (can erase block without copying)
¢ Why the 0-1-1 state?
* What’s wrong still?
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FTL straw man: in-memory map

* Keep in-memory map of logical — physical page #

- On write, pick unused page, mark previous physical page free

- Repeated writes of a logical page will hit different physical pages
Store map in device memory, but must rebuild on power-up
Idea: Put header on each page, scan all headers on power-up:
(logical page #, Allocated bit, Written bit, Obsolete bit)

- A-W-0 =1-1-1: free page

- A-W-0 =0-1-1: about to write page

- A-W-0 = 0-0-1: successfully written page

- A-W-0 =0-0-0: obsolete page (can erase block without copying)
Why the 0-1-1 state? After power failure partly written # free
What’s wrong still?

- FTLrequires a lot of RAM on device, plus time to scan all headers

- Some blocks still get erased more than others (w. long-lived data)

- Blocks with obsolete pages may also contain live pages
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More realistic FTL

e Store the FTL map in the flash device itself

- Add one header bit to distinguish map page from data page
- Logical read may miss map cache, require 2 flash reads
- Keep smaller “map-map” in memory, cache some map pages

e Must garbage-collect blocks with obsolete pages

- Copy live pages to a new block, erase old block
- Always need free blocks, can’t use 100% physical storage

* Problem: write amplification

- Small random writes punch holes in many blocks

- If small writes require garbage-collecting a 90%-full blocks
...means you are writing 10x more physical than logical data!

* Must also periodically re-write even blocks w/o holes
- Wear leveling ensures active blocks don’t wear out first
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