Lab 2 due Friday
Midterm review section Friday

Extra (weekend) office hours coming with an additional CA
Midterm exam in class next Monday Feb. 7

- Open note, but no textbook or electronic devices
- Bring lecture note printouts
- Option D is evolving—prefer one of the others if possible

I will hold office hours this Friday 3pm-4:30pm instead of
Monday

1/44

Today’s Big Adventure

Linkine

gcc

c.C gcc

* How to name and refer to things that don’t exist yet
* How to merge separate name spaces into a cohesive whole

e More information:
- How to write shared libraries

- Run “nm,” “objdump,” and “readelf” on a few .o and a.out files.

- The ELF standard

- Examine /usr/include/elf.h

2/44

http://www.akkadia.org/drepper/dsohowto.pdf
https://www.scs.stanford.edu/22wi-cs212/sched/readings/elf.pdf
https://sourceware.org/git/?p=glibc.git;a=blob;f=elf/elf.h

How is a program executed?

* On Unix systems, read by “loader”
compile time run time

loader cache
%

- Reads all code/data segments into buffer cache;
Maps code (read only) and initialized data (r/w) into addr space

- Or...fakes process state to look like paged out

* Lots of optimizations happen in practice:

- Zero-initialized data does not need to be read in.

- Demand load: wait until code used before get from disk
- Copies of same program running? Share code

- Multiple programs use same routines: share code

3/44

x86 Assembly syntax

* Linux uses AT&T assembler syntax - places destination last

- Be aware that intel syntax (used in manual) places destination first
» Types of operand available:

- Registers start with “%” - movl Y%edx,%eax
Immediate values (constants) prefixed by “$” - movl $0xff,%edx
(%reg) is value at address in register reg —-movl (%edi) ,%eax
n(%reg) is value at address in (register reg)+n - movl 8(Jebp) ,%eax
*Yreg in an indirection through reg - call *%eax

- Everything else is an address - movl var,%eax; call printf
¢ Some heavily used instructions

- movl - moves (copies) value from source to destination

- pushl/popl - pushes/pops value on stack

- call - pushes next instruction address to stack and jumps to target

- ret - pops address of stack and jumps to it

- leave - equivalent tomovl %ebp,%esp; popl %ebp

4/44

Perspectives on memory contents

Programming language view: x += 1; add $1, Jeax
- Instructions: Specify operations to perform
- Variables: Operands that can change over time
- Constants: Operands that never change

Hardware view:
- executable: code, usually read-only
- read only: constants (maybe one copy for all processes)
- read/write: variables (each process needs own copy)

Need addresses to use data:

- Addresses locate things. Must update them when you move
- Examples: linkers, garbage collectors, URL

Binding time: When is a value determined/computed?
- Early to late: Compile time, Link time, Load time, Runtime

5/44

Running example: hello program

* Hello program

- Write friendly greeting to terminal
- Exit cleanly

* Every programming language addresses this problem

demo

6/44

https://www.scs.stanford.edu/22wi-cs212/notes/hello.tar.gz

Running example: hello program

Hello program

- Write friendly greeting to terminal
- Exit cleanly

Every programming language addresses this problem

Concept should be familiar if you took 106B:

int
main()

{
X

cout << "Hello, world!" << endl;

Today’s lecture: 90 minutes on hello world

6/44

Hello world - CS212-style

#include <sys/syscall.h>
int my_errno;
const char greeting[] = "hello world\n";

int my_write(int fd, const void *buf, size_t len)

int ret;
asm volatile ("int $0x80" : "=a" (ret)
"0" (SYS_write),
nbn (fd), "C" (buf), udu (len)
"memory") ;
if (ret < 0) {
my_errno = -ret;
return -1;
}

return ret;

}

int main() { my_write (1, greeting, my_strlen(greeting)); }

7/44

Examining hellol.s

e Grab the source and try it yourself
- tar xzf /afs/ir.stanford.edu/class/cs212/hello.tar.gz

® gcc -S hellol.c produces assembly outputinhellol.s
* Check the definitions of my_errno, greeting, main, my_write
* .globl symbol makes symbol global

* Sections of hellol.s are directed to various segments

- .text says put following contents into text segment

- .data, .rodata says to put into data or read-only data

- .comm symbol,size,align declares symbol and allows multiple
definitions (like C but not C++, now requires -fcommon flag)

* See how function calls push arguments to stack, then pop

pushl $greeting # Argument to my_strlen is greeting
call my_strlen # Make the call (length now in %eax)
addl $4, %esp # Must pop greeting back off stack

8/44

https://www.scs.stanford.edu/22wi-cs212/notes/hello.tar.gz

Disassembling hellol

my_write (1, greeting, my_strlen(greeting));

8049208: 68 08 a0 04 08 push $0x804a008

804920d: e8 93 ff ff ff call 80491ab <my_strlen>
8049212: 83 c4 04 add $0x4, %esp

8049215: 5O push %eax

8049216: 68 08 a0 04 08 push $0x804a008

804921b: 6a 01 push $0x1

804921d: e8 aa ff ff ff call 80491cc <my_write>
8049222: 83 c4 Oc add $0xc, %esp)

* Disassemble from shell with objdump -Sr hellol

* Note push encodes address of greeting (0x804a008)
* Offsets in call instructions: 0xffffff93 =-109, Oxffffffaa =-86
- Binary encoding takes offset relative to next instruction

9/44

How is a process specified?

$ readelf -h hellol

ELF Header:
Entry point address: 0x8049030
Start of program headers: 52 (bytes into file)
Start of section headers: 14968 (bytes into file)
Number of program headers: 8
Number of section headers: 23
Section header string table index: 22)

¢ Executable files are the linker/loader interface. Must tell OS:
- What is code? What is data? Where should they live?
- This is part of the purpose of the ELF standard

» Every ELF file starts with ELF an header
- Specifies entry point virtual address at which to start executing
- But how should the loader set up memory?

10/44

https://www.scs.stanford.edu/22wi-cs212/sched/readings/elf.pdf

Recall what process memory looks like

stack

+~—— mmapped

dynamic «—— regions

heap

~/

uninitialized data (bss)

tatic) | initiaized data |

read-only data

\ code (text)

* Address space divided into “segments”

- Text, read-only data, data, bss, heap (dynamic data), and stack
- Recall gcc told assembler in which segments to put what contents

11/44

Who builds what?

* Heap: allocated and laid out at runtime by malloc

- Namespace constructed dynamically, managed by programmer
(names stored in pointers, and organized using data structures)

- Compiler, linker not involved other than saying where it can start
e Stack: allocated at runtime (func. calls), layout by compiler

- Names are relative off of stack (or frame) pointer
- Managed by compiler (alloc on procedure entry, free on exit)

- Linker not involved because namespace entirely local:
Compiler has enough information to build it.

* Global data/code: allocated by compiler, layout by linker
- Compiler emits them and names with symbolic references
- Linker lays them out and translates references

* Mmapped regions: Managed by programmer or linker
- Some programs directly call mmap; dynamic linker uses it, too

12/44

ELF program header

$ readelf -1 hellol

Program Headers:
Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align
LOAD 0x001000 0x08049000 0x08049000 0x00304 0x00304 R E 0x1000
LOAD 0x002000 0x0804a000 0x0804a000 0x00158 0x00158 R 0x1000
LOAD 0x002f£f8 0x0804bff8 0x0804bff8 0x0001c 0x0003c RW 0x1000

Section to Segment mapping:
Segment Sections...

01Jtext ...
02 .rodata ...
03data .bss

* For executables, the ELF header points to a program header
- Says what segments of file to map where, with what permissions
* Segment 03 has shorter file size then memory size
- Only Ox1c bytes must be read into memory from file
- Remaining 0x20 bytes constitute the .bss

* Who creates the program header? The linker o

Linkers (Linkage editors)

e Unix: ld
- Usually hidden behind compiler
- Rungcc -v hello.cto seeld orinvoked (may see collect2)

Three functions:
- Collect together all pieces of a program
- Coalesce like segments
- Fix addresses of code and data so the program can run

Result: runnable program stored in new object file

Why can’t compiler do this?

Usually linkers don’t rearrange segments, but can

- E.g., re-order instructions for fewer cache misses;
remove routines that are never called from a. out

14/ 44

Linkers (Linkage editors)

e Unix: ld
- Usually hidden behind compiler
- Rungcc -v hello.cto seeld orinvoked (may see collect2)

Three functions:
- Collect together all pieces of a program
- Coalesce like segments
- Fix addresses of code and data so the program can run

Result: runnable program stored in new object file

Why can’t compiler do this?
- Limited world view: sees one file, rather than all files

Usually linkers don’t rearrange segments, but can

- E.g., re-order instructions for fewer cache misses;
remove routines that are never called from a. out

14/ 44

Simple linker: two passes needed

e Pass1:

- Coalesce like segments; arrange in non-overlapping memory

- Read files’ symbol tables, construct global symbol table with entry
for every symbol used or defined

- Compute virtual address of each segment (at start+offset)
¢ Pass 2:
- Patch references using file and global symbol table
- Emitresult
e Symbol table: information about program kept while linker
running

- Segments: name, size, old location, new location
- Symbols: name, input segment, offset within segment

15/44

Where to put emitted objects?

* Assember:

- Doesn’t know where data/code should be 0| main:
placed in the process’s address space

- Assumes each segment starts at zero

- Emits symbol table that holds the name and
offset of each created object

- Routines/variables exported by file are
recorded as global definitions 60 my_strlen:

call my_write

ret

e Simpler perspective:

- Codeisin a big char array ret

- Dataisin another big char array Pmain: 0: T

- Assembler creates (object name, index) my_strlen: 60: t
tuple for each interesting thing greeting: 0: R

- Linker then merges all of these arrays

16/44

Object files

$ objdump -Sr hello2.o
48: 50 push %eax
49: 68 00 00 00 00 push $0x0
4a: R_386_32 greeting
4e: 6a 01 push $0x1
50: e8 fc ff ff ff call 51 <main+0x2a>
51: R_386_PC32 my_write
55: 83 c4 10 add $0x10, %esp)

¢ Let’s create two-file program hello2 with my_write in separate
file
- Compiler and assembler can’t possibly know final addresses

* Notice push uses 0 as address of greeting
* And call uses -4 as address of my_write—why?

17/44

Object files

$ objdump -Sr hello2.o
48: 50 push %eax
49: 68 00 00 00 00 push $0x0
4a: R_386_32 greeting
4e: 6a 01 push $0x1
50: e8 fc ff ff ff call 51 <main+0x2a>
51: R_386_PC32 my_write
55: 83 c4 10 add $0x10, %esp)

¢ Let’s create two-file program hello2 with my_write in separate
file
- Compiler and assembler can’t possibly know final addresses
* Notice push uses 0 as address of greeting
* And call uses -4 as address of my_write—why?

- Target (sitting at offset 51 in text) encoded relative to next

instruction (add at offset 55)
17/44

Where is everything?

* How to call procedures or reference variables?
- E.g., calltomy_write needs a target addr
- Assembler uses 0 or PC (%eip) for address

- Emits an external reference telling the linker the instruction’s
offset and the symbol it needs to be patched with

0 | main:

49 ﬁushl $0x0

4e pushl $0x1
50 call —4?////////

main: O0: T
my_strlen: 40: t
greeting: 4a
\my_write: 51
* Atlink time the linker patches every reference

18/44

Relocations

$ readelf -r hello2.0

Offset Info Type Sym.Value Sym. Name

00000039 00000801 R_386_32 00000000 greeting
0000004a 00000801 R_386_32 00000000 greeting
00000051 00000a02 R_386_PC32 00000000 my_write

* Object file stores list of required relocations

- R_386_32 says add symbol value to value already in file (often 0)

- R_386_PC32 says add difference between symbol value and patch
location to value already in file (often -4 for cal1)

- Info encodes type and index of symbol value to use for patch

19/44

$ readelf -S hello2.o
[Nr] Name Type Addr 0ff Size ES Flg Lk Inf Al
[o] NULL 00000000 000000 000000 00 0O 0 O
[1] .text PROGBITS 00000000 000034 0000a4 00 AX 0 O 1
[2] .rel.text REL 00000000 0005f8 000018 08 I 20 1 4
[3] .data PROGBITS 00000000 000048 000000 0O WA O O 1
[4] .bss NOBITS 00000000 0000d8 000000 00 WA O O 1
[5] .rodata PROGBITS 00000000 000048 00000d 0O A O O 4
[20] .symtab SYMTAB 00000000 0004f0 000040 10 21 9 4
[21] .strtab STRTAB 00000000 0005c0O 000038 00 0 0 1 |

Memory segments have corresponding PROGBITS file segments
But relocations and symbol tables reside in segments, too
Segments can be arrays of fixed-size data structures

- So strings referenced as offsets into special string segments
Remember ELF header had section header string table index

- That’s so you can interpret names in section header

20/44

Symbol table

$ readelf -s hello2.o0
Num: Value Size Type Bind Vis Ndx Name

3: 00000000 39 FUNC LOCAL DEFAULT 1 my_strlen

9: 00000000 13 OBJECT GLOBAL DEFAULT 5 greeting
10: 00000027 62 FUNC GLOBAL DEFAULT 1 main
11: 00000000 0 NOTYPE GLOBAL DEFAULT UND my_write

e Lists all global, exported symbols
- Sometimes local ones, too, for debugging (e.g., my_strlen)
e Each symbol has an offset in a particular section number
- On previous slide, 1 = .text, 5= .rodata
- Special undefined section 0 means need symbol from other file

21/44

How to lay out emitted objects?

¢ Atlink time, linker first:

- Coalesces all like segments (e.g., all .text, .rodata) from all files

- Determines the size of each segment and the resulting address to
place each object at

- Stores all global definitions in a global symbol table that maps the
definition to its final virtual address

* Thenin a second phase:
- Ensure each symbol has exactly 1 definition (except weak symbols,
when compiling with -f common)
- For each relocation:
> Look up referenced symbol’s virtual address in symbol table
> Fix reference to reflect address of referenced symbol

22/44

What is a library?

o Astatic library is just a collection of .o files
* Bind them together with ar program, much like tar

- E.g.,ar cr libmylib.a objl.o obj2.0 obj3.0
- Onmany OSes, run ranlib libmylib.a (to build index)

* You can also list (t) and extract (x) files
- E.g.,try: ar tv /usr/lib/libc.a

* When linking a .a (archive) file, linker only pulls in needed files
- Ensures resulting executable can be smaller than big library

* readelf will operate on every archive member (unweildy)

- But often convenient to disassemble with
objdump -d /usr/lib/libc.a

23/44

Examining programs with nm

VA $ mma.out gumpol type

int uninitialized; \ .

int initialized = 1; 0400400 T start

const int constant = 2; 04005bc R ;onstant

int main () 0601008 W data_start

{ 0601020 D initialized
return 0; 04004b8 T main

¥) 0601028 B uninitialized

If don’t need full readelf, can use nm (nm -D on shared objects)
- Handy -o flag prints file, useful with grep
* Rmeans read-only data (.rodata in elf)
- Note constant VA on same page asmain
- Share pages of read-only data just like text
* Bmeans uninitialized data in “BSS”

* Lower-case letters correspond to local symbols (static in C)
24/44

Examining sections with objdump

Note Load mem addr. and File off have
same page alignment for easy mmapping
$ objdump -h a.out

a.out: file format elf64-x86-64
Sections:
Idx Name Size VMA LMA File off Algn

12 .text 000001a8 00400400 00400400 00000400 2%%4
CONTENTS, ALLOC, LOAD, READONLY, CODE

"14 .rodata 00000008 004005b8 004005b8 000005b8 2%*2
CONTENTS, ALLOC, LOAD, READONLY, DATA

17 .ctors 00000010 00600e18 00600e18 00000e18 2%*3
CONTENTS, ALLOC, LOAD, DATA

23 .data 0000001c 00601008 00601008 00001008 2%%3
CONTENTS, ALLOC, LOAD, DATA

24 .bss 0000000c 00601024 00601024 00001024 2%%2
AHDC&\\\NnrnMPnKinﬁm

* Another portable alternative to readelf

25/44

Mangling not
% nm overload.o compatible across

/] C++ 0000000 T _Z3fooi COMPpiler versions
int foo (int a) »
{ 000000e T _Z3fooii
return O; U __gxx_personality_v0
X

Demangle names

int foo (int a, int b) % nm overload.o | c++filt
{ 0000000 T foo(int)
return 0; 000000e T foo(int, int)
¥ / U __gxx_personality_v0

e C++ can have many functions with the same name

e Compiler therefore mangles symbols

- Makes a unique name for each function

- Also used for methods/namespaces (obj: : fn), template
instantiations, & special functions such as operator new

26/44

Initialization and destruction

e |nitializers run before main

// C++
int a_foo_exists; - Mechanism is platform-specific
struct foo_t { ¢ Example implementation:

foo_t () {. Y - Compiler emits static function in

BLEO_CRIEES = L5 each file running initializers

.} - Wrap linker with collect2 program
¥ that generates ___main function
foo_t foo;) calling all such functions

- Compilerinserts call to ___main
when compiling real main
% cc -S -o- ctor.C | c++filt
o .text
.align 2
__static_initialization_and_destruction_0(int, int):
’ call foo_t::foo_t()

27/44

Other information in executables

// C++
struct foo_t { * Throwing exceptions destroys
“foo_t() {/*...x/} automatic variables
}.except() { throw 0; } | During exception, must find
. 0 - All such variables with non-trivial
[destructors
. - In all procedures’ call frames until
foo_t foo; exception caught
foo.except();
/x ... %/ ¢ Record info in special sections
} 4

* Executables can include debug info (compile w. -g)
- What source line does each binary instruction correspond to?

28/44

Dynamic (runtime) linking (he1103.c)

#include <dlfcn.h>
int main(int argc, char **argv, char **envp)

{

3

size_t (*my_strlen) (const char *p);
int (*my_write) (int, const void *, size_t);
void *handle = dlopen("dest/libmy.so", RTLD_LAZY);
if ('handle
[l !(my_strlen = dlsym(handle, "my_strlen"))
[l '(my_write = dlsym(handle, "my_write")))
return 1;

return my_write (1, greeting, my_strlen(greeting)) < 0;

* Link time isn’t special, can link at runtime too

- Get code (e.g., plugins) not available when program compiled

* |ssues:
- How can behavior differ compared to static linking?

- Where to get unresolved symbols (e.g., my_write) from?

- How does my_write know its own addresses (e.g., for my_errno)?

29/44

Dynamic linking (continued)

* How can behavior differ compared to static linking?

- Runtime failure (can’t find file, doesn’t contain symbols)
- No type checking of functions, variables

* Where to get unresolved symbols (e.g., my_write) from?
- dlsym must parse ELF file to find symbols
* How does my_write know its own addresses?

$ readelf -r dest/libmy.so
Relocation section ’.rel.dyn’ at offset 0x20c contains 1 entry:

Offset Info Type Sym.Value Sym. Name
00003ffc 00000106 R_386_GLOB_DAT 0000400c my_errno

- dlopen, too, must parse ELF to patch relocations

30/44

Static shared libraries

* Observation: everyone links in standard libraries (libc.a.),
these libs consume space in every executable.

1s gcc
4500 9000
libc.a libc.a
printf: printf:
scanf: scanf:

¢ Insight: we can have a single copy on disk if we don’t actually
include libc code in executable

31/44

Static shared libraries

* Define a “shared library segment” at same address in every
program’s address space

cc
Oxffe0000
Oxffe0000 Oxffe0000
OxfffOOOO{E OxfffOOOO{E Oxfff0000

* Every shared lib is allocated a unique libc.a
range in this seg, and computes where 0xffe0000
its external defs reside

¢ Linker links program against lib 0xf£f0000 math.a |
(why?) but does not bring in actual code

* Loader marks shared lib region as unreadable

* When process calls lib code, seg faults: embedded linker
brings in lib code from known place & mapsiitin.

* Now different running programs can share code!

32/44

Dynamic shared libraries

Static shared libraries require system-wide pre-allocation of
address space

Clumsy, inconvenient
What if a library gets too big for its space? (fragmentation)
Can’t upgrade libraries w/o relinking applications
Can space ever be reused?
Solution: Dynamic shared libraries
- Combine shared library and dynamic linking ideas
- Any library can be loaded at any VA, chosen at runtime
New problem: Linker won’t know what names are valid
- Solution: stub library
New problem: How to call functions whose position varies?
- Solution: next page...

33/44

Position-independent code

¢ Code must be able to run 0x080480 -

anywhere in virtual mem 00 main:

program .o

* Runtime linking would prevent call printf

code sharing, so... PLT | printf: 4)'
¢ Add a level of indirection! (r/0 code) | call GOT[5]y
0x080480 GOT ...

00 main: (r/w | [5]: &printf
program data) | ...

call printf
0x08048f ﬁ#’l A
a4 |printf: 0x400012 [printf: 4
libc 34
ret

libe ret

Static Libraries Dynamic Shared Libraries

34/44

Lazy dynamic linking

0x080480
00 main:
program .. ¢ Linking all the functions at
call printf startup costs time
PLT | printf: A)- * Program might only call a few of

(r/o0 code) call GOT[5] them

* Only link each function on its

GOT
(l‘/w [5]: dlfixup first call
data) ...
0x400012
34 printf: difixup:
libc | .. \ 60T[5] = &printf

ret call printf
35/44

Dynamic linking with ELF

* Every dynamically linked executable needs an interpreter

- Embedded as string in special .interp section
- readelf -p .interp /bin/ls — /1ib64/1d-linux-x86-64.s0.2
- So allthe kernel has to do is run 1d-1linux

* dlfixup uses hash table to find symbols when needed
* Hash table lookups can be quite expensive [Drepper]

- E.g., big programs like OpenOffice very slow to start
- Solution 1: Use a better hash function
> linux added .gnu.hash section, later removed .hash sections
- Solution 2: Export fewer symbols. Now fashionable to use:
> gcc -fvisibility=hidden (keep symbols local to DSO)
> #pragma GCC visibility push(hidden)/visibility pop
> __attribute__(visibility("default")), (override for a symbol)

36/44

http://www.akkadia.org/drepper/dsohowto.pdf

Dynamic shared library example: hello4

$ objdump -Sr hello4

08049030

8049030:
8049036:
804903b:

08049040

8049040:
8049046
804904b:

804917a:
8049171 :

<my_write@plt>:
ff 25 Oc cO
68 00 00 00
e9 e0 ff ff

<my_strlen@plt>:
ff 25 10 cO
68 08 00 00
e9 do ff ff

68 08 a0 04
e8 bc fe ff

04 08
00
ff

04 08
00
ff

08
ff

jmp
push
Jjmp

Jjmp
push
Jjmp

push
call

*0x804c00c
$0x0
8049020 <.plt>

*0x804c010
$0x8
8049020 <.plt>

$0x804a008
8049040 <my_strlen@plt>
”

® 0x804c00c and 0x804c010 initially point to next instruction

- Calls d1fixup with relocation index
- dlfixup needs no relocation because jmp takes relative address

37/44

hello4 relocations

$ readelf -r hello4

Relocation section ’.rel.plt’ at offset 0x314 contains 2 entries:
Offset Info Type Sym.Value Sym. Name
0804c00c 00000107 R_386_JUMP_SLOT 00000000 my_write
0804c010 00000507 R_386_JUMP_SLOT 00000000 my_strlen

* PLT = procedure linkage table on last slide
- Small 16 byte snippets, read-only executable code
* dlfixup Knows how to parse relocations, symbol table
- Looks for symbols by name in hash tables of shared libraries
* my_write &my_strlen are pointers in global offset table (GOT)
- GOT non-executable, read-write (so d1fixup can fix up)
* Note hello4 knows address of greeting, PLT, and GOT
- How does a shared object (1ibmy. so) find these?
- PLT is okay because calls are relative

- In PIC, compiler reserves one register %ebx for GOT address
38/44

hello4 shared object contents

mywrite.c
int my_errno;
int my_write(int fd, const void *buf, size_t len) {
int ret;
asm volatile (/* ... */);
if (ret < 0) {
my_errno = -ret;
return -1;
}
return ret;
} v
mywrite.s mywrite-pic.s
negl Y%eax
negl jeax movl Y%eax, %edx
movl %eax, my_errno movl my_errno@GOT (%ebx), %eax
movl Y%edx, (%eax)

39/44

How does jcbx get set?

mywrite-pic.s

my_write:
pushl Y%ebp
movl %esp, %ebp
pushl Y%ebx
subl $16, Yesp
call __x86.get_pc_thunk.bx
addl $_GLOBAL_OFFSET_TABLE_, %ebx

__x86.get_pc_thunk.bx:
movl (%esp), '%hebx
ret

$ readelf -r .libs/mywrite.o

Offset Info Type Sym.Value Sym. Name
00000008 00000202 R_386_PC32 00000000 __x86.get_pc_thunk.bx
0000000e 00000b0Oa R_386_GOTPC 00000000 _GLOBAL_OFFSET_TABLE_
00000036 0000082b R_386_GOT32X 00000000 my_errno

v
40/44

Linking and security

void fn () 1. Attacker puts code in buf

{ - Overwrites return address to jump to code
char buf [80];
gets (buf); 2. Attacker puts shell command above buf
/x k] - Overwrites return address so function

} “returns” to system function in libc

* People try to address problem with linker

* WAX: No memory both writable and executable
- Prevents 1 but not 2, must be disabled for jits

¢ Address space randomization

- Makes attack #2 a little harder, not impossible
- Leads to position-independent executable, compiled -fpie and
linked -pie—like PIC for executables

* Also address with compiler (stack protector, CFl)
41/44

Linking Summary

* Compiler/Assembler: 1 object file for each source file
- Problem: incomplete world view
- Where to put variables and code? How to refer to them?
- Names definitions symbolically (“print£”), refers to
routines/variable by symbolic name
* Linker: combines all object files into 1 executable file

- Biglever: global view of everything. Decides where everything
lives, finds all references and updates them

- Important interface with OS: what is code, what is data, where is
start point?

¢ OS loader reads object files into memory:

- Allows optimizations across trust boundaries (share code)
- Provides interface for process to allocate memory (sbrk)

42/44

Code = data, data = code

* No inherent difference between code and data

- Code is just something that can be run through a CPU without
causing an “illegal instruction fault”

- Can be written/read at runtime just like data “dynamically
generated code”

* Why? Speed (usually)

- Biguse: eliminate interpretation overhead. Gives 10-100x
performance improvement

- Example: Just-in-time Javascript compiler, or gemu vs. bochs

- In general: optimizations thrive on information. More information
at runtime.

* The big tradeoff:
- Total runtime = code gen cost + cost of running code

43/44

* Determine binary encoding of desired instructions

SPARC: sub instruction

symbolic = “sub rdst, rsrcl, rsrc2”
soff

s ——

binary = 10 rd 100 rsl rs2
bit pos: 31 30 25 19 14 0

* Write these integer values into a memory buffer
unsigned code[1024], *cp = &code[0]:
/* sub %g5, %g4, %g3 */
*cp++ = (2<<30) | (5<<25) | (4<<19) |(4<<14) | 3;

* Usemprotect to disable WAX
e Jump to the address of the buffer: ((int (*)))code) O;

4444

