Linkine

Lab 2 due Friday
Midterm review section Friday

* Extra (weekend) office hours coming with an additional CA
* Midterm exam in class next Monday Feb. 7

- Open note, but no textbook or electronic devices
- Bring lecture note printouts

* How to name and refer to things that don’t exist yet

- Option D is evolving—prefer one of the others if possible * How to merge separate name spaces into a cohesive whole
« 1 will hold office hours this Friday 3pm-4:30pm instead of * More information:
Monday - How to write shared libraries

- Run “nm,” “objdump,” and “readelf” on a few .o and a.out files.
- The ELF standard
- Examine /usr/include/elf.h

1/44 2/44

How is a program executed? x86 Assembly syntax

e Linux uses AT&T assembler syntax - places destination last
- Be aware that intel syntax (used in manual) places destination first
¢ Types of operand available:

* On Unix systems, read by “loader”
compile time run time

- Registers start with “%” - movl %edx,%eax
loader cache A X
- Immediate values (constants) prefixed by “$” - movl $0xff,%edx
- (%reg) is value at address in register reg - movl (Jedi) ,%eax
- Reads all code/data segments into buffer cache; - n(%reg) is value at address in (register reg)+n —-movl 8(%ebp) ,%eax
Maps code (read only) and initialized data (r/w) into addr space - *%reg in an indirection through reg - call */eax

Everything else is an address -movl var,%eax; call printf
* Some heavily used instructions
- movl - moves (copies) value from source to destination
- pushl/popl - pushes/pops value on stack
- call - pushes next instruction address to stack and jumps to target
- ret - pops address of stack and jumps to it
- leave - equivalent tomovl %ebp,%esp; popl %ebp

3/44 4/44

Perspectives on memory contents Running example: hello program

* Programming language view: x += 1; add $1, %eax
- Instructions: Specify operations to perform * Hello program
- Variables: Operands that can change over time
- Constants: Operands that never change

- Or...fakes process state to look like paged out

* Lots of optimizations happen in practice:
- Zero-initialized data does not need to be read in.
- Demand load: wait until code used before get from disk
- Copies of same program running? Share code
- Multiple programs use same routines: share code

- Write friendly greeting to terminal
- Exit cleanly

* Hardware view: e Every programming language addresses this problem

- executable: code, usually read-only
- read only: constants (maybe one copy for all processes)

- read/write: variables (each process needs own copy)
* Need addresses to use data: [demo]
- Addresses locate things. Must update them when you move
- Examples: linkers, garbage collectors, URL
¢ Binding time: When is a value determined/computed?
- Early to late: Compile time, Link time, Load time, Runtime

5/44 6/44

Running example: hello program Hello world - CS212-style

Hello program
- Write friendly greeting to terminal
- Exitcleanly

* Every programming language addresses this problem
e Concept should be familiar if you took 106B:
int

main()

{
}

cout << "Hello, world!" << endl;

Today’s lecture: 90 minutes on hello world

6/44

Examining hellol.s Disassembling hello1l

* Grab the source and try it yourself

- tar xzf /afs/ir.stanford.edu/class/cs212/hello.tar.gz
® gcc -S hellol.c produces assembly outputinhellol.s
® Check the definitions of my_errno, greeting, main, my_write
® .globl symbol makes symbol global
e Sections of hellol.s are directed to various segments

- .text says put following contents into text segment

- .data, .rodata says to put into data or read-only data

- .comm symbol,size,align declares symbol and allows multiple

definitions (like C but not C++, now requires -fcommon flag)

* See how function calls push arguments to stack, then pop

pushl $greeting # Argument to my_strlen is greeting
call my_strlen # Make the call (length now in %eax)
addl $4, %esp # Must pop greeting back off stack

8/44

How is a process specified? Recall what process memory looks like

$ readelf -h hellol
ELF Header:

Entry point address: 0x8049030
Start of program headers: 52 (bytes into file)
Start of section headers: 14968 (bytes into file)
Number of program headers: 8
Number of section headers: 23
Section header string table index: 22

* Executable files are the linker/loader interface. Must tell OS:
- What is code? What is data? Where should they live?
- Thisis part of the purpose of the ELF standard
o Every ELF file starts with ELF an header
- Specifies entry point virtual address at which to start executing
- But how should the loader set up memory?
10/44

#include <sys/syscall.h>
int my_errno;
const char greeting[] = "hello world\n";

int my_write(int fd, const void *buf, size_t len)
{
int ret;
asm volatile ("int $0x80" : "=a" (ret)
: "0" (SYS_write),
llbll (fd), "C" (buf), lldll (1en)

: "memory") ;
if (ret < 0) {
my_errno = -ret;
return -1;
}
return ret;

}

int main() { my_write (1, greeting, my_strlen(greeting)); }

7/44

my_write (1, greeting, my_strlen(greeting));

8049208: 68 08 a0 04 08 push $0x804a008

804920d: e8 93 ff ff ff call 80491ab <my_strlen>
8049212: 83 c4 04 add $0x4, %esp

8049215: 50 push Jeax

8049216: 68 08 a0 04 08 push $0x804a008

804921b: 6a 01 push $0x1

804921d: e8 aa ff ff ff call 80491cc <my_write>
8049222: 83 c4 Oc add $0xc, %esp)

¢ Disassemble from shell with objdump -Sr hellol
* Note push encodes address of greeting (0x804a008)

o Offsets in call instructions: 0xffffffo3 = -109, Oxffffffaa = -86
- Binary encoding takes offset relative to next instruction

9/44

stack

«——_ mmapped

dynamic «——— regions

heap
uninitialized data (bss)

init :
staticy T — T
read-only data
code (text)

e Address space divided into “segments”

- Text, read-only data, data, bss, heap (dynamic data), and stack
- Recall gce told assembler in which segments to put what contents

11/44

Who builds what? ELF program header

* Heap: allocated and laid out at runtime by malloc $ readelf -1 hellol

- Namespace constructed dynamically, managed by programmer IPrEeEE, [l

. . . . Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align
(names stored in pointers, and organized using data structures) LOAD 0x001000 0x08049000 0x08049000 0x00304 0x00304 R E 0x1000

- Compiler, linker not involved other than saying where it can start LOAD 0x002000 0x0804a000 0x0804a000 0x00158 0x00158 R 0x1000

. . LOAD 0x002f£f8 0x0804bff8 0x0804bff8 0x0001c 0x0003c RW 0x1000
o Stack: allocated at runtime (func. calls), layout by compiler * * * HPRe TR *

- Names are relative off of stack (or frame) pointer Section to Segment mapping:

- Managed by compiler (alloc on procedure entry, free on exit) ngment Secti:‘;;' @

- Linker not involved because namespace entirely local: 02 rodata ...

Compiler has enough information to build it. 03 O S ey)

* Global data/code: allocated by compiler, layout by linker * For executables, the ELF header points to a program header

- Compiler emits them and names with symbolic references - Says what segments of file to map where, with what permissions

- Linker lays them out and translates references e Segment 03 has shorter file size then memory size
* Mmapped regions: Managed by programmer or linker - Only Ox1c bytes must be read into memory from file

- Remaining 0x20 bytes constitute the .bss

- Some programs directly call mmap; dynamic linker uses it, too
* Who creates the program header? The linker

12/44 13/44
Linkers (Linkage editors) Linkers (Linkage editors)
e Unix: ld e Unix: ld
- Usually hidden behind compiler - Usually hidden behind compiler
- Rungcc -v hello.c toseeld orinvoked (may see collect2) - Rungcc -v hello.ctoseeld orinvoked (may see collect2)
e Three functions: e Three functions:
- Collect together all pieces of a program - Collect together all pieces of a program
- Coalesce like segments - Coalesce like segments
- Fix addresses of code and data so the program can run - Fix addresses of code and data so the program can run
* Result: runnable program stored in new object file ® Result: runnable program stored in new object file
* Why can’t compiler do this? * Why can’t compiler do this?
- Limited world view: sees one file, rather than all files
e Usually linkers don’t rearrange segments, but can e Usually linkers don’t rearrange segments, but can
- E.g., re-order instructions for fewer cache misses; - E.g., re-order instructions for fewer cache misses;
remove routines that are never called from a.out remove routines that are never called from a.out
14 /44 14 /44
Simple linker: two passes needed Where to put emitted objects?
* Assember:
° Passl: - Doesn’t know where data/code should be 0 main:
- Coalesce like segments; arrange in non-overlapping memory placed in the process’s address space :
- Read files’ symbol tables, construct global symbol table with entry - Assumes each segment starts at zero call my_write
for every symbol used or defined - Emits symbol table that holds the name and
- Compute virtual address of each segment (at start+offset) offset of each created object
. - Routines/variables exported by file are ret
* Pass2: recorded as global definitions 60 my_strlen:
- Patch references using file and global symbol table imol Lo .
- Emit result e Simpler perspective: e
. . - - Codeisin abigchararray
o fngn?:l table: information about program kept while linker - Data s in another big char array Spain: 0: T
g))) - Assembler creates (object name, index) my_strlen: 60: t
- Segments: name, size, old location, new location tuple for each interesting thing greeting: 0: R
- Symbols: name, input segment, offset within segment - Linker then merges all of these arrays

15/44 16/44

Object files Object files

$ objdump -Sr hello2.o

48:

50 push Jeax
49: 68 00 00 00 00 push $0x0
4a: R_386_32 greeting
4e: 6a 01 push $0x1
50: e8 fc ff ff ff call 51 <main+0x2a>
51: R_386_PC32 my_write
55: 83 c4 10 add $0x10, %esp

V.

48:
49:

de:
50:

158

$ objdump -Sr hello2.o

50 push Jeax
68 00 00 00 00 push $0x0
4a: R_386_32 greeting
6a 01 push $0x1
e8 fc ff ff ff call 51 <main+0x2a>

51: R_386_PC32 my_write

83 c4 10 add $0x10, %esp

y,

e Let’s create two-file program hello2 with my_write in separate

file
- Compiler and assembler can’t possibly know final addresses
Notice push uses 0 as address of greeting

® And call uses -4 as address of my_write—why?

How to call procedures or reference variables?
- E.g., calltomy_write needs a target addr

file

- Compiler and assembler can’t possibly know final addresses

* Notice push uses 0 as address of greeting
® And call uses -4 as address of my_write—why?

17/44

- Assembler uses 0 or PC (%eip) for address

- Emits an external reference telling the linker the instruction’s
offset and the symbol it needs to be patched with

0 | main:
49 | pushl $0x0
4e pushl $0x1
50 | call -4/
main: O0: T
my_strlen: 40: t
greeting: 4a
\my_write: 51

At link time the linker patches every reference

- Target (sitting at offset 51 in text) encoded relative to next
instruction (add at offset 55)

$ readelf -r hello2.o

Offset Info Type Sym.Value Sym. Name

00000039 00000801 R_386_32 00000000 greeting

0000004a 00000801 R_386_32 00000000 greeting
00000a02 R_386_PC32 00000000 my_write

00000051

e Let’s create two-file program hello2 with my_write in separate

17/44

* Object file stores list of required relocations

18/44

- R_386_32 says add symbol value to value already in file (often 0)

- R_386_PC32 says add difference between symbol value and patch

location to value already in file (often -4 for cal1)
- Info encodes type and index of symbol value to use for patch

19/44

$ readelf -S hello2.o

$ readelf -s hello2.0

[Nr] Name Type Addr 0ff Size ES Flg Lk Inf Al
[o] NULL 00000000 000000 000000 00 0 0 0
[1] .text PROGBITS 00000000 000034 0000a4 00 AX O O 1
[2] .rel.text REL 00000000 0005£8 000018 08 I 20 1 4
[3] .data PROGBITS 00000000 000048 000000 00 WA O O 1
[4] .bss NOBITS 00000000 000048 000000 00 WA O O 1
[5] .rodata PROGBITS 00000000 0000d8 00000d 00 A O 0 4
[20] .symtab SYMTAB 00000000 0004£0 000040 10 21 9 4
[21] .strtab STRTAB 00000000 0005c0 000038 00 0 0 1

.

Memory segments have corresponding PROGBITS file segments
But relocations and symbol tables reside in segments, too

Segments can be arrays of fixed-size data structures

Remember ELF header had section header string table index

- So strings referenced as offsets into special string segments

- That’s so you can interpret names in section header

20/44

Num: Value Size Type Bind Vis Ndx Name
3: 00000000 39 FUNC LOCAL DEFAULT
9: 00000000 13 OBJECT GLOBAL DEFAULT
10: 00000027 62 FUNC GLOBAL DEFAULT 1 main

11: 00000000 0 NOTYPE GLOBAL DEFAULT

1 my_strlen

5 greeting

UND my_write

e Lists all global, exported symbols

- Sometimes local ones, too, for debugging (e.g., my_strlen)
e Each symbol has an offset in a particular section number

- On previous slide, 1 = .text, 5= .rodata

- Special undefined section 0 means need symbol from other file

21/44

How to lay out emitted objects? What is a library?

o At link time, linker first: e Astatic library is just a collection of .o files
- Coalesces all like segments (e.g., all . text, .rodata) from all files ¢ Bind them together with ar program, much like tar
- Determines the size of each segment and the resulting address to - E.g.,ar cr libmylib.a objl.o obj2.0 obj3.o
place each object at - Onmany OSes, run ranlib libmylib.a (to build index)

- Stores all global definitions in a global symbol table that maps the

definition to its final virtual address * You can also list (t) and extract (x) files

- E.g.,try:ar tv /usr/lib/libc.a

* Thenin a second phase:
P ¢ When linking a . a (archive) file, linker only pulls in needed files

- Ensure each symbol has exactly 1 definition (except weak symbols,

when compiling with -£fcommon) - Ensures resulting executable can be smaller than big library
- For each relocation: * readelf will operate on every archive member (unweildy)
> Look up referenced symbol’s virtual address in symbol table - But often convenient to disassemble with
> Fix reference to reflect address of referenced symbol objdump -d /usr/lib/libc.a
22/44 23/44

Examining programs with nm Examining sections with objdump

Note Load mem addr. and File off have

$ nm a.out
int uninitialized; VA\ symbol type same page alignment for easy mmapping
L bjd -h a.out
e 0400400 T _start i.gu%:umP file format elf64-x86-64
const int constant = 2; 04005bc R constant Sections:))
{int main () 0601008 W data_start Idx Name Size VMA LMA File off Algn
0601020 D initialized 12 .text 000001a8 00400400 00400400 00000400 2%*4
. CONTENTS, ALLOC, LOAD, READONLY, CODE
) return 0; 04004b8 T main
initiali 14 .rodata 00000008 004005b8 004005b8 000005b8 2%*2
0601028 B uninitialized CONTENTS, ALLOC, LOAD, READONLY, DATA
). H oo
* Ifdon’t need full readel£, can use nn (an -D on shared objects) 17 .ctors 00000010 00600e18 00600e18 00000618 23
- Handy -o flag prints file, useful with grep CONTENTS, ALLOC, LOAD, DATA
* R means read-only data (.rodata in elf) 23 .data 0000001c 00601008 00601008 00001008 2%*3
- Note constant VA on same page asmain CONTENTS, ALLOC, LOAD, DATA
- Share pages of read-only data just like text 24 .bss 0000000c 00601024 00601024 00001024 22
* B means uninitialized data in “BSS” . ALLOC—_ No contents.in file J
* Lower-case letters correspond to local symbols (static in C) e Another portable alternative to readelf

24/44 25/44

Mangling not
% nm overload.o compatible across

e Initializers run before main

// C++ . compiler versions /1 C++ . »
int foo (int a) ggggggo i -;2:0"?_ int a_foo_exists; - Mechanism is platform-specific
e - 0011 . .
return 0; U __gxx_perschality_v0 struct foo_t { * Example implementation:
Demangle names foo‘; 0 {, -4 - Compiler emits static function in
int foo (int a, int b) % nm overload.o | c++filt a_foo_exists = 1; each file running initializers
' 0000000 T foo(int) ¥ b - Wrap linker with collect2 program
return 0; 000000e T foo(int, int) ’ that generates ___main function
) U __gxx_personality_v0 foo_t foo;) calling all such functions
T N - Compilerinserts callto ___main
f . . when compiling real main
* C++can have many functions with the same name % cc -S -o- ctor.C | c++filt
e Compiler therefore mangles symbols text

.align 2

- Makes a unique name for each function __static_initialization_and_destruction_O(int, int):

- Also used for methods/namespaces (obj: : £n), template

instantiations, & special functions such as operator new call ~ foo_t::foo_t()

26/44 27/44

Other information in executables

// C++

struct foo_t { * Throwing exceptions destroys
“foo_t() {/x...*/} automatic variables

}‘except() L throw 05 3 |, pyring exception, must find

ol S 0 - All such variables with non-trivial

destructors

{ , .
£ . - Inall procedures’ call frames until
oo_t foo; exception caught
foo.except(); P &
/% ... x/ » Record info in special sections

} W

* Executables can include debug info (compile w. -g)
- What source line does each binary instruction correspond to?

28/44

Dynamic linking (continued) Static shared libraries

* How can behavior differ compared to static linking?

- Runtime failure (can’t find file, doesn’t contain symbols)
- No type checking of functions, variables

* Where to get unresolved symbols (e.g., my_write) from?
- dlsym must parse ELF file to find symbols
* How doesmy_write know its own addresses?

$ readelf -r dest/libmy.so
Relocation section ’.rel.dyn’ at offset 0x20c contains 1 entry:

Offset Info Type Sym.Value Sym. Name
00003ffc 00000106 R_386_GLOB_DAT 0000400c my_errno

- dlopen, too, must parse ELF to patch relocations

30/44

Static shared libraries Dynamic shared libraries

* Define a “shared library segment” at same address in every
program’s address space

v cc
IS 0xffe0000

0xffe0000, 0xffe0000Q

OxfffOOOO{i Oxfffoooo{E 0xfff0000

» Every shared lib is allocated a unique libc.a
range in this seg, and computes where 0xffe0000
its external defs reside

e Linker links program against lib OxFff math.a |
(why?) but does not bring in actual code

* Loader marks shared lib region as unreadable

* When process calls lib code, seg faults: embedded linker
brings in lib code from known place & mapsi it in.

* Now different running programs can share code!

32/44

Dynamic (runtime) linking (hel103.c)

#include <dlfcn.h>
int main(int argc, char **argv, char **envp)
{
size_t (*my_strlen) (const char *p);
int (*my_write) (int, const void *, size_t);
void *handle = dlopen("dest/libmy.so", RTLD_LAZY);
if ('handle
|| '(my_strlen = dlsym(handle, "my_strlen"))
|l !'(my_write = dlsym(handle, "my_write")))
return 1;
return my_write (1, greeting, my_strlen(greeting)) < 0;

¢ Link time isn’t special, can link at runtime too

- Get code (e.g., plugins) not available when program compiled
® |ssues:

- How can behavior differ compared to static linking?

- Where to get unresolved symbols (e.g., my_write) from?

- How does my_write know its own addresses (e.g., for my_errno)?
29/44

¢ Observation: everyone links in standard libraries (libc.a.),
these libs consume space in every executable.

1s gcc
4500 9000
libc.a libc.a
printf: printf:
scanf: scanf:

¢ Insight: we can have a single copy on disk if we don’t actually
include libc code in executable

31/44

e Static shared libraries require system-wide pre-allocation of
address space

- Clumsy, inconvenient
- What if a library gets too big for its space? (fragmentation)
- Can’t upgrade libraries w/o relinking applications
- Can space ever be reused?

e Solution: Dynamic shared libraries
- Combine shared library and dynamic linking ideas
- Any library can be loaded at any VA, chosen at runtime

* New problem: Linker won’t know what names are valid
- Solution: stub library

¢ New problem: How to call functions whose position varies?
- Solution: next page...

33/44

Position-independent code Lazy dynamic linking

¢ Code must be able to run
anywhere in virtual mem

* Runtime linking would prevent

code sharing, so...

¢ Add a level of indirection!

0x080480

00
program

0x08048f
44
libe

main:

call Erin‘rf!
printf:

ret

Static Libraries

0x080480

00
program

PLT
(r/o code)

GOT
(r/w
data)

0x400012
34
libc

main:

call printf &
printf:

call 60T[5],

[5] &printf

/

printf: e

ret

Dynamic Shared Libraries

* Every dynamically linked executable needs an interpreter
- Embedded as string in special . interp section
- readelf -p .interp /bin/ls — /1ib64/1d-linux-x86-64.s0.2
- Soall the kernel has to do is run 1d-1inux

e dlfixup uses hash table to find symbols when needed

* Hash table lookups can be quite expensive [Drepper]

- E.g., big programs like OpenOffice very slow to start

- Solution 1: Use a better hash function
> linux added . gnu.hash section, later removed .hash sections

- Solution 2: Export fewer symbols. Now fashionable to use:
> gcc -fvisibility=hidden (keep symbols local to DSO)

> #pragma GCC visibility push(hidden)/visibility pop
> __attribute__(visibility("default")), (override for a symbol)

hello4 relocations hello4 shared object contents

$ readelf -r hellod

Relocation section ’.rel.plt’ at offset Ox314 contains 2 entries:
Offset Info Type Sym.Value Sym. Name

0804c00c 00000107 R_386_JUMP_SLOT 00000000 my_write

0804c010 00000507 R_386_JUMP_SLOT 00000000 my_strlen

34/44

Dynamic linking with ELF Dynamic shared library example: hello4

36/44

® PLT = procedure linkage table on last slide
- Small 16 byte snippets, read-only executable code

* d1fixup Knows how to parse relocations, symbol table
- Looks for symbols by name in hash tables of shared libraries

° my_write &my_strlen are pointers in global offset table (GOT)
- GOT non-executable, read-write (so d1fixup can fix up)

* Note hello4 knows address of greeting, PLT, and GOT
- How does a shared object (1ibmy . so) find these?
- PLT is okay because calls are relative
- In PIC, compiler reserves one register %ebx for GOT address

38/44

0x080480 -
00 main:
program e Linking all the functions at

¢.:;1'II Er'in'tf 3 startup costs time
PLT | printf: * Program might only call a few of

(r/0 code) | call GOT(5] | them

GOoT | ... « Only link each function on its
(r/w [5): difixup first call
data) ...
0x400012 ” difi
34 printf: ixup:
libc ... \ GOT[5] = &printf

ret call printf,
35/44

$ objdump -Sr hello4

08049030 <my_write@plt>:

8049030: £f 25 Oc cO 04 08 jmp *0x804c00c
8049036: 68 00 00 00 00 push $0x0
804903b: €9 e0 ff ff ff jmp 8049020 <.plt>

08049040 <my_strlen@plt>:

8049040: ff 256 10 cO 04 08 jmp *0x804c010

8049046 68 08 00 00 00 push $0x8

804904b: e9 do ff ff ff jmp 8049020 <.plt>

804917a: 68 08 a0 04 08 push $0x804a008

804917f: e8 bc fe ff ff call 8049040 <my_str1en@p1t>J

® 0x804c00c and 0x804c010 initially point to next instruction

- Calls d1fixup with relocation index
- dlfixup needs no relocation because jmp takes relative address

37/44

mywrite.c
int my_errno;
int my_write(int fd, const void *buf, size_t len) {
int ret;
asm volatile (/* ... */);
if (ret < 0) {
my_errno = -ret;
return -1;
}
return ret;
} v
mywrite.s mywrite-pic.s
negl %eax
negl Jeax movl Yeax, %edx
movl %eax, my_errno movl my_errno@GOT (%ebx), %eax
movl %edx, (%eax))

39/44

How does /,cbx get set? Linking and security

mywrite-pic.s

o void fn O 1. Attacker puts code in buf
e hl Y%eb { - Overwrites return address to jump to code
Pusst b char buf[80];
movll11 ée:p, hebp gets (buf); 2. Attacker puts shell command above buf
us heDX R .
Subl $16, %esp S - Overwrites return address so function
call __x86.get_pc_thunk.bx ¥ “returns” to system function in libc

addl $_GLOBAL_OFFSET_TABLE_, %ebx L
. e People try to address problem with linker

__x86. geé_pc_thunk.bx: * WAX: No memory both writable and executable

m°:1 (hesp) , hebx - Prevents 1 but not 2, must be disabled for jits
re

7 ¢ Address space randomization
- Makes attack #2 a little harder, not impossible

- Leads to position-independent executable, compiled -fpie and
linked -pie—like PIC for executables

$ readelf -r .libs/mywrite.o

Offset Info Type Sym.Value Sym. Name

00000008 00000202 R_386_PC32 00000000 __x86.get_pc_thunk.bx
0000000e 00000b0a R_386_GOTPC 00000000 _GLOBAL_OFFSET_TABLE_

00000036 0000082b R_386_GOT32X 00000000 my_errno) ¢ Also address with compiler (stack protector, CFI)

40/44 41/44

Linking Summary Code = data, data = code

* Compiler/Assembler: 1 object file for each source file
- Problem: incomplete world view

* No inherent difference between code and data
- Code is just something that can be run through a CPU without

- Where to put variables and code? How to refer to them? causing an “illegal instruction fault”
- Names definitions symbolically (“print£”), refers to - Can be written/read at runtime just like data “dynamically
routines/variable by symbolic name generated code”
¢ Linker: combines all object files into 1 executable file * Why? Speed (usually)
- Big lever: global view of everything. Decides where everything - Big use: eliminate interpretation overhead. Gives 10-100x
lives, finds all references and updates them performance improvement
- Impoﬁqnt;nterface with OS: what is code, what is data, where is - Example: Just-in-time Javascript compiler, or gemu vs. bochs
start point? - In general: optimizations thrive on information. More information
* 0S loader reads object files into memory: atruntime.
- Allows optimizations across trust boundaries (share code) ¢ The big tradeoff:
- Provides interface for process to allocate memory (sbrk) - Total runtime = code gen cost + cost of running code
42 /44 43/44

* Determine binary encoding of desired instructions
SPARC: sub instruction

symbolic = “sub rdst, rsrcl, rsrc2”

I I I R

binary = 10 rd 100 rsi rs2
bit pos: 31 30 25 19 14 0

o Write these integer values into a memory buffer
unsigned code[1024], *cp = &code[0]:
/* sub %g5, %g4, %g3 */
*cp++ = (2<<30) | (5<<25) | (4<<19) |(4<<14) | 3;

* Usemprotect to disable WAX
* Jump to the address of the buffer: ((int (x) ())code) O ;

4444

hello/hellol.c Tue Mar 23 14:24:23 2021 1

/* (from glibc sysdeps/unix/sysv/linux/i386/sysdep.h)
https://sourceware.org/git/?p=glibc.git;a=blob; f=sysdeps/unix/sysv/1linux/i386/sysdep
.h

Linux takes system call arguments in registers:

syscall number %eax call-clobbered
arg 1 sebx call-saved
arg 2 %ecx call-clobbered
arg 3 Sedx call-clobbered
arg 4 $esi call-saved
arg 5 %edi call-saved
arg 6 %ebp call-saved

*/

#include <sys/syscall.h>

typedef unsigned long size_t;

int my_write(int, const void *, size_t);
int my_errno;

size_t
my_strlen(const char *p)
{
size_t ret;
for (ret = 0; plret]; ++ret)
7
return ret;

}

int
my_write (int fd, const void *buf, size_t len)
{
int ret;
asm volatile ("int $0x80" "=a" (ret)
"O"™ (SYS_write), "b" (fd), "c" (buf), "d" (len) : "memory");
if (ret < 0) {
my_errno = —-ret;
return -1;
}
return ret;

}

const char greeting[] = "hello world\n";
int
main (int argc, char **argv, char **envp)
{
my_write (1, greeting, my_strlen(greeting));

}

void
__libc_start_main(int (*mainp) (int, char **, char *¥*),
int argc, char **argv)
{
mainp (argc, argv, argv + argc + 1);
asm volatile ("int $0x80"™ :: "a" (SYS_exit), "b" (0));

hello/hello2.c Tue Mar 23 14:24:23 2021

#include <sys/syscall.h>
typedef unsigned long size_t;
int my_write(int, const void *, size_t);

static size_t
my_strlen(const char *p)
{
size_t ret;
for (ret = 0; plret]; ++ret)
I
return ret;

}

const char greeting[] = "hello world\n";
int
main (int argc, char **argv, char **envp)
{
my_write (1, greeting, my_strlen(greeting));

}

void

__libc_start_main(int (*mainp) (int, char **, char *¥*),

int argc, char **argv)
{
mainp (argc, argv, argv + argc + 1);
asm volatile ("int $0x80" :: "a" (SYS_exit),

"b" (O));

hello/hello3.c Tue Mar 23 14:24:23 2021 1

#include <dlfcn.h>
#include <sys/syscall.h>

const char greeting[] = "hello world\n";
int
main (int argc, char **argv, char **envp)
{
size_t (*my_strlen) (const char *p);
int (*my_write) (int, const void *, size_t);

void *handle = dlopen ("dest/libmy.so", RTLD_LAZY);
if ('handle
|| ! (my_strlen = dlsym(handle, "my_strlen"))
“ ! (my_write = dlsym(handle, "my_write")))
return 1;

my_write (1, greeting, my_strlen(greeting));
return O;

}

void
__libc_start_main(int (*mainp) (int, char **, char *¥*),
int argc, char **argv)
{
mainp (argc, argv, argv + argc + 1);
asm volatile ("int $0x80" :: "a" (SYS_exit), "b" (0));

hello/hellod.c Tue Mar 23 14:24:23 2021

#include <sys/syscall.h>
typedef unsigned long size_t;

int my_write(int, const void *, size_t);
size_t my_strlen(const char *p);

const char greeting[] = "hello world\n";
int

main (int argc, char **argv, char **envp)
{

my_write (1, greeting, my_strlen(greeting));

}

void

__libc_start_main(int (*mainp) (int, char **, char **),

int argc, char **argv)
{
mainp (argc, argv, argv + argc + 1);
asm volatile ("int $0x80" :: "a" (SYS_exit),

"o (0)) ;

hello/mystrlen.c Tue Mar 23 14:24:23 2021
typedef unsigned long size_t;

size_t
my_strlen (const char *p)
{
size_t ret;
for (ret = 0; plret]; ++ret)
14

return ret;

hello/mywrite.c Tue Mar 23 14:24:23 2021 1

#include <sys/syscall.h>
typedef unsigned long size_t;
int my_errno;

int

my_write (int fd, const void *buf, size_t len)

{

int ret;
asm volatile ("pushl %%ebx\n" // older gcc before version 5
"\tmovl %2, %%ebx\n" // won’t allow direct use of
"\tint $0x80\n" // %ebx in PIC code
"\tpopl %%ecbx"
"=a" (ret)
"O" (SYS_write), "g" (fd), "c" (buf), "d" (len) : "memory");

if (ret < 0) {
my_errno = —-ret;
return -1;

}

return ret;

hello/hellol.s Wed Feb 02 00:06:52 2022

.file "hellol.c"

.text

.globl my_errno

.bss

.align 4

.type my_errno, @object

.size my_errno, 4
my_errno:

.Zero 4

.text

.globl my_strlen

.type my_strlen, @function
my_strlen:

pushl %ebp

mov1l %esp, %ebp
subl $16, %esp
movl $0, —4(%ebp)
Jjmp .L2
.L3:
addl $1, -4 (%ebp)
L2
movl 8 (%ebp), %edx
movl -4 (%ebp), %eax
addl %$edx, %eax
movzbl (%eax), %eax
testb %al, %al
jne .L3
movl -4 (%ebp), %eax
leave
ret
.size my_strlen, .-my_strlen

.globl my_write

.type my_write, @function
my_write:

pushl %ebp

movl %esp, %ebp
pushl $ebx
subl $16, %esp
movl $4, %eax
movl 8 (%ebp), %ebx
movl 12 (%ebp), %ecx
movl 16 (%ebp), %edx
#APP
36 "hellol.c" 1
int $0x80
O nwn 2
#NO_APP
movl %$eax, -8 (%ebp)
cmpl $0, -8 (%ebp)
jns .L6
movl -8 (%ebp), %eax
negl $eax
movl %$eax, my_errno
movl $-1, %eax
Jjmp L7
.L6:
movl -8 (%ebp), %eax
L7
movl -4 (%ebp), %ebx
leave
ret
.size my_write, .-my_write
.globl greeting
.section .rodata

.align 4

hello/hellol.s

Wed Feb 02 00:06:52 2022 2

.type greeting, Qobject
.size greeting, 13
greeting:
.string "hello world\n"
.text
.globl main
.type main, @function
main:
pushl $ebp
movl $esp, %ebp
pushl Sgreeting
call my_strlen
addl $4, %esp
pushl %eax
pushl Sgreeting
pushl s1
call my_write
addl $12, %esp
movl $0, %eax
leave
ret
.size main, .-main
.globl _ libc_start_main
.type _ libc_start_main, @function
__libc_start_main:
pushl %ebp
movl %esp, %ebp
pushl %ebx
subl $4, %esp
movl 12 (%ebp), %eax
addl $1, %eax
leal 0(,%eax,4), %edx
movl 16 (%ebp), %eax
addl $edx, %eax
subl $4, %esp
pushl $eax
pushl 16 (%ebp)
pushl 12 (%ebp)
movl 8 (%ebp), %eax
call *$eax
addl $16, %esp
movl $1, %eax
movl $0, %edx
movl %$edx, %ebx
#APP
57 "hellol.c" 1
int $0x80
O mwn 2
#NO_APP
nop
movl -4 (%ebp), %ebx
leave
ret
.size _ libc_start_main, .—_ libc_start_main
.ident "GCC: (GNU) 11.1.0"
.section .note.GNU-stack,"", @progbits

hello/hello4d.s Wed Feb 02 00:06:52 2022

.file "hello4d.c"

.text

.globl greeting

.section .rodata

.align 4

.type greeting, Qobject

.size greeting, 13
greeting:

.string "hello world\n"

.text

.globl main

.type main, @function

main:
leal 4 (%$esp), %ecx
andl $-16, %esp
pushl -4 (%ecx)
pushl $ebp
movl %$esp, %ebp
pushl $ecx
subl $4, %esp
subl $12, %esp
pushl Sgreeting
call my_strlen
addl $16, %esp
subl $4, %esp
pushl %eax
pushl $Sgreeting
pushl $1
call my_write
addl $16, %esp
movl $0, %eax
movl -4 (%ebp), %ecx
leave
leal -4 (%ecx), %esp
ret
.size main, .-main
.globl _ libc_start_main
.type _ libc_start_main, @function
_ libc_start_main:
pushl %ebp
movl %esp, %ebp
pushl %ebx
subl $4, %esp
movl 12 (%ebp), %eax
addl $1, %eax
leal 0(,%eax,4), %edx
movl 16 (%ebp), %eax
addl $edx, %eax
subl $4, %esp
pushl $eax
pushl 16 (%ebp)
pushl 12 (%ebp)
movl 8 (%ebp), %eax
call *Seax
addl $16, %esp
movl $1, %eax
movl $0, %edx
movl %$edx, %ebx
#APP
20 "hellod.c" 1
int $0x80
O mwn 2
#NO_APP
nop

movl -4 (%ebp), %ebx

hello/hello4d.s Wed Feb 02 00:06:52 2022 2

leave

ret

.size _ libc_start_main, .—-_ libc_start_main
.ident "GCC: (GNU) 11.1.0"

.section .note.GNU-stack,"", @progbits

hello/mywrite.s Wed Feb 02 00:06:52 2022

.file "mywrite.c"

.text

.globl my_errno

.bss

.align 4

.type my_errno, @object

.size my_errno, 4
my_errno:

.Zero 4

.text

.globl my_write

.type my_write, @function
my_write:

pushl %ebp

mov1l %esp, %ebp
subl $16, %esp

movl $4, %eax

movl 12 (%ebp), %ecx
movl 16 (%ebp), %edx

#APP
11 "mywrite.c" 1
pushl %ebx
movl 8 (%ebp), $ebx

int $0x80
popl %ebx
O nwn 2
#NO_APP
movl %eax, —4(%ebp)
cmpl $0, -4 (%ebp)
jns .L2
movl -4 (%ebp), %eax
negl $eax
movl %$eax, my_errno
movl $-1, %eax
Jjmp .L3
.L2:
movl -4 (%ebp), %eax
.L3:
leave
ret
.size my_write, .-my_write

.ident "GCC: (GNU) 11.1.0"

.section .note.GNU-stack,"", @progbits

hello/mywrite-pic.s

Wed Feb 02 00:06:52 2022

.file "mywrite.c"
.text
.globl my_errno
.bss
.align 4
.type my_errno, @object
.size my_errno, 4
my_errno:
.Zero 4
.text
.globl my_write
.type my_write, @function
my_write:
pushl %ebp
mov1l %esp, %ebp
pushl $ebx
subl $16, %esp
call __x86.get_pc_thunk.bx
addl $_GLOBAL_OFFSET_TABLE_, %ebx
movl $4, %eax
movl 12 (%ebp), %ecx
movl 16 (%ebp), %edx
#APP
11 "mywrite.c" 1
pushl %ebx
movl 8 (%ebp), $ebx
int $0x80
popl %ebx
O nn 2
#NO_APP
movl $eax, -8 (%ebp)
cmpl $0, —8(%ebp)
jns L2
movl -8 (%ebp), %eax
negl %eax
movl $eax, %edx
movl my_errno@GOT (%$ebx), %eax
movl %$edx, (%eax)
movl $-1, %eax
Jjmp .L3
L2
movl -8 (%ebp), %eax
.L3:
movl -4 (%ebp), %ebx
leave
ret
.size my_write, .-my_write
.section .text.__ x86.get_pc_thunk.bx,
bx, comdat
.globl _ x86.get_pc_thunk.bx
.hidden __ x86.get_pc_thunk.bx
.type __x86.get_pc_thunk.bx, @function
_ _x86.get_pc_thunk.bx:
movl (%esp), %ebx
ret
.ident "GCC: (GNU) 11.1.0"
.section .note.GNU-stack,"", @progbits

"axG", @progbits,__ x86.get_pc_thunk.

