
Administrivia

• Lab 2 due Friday
• Midterm review section Friday
• Extra (weekend) office hours coming with an additional CA
• Midterm exam in class next Monday Feb. 7

- Open note, but no textbook or electronic devices
- Bring lecture note printouts
- Option D is evolving—prefer one of the others if possible

• I will hold office hours this Friday 3pm-4:30pm instead of
Monday

1 / 44

Today’s Big Adventure

f.c gcc

f.s

as

c.c gcc c.s as c.o

ld
a.out

f.o

• How to name and refer to things that don’t exist yet
• How to merge separate name spaces into a cohesive whole
• More information:

- How to write shared libraries
- Run “nm,” “objdump,” and “readelf” on a few .o and a.out files.
- The ELF standard
- Examine /usr/include/elf.h

2 / 44

http://www.akkadia.org/drepper/dsohowto.pdf
https://www.scs.stanford.edu/22wi-cs212/sched/readings/elf.pdf
https://sourceware.org/git/?p=glibc.git;a=blob;f=elf/elf.h

How is a program executed?

• On Unix systems, read by “loader”

cacheld loader

compile time run time

- Reads all code/data segments into buffer cache;
Maps code (read only) and initialized data (r/w) into addr space

- Or. . . fakes process state to look like paged out

• Lots of optimizations happen in practice:
- Zero-initialized data does not need to be read in.
- Demand load: wait until code used before get from disk
- Copies of same program running? Share code
- Multiple programs use same routines: share code

3 / 44

x86 Assembly syntax

• Linux uses AT&T assembler syntax – places destination last
- Be aware that intel syntax (used in manual) places destination first

• Types of operand available:
- Registers start with “%” – movl %edx,%eax
- Immediate values (constants) prefixed by “$” – movl $0xff,%edx
- (%reg) is value at address in register reg – movl (%edi),%eax
- n(%reg) is value at address in (register reg)+n – movl 8(%ebp),%eax
- *%reg in an indirection through reg – call *%eax
- Everything else is an address – movl var,%eax; call printf

• Some heavily used instructions
- movl – moves (copies) value from source to destination
- pushl/popl – pushes/pops value on stack
- call – pushes next instruction address to stack and jumps to target
- ret – pops address of stack and jumps to it
- leave – equivalent to movl %ebp,%esp; popl %ebp

4 / 44

Perspectives on memory contents

• Programming language view: x += 1; add $1, %eax

- Instructions: Specify operations to perform
- Variables: Operands that can change over time
- Constants: Operands that never change

• Hardware view:
- executable: code, usually read-only
- read only: constants (maybe one copy for all processes)
- read/write: variables (each process needs own copy)

• Need addresses to use data:
- Addresses locate things. Must update them when you move
- Examples: linkers, garbage collectors, URL

• Binding time: When is a value determined/computed?
- Early to late: Compile time, Link time, Load time, Runtime

5 / 44

Running example: hello program

• Hello program
- Write friendly greeting to terminal
- Exit cleanly

• Every programming language addresses this problem

[demo]

6 / 44

https://www.scs.stanford.edu/22wi-cs212/notes/hello.tar.gz

Running example: hello program

• Hello program
- Write friendly greeting to terminal
- Exit cleanly

• Every programming language addresses this problem

• Concept should be familiar if you took 106B:
int
main()
{

cout << "Hello, world!" << endl;
}

• Today’s lecture: 90 minutes on hello world

6 / 44

Hello world – CS212-style

#include <sys/syscall.h>
int my_errno;
const char greeting[] = "hello world\n";

int my_write(int fd, const void *buf, size_t len)
{
int ret;
asm volatile ("int $0x80" : "=a" (ret)

: "0" (SYS_write),
"b" (fd), "c" (buf), "d" (len)

: "memory");
if (ret < 0) {
my_errno = -ret;
return -1;

}
return ret;

}

int main() { my_write (1, greeting, my_strlen(greeting)); }

7 / 44

Examining hello1.s

• Grab the source and try it yourself
- tar xzf /afs/ir.stanford.edu/class/cs212/hello.tar.gz

• gcc -S hello1.c produces assembly output in hello1.s

• Check the definitions of my_errno, greeting, main, my_write
• .globl symbol makes symbol global
• Sections of hello1.s are directed to various segments

- .text says put following contents into text segment
- .data, .rodata says to put into data or read-only data
- .comm symbol,size,align declares symbol and allows multiple

definitions (like C but not C++, now requires -fcommon flag)
• See how function calls push arguments to stack, then pop
pushl $greeting # Argument to my_strlen is greeting
call my_strlen # Make the call (length now in %eax)
addl $4, %esp # Must pop greeting back off stack

8 / 44

https://www.scs.stanford.edu/22wi-cs212/notes/hello.tar.gz

Disassembling hello1

my_write (1, greeting, my_strlen(greeting));
8049208: 68 08 a0 04 08 push $0x804a008
804920d: e8 93 ff ff ff call 80491a5 <my_strlen>
8049212: 83 c4 04 add $0x4,%esp
8049215: 50 push %eax
8049216: 68 08 a0 04 08 push $0x804a008
804921b: 6a 01 push $0x1
804921d: e8 aa ff ff ff call 80491cc <my_write>
8049222: 83 c4 0c add $0xc,%esp

• Disassemble from shell with objdump -Sr hello1

• Note push encodes address of greeting (0x804a008)
• Offsets in call instructions: 0xffffff93 = -109, 0xffffffaa = -86

- Binary encoding takes offset relative to next instruction

9 / 44

How is a process specified?

$ readelf -h hello1
ELF Header:

...
Entry point address: 0x8049030
Start of program headers: 52 (bytes into file)
Start of section headers: 14968 (bytes into file)
Number of program headers: 8
Number of section headers: 23
Section header string table index: 22

• Executable files are the linker/loader interface. Must tell OS:
- What is code? What is data? Where should they live?
- This is part of the purpose of the ELF standard

• Every ELF file starts with ELF an header
- Specifies entry point virtual address at which to start executing
- But how should the loader set up memory?

10 / 44

https://www.scs.stanford.edu/22wi-cs212/sched/readings/elf.pdf

Recall what process memory looks like

kernel
stack

heap
uninitialized data (bss)

initialized data
read-only data

code (text)

mmapped
regionsdynamic

static

• Address space divided into “segments”
- Text, read-only data, data, bss, heap (dynamic data), and stack
- Recall gcc told assembler in which segments to put what contents

11 / 44

Who builds what?

• Heap: allocated and laid out at runtime by malloc
- Namespace constructed dynamically, managed by programmer

(names stored in pointers, and organized using data structures)
- Compiler, linker not involved other than saying where it can start

• Stack: allocated at runtime (func. calls), layout by compiler
- Names are relative off of stack (or frame) pointer
- Managed by compiler (alloc on procedure entry, free on exit)
- Linker not involved because namespace entirely local:

Compiler has enough information to build it.
• Global data/code: allocated by compiler, layout by linker

- Compiler emits them and names with symbolic references
- Linker lays them out and translates references

• Mmapped regions: Managed by programmer or linker
- Some programs directly call mmap; dynamic linker uses it, too

12 / 44

ELF program header

$ readelf -l hello1
Program Headers:

Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align
LOAD 0x001000 0x08049000 0x08049000 0x00304 0x00304 R E 0x1000
LOAD 0x002000 0x0804a000 0x0804a000 0x00158 0x00158 R 0x1000
LOAD 0x002ff8 0x0804bff8 0x0804bff8 0x0001c 0x0003c RW 0x1000
...

Section to Segment mapping:
Segment Sections...
01text ...
02 .rodata ...
03data .bss

• For executables, the ELF header points to a program header
- Says what segments of file to map where, with what permissions

• Segment 03 has shorter file size then memory size
- Only 0x1c bytes must be read into memory from file
- Remaining 0x20 bytes constitute the .bss

• Who creates the program header? The linker
13 / 44

Linkers (Linkage editors)

• Unix: ld
- Usually hidden behind compiler
- Run gcc -v hello.c to see ld or invoked (may see collect2)

• Three functions:
- Collect together all pieces of a program
- Coalesce like segments
- Fix addresses of code and data so the program can run

• Result: runnable program stored in new object file
• Why can’t compiler do this?

- Limited world view: sees one file, rather than all files

• Usually linkers don’t rearrange segments, but can
- E.g., re-order instructions for fewer cache misses;

remove routines that are never called from a.out
14 / 44

Linkers (Linkage editors)

• Unix: ld
- Usually hidden behind compiler
- Run gcc -v hello.c to see ld or invoked (may see collect2)

• Three functions:
- Collect together all pieces of a program
- Coalesce like segments
- Fix addresses of code and data so the program can run

• Result: runnable program stored in new object file
• Why can’t compiler do this?

- Limited world view: sees one file, rather than all files

• Usually linkers don’t rearrange segments, but can
- E.g., re-order instructions for fewer cache misses;

remove routines that are never called from a.out
14 / 44

Simple linker: two passes needed

• Pass 1:
- Coalesce like segments; arrange in non-overlapping memory
- Read files’ symbol tables, construct global symbol table with entry

for every symbol used or defined
- Compute virtual address of each segment (at start+offset)

• Pass 2:
- Patch references using file and global symbol table
- Emit result

• Symbol table: information about program kept while linker
running

- Segments: name, size, old location, new location
- Symbols: name, input segment, offset within segment

15 / 44

Where to put emitted objects?

• Assember:
- Doesn’t know where data/code should be

placed in the process’s address space
- Assumes each segment starts at zero
- Emits symbol table that holds the name and

offset of each created object
- Routines/variables exported by file are

recorded as global definitions

• Simpler perspective:
- Code is in a big char array
- Data is in another big char array
- Assembler creates (object name, index)

tuple for each interesting thing
- Linker then merges all of these arrays

0 main:
...

call my_write
...

ret
60 my_strlen:

...
ret

main: 0: T
my_strlen: 60: t
greeting: 0: R

16 / 44

Object files

$ objdump -Sr hello2.o
...
48: 50 push %eax
49: 68 00 00 00 00 push $0x0

4a: R_386_32 greeting
4e: 6a 01 push $0x1
50: e8 fc ff ff ff call 51 <main+0x2a>

51: R_386_PC32 my_write
55: 83 c4 10 add $0x10,%esp

• Let’s create two-file program hello2 with my_write in separate
file

- Compiler and assembler can’t possibly know final addresses
• Notice push uses 0 as address of greeting
• And call uses -4 as address of my_write—why?

- Target (sitting at offset 51 in text) encoded relative to next
instruction (add at offset 55)

17 / 44

Object files

$ objdump -Sr hello2.o
...
48: 50 push %eax
49: 68 00 00 00 00 push $0x0

4a: R_386_32 greeting
4e: 6a 01 push $0x1
50: e8 fc ff ff ff call 51 <main+0x2a>

51: R_386_PC32 my_write
55: 83 c4 10 add $0x10,%esp

• Let’s create two-file program hello2 with my_write in separate
file

- Compiler and assembler can’t possibly know final addresses
• Notice push uses 0 as address of greeting
• And call uses -4 as address of my_write—why?

- Target (sitting at offset 51 in text) encoded relative to next
instruction (add at offset 55)

17 / 44

Where is everything?

• How to call procedures or reference variables?
- E.g., call to my_write needs a target addr
- Assembler uses 0 or PC (%eip) for address
- Emits an external reference telling the linker the instruction’s

offset and the symbol it needs to be patched with
0 main:

...
49 pushl $0x0
4e pushl $0x1
50 call -4

...
main: 0: T
my_strlen: 40: t
greeting: 4a
my_write: 51

• At link time the linker patches every reference
18 / 44

Relocations

$ readelf -r hello2.o
...

Offset Info Type Sym.Value Sym. Name
00000039 00000801 R_386_32 00000000 greeting
0000004a 00000801 R_386_32 00000000 greeting
00000051 00000a02 R_386_PC32 00000000 my_write...

• Object file stores list of required relocations
- R_386_32 says add symbol value to value already in file (often 0)
- R_386_PC32 says add difference between symbol value and patch

location to value already in file (often -4 for call)
- Info encodes type and index of symbol value to use for patch

19 / 44

ELF sections

$ readelf -S hello2.o
[Nr] Name Type Addr Off Size ES Flg Lk Inf Al
[0] NULL 00000000 000000 000000 00 0 0 0
[1] .text PROGBITS 00000000 000034 0000a4 00 AX 0 0 1
[2] .rel.text REL 00000000 0005f8 000018 08 I 20 1 4
[3] .data PROGBITS 00000000 0000d8 000000 00 WA 0 0 1
[4] .bss NOBITS 00000000 0000d8 000000 00 WA 0 0 1
[5] .rodata PROGBITS 00000000 0000d8 00000d 00 A 0 0 4
...

[20] .symtab SYMTAB 00000000 0004f0 0000d0 10 21 9 4
[21] .strtab STRTAB 00000000 0005c0 000038 00 0 0 1

• Memory segments have corresponding PROGBITS file segments
• But relocations and symbol tables reside in segments, too
• Segments can be arrays of fixed-size data structures

- So strings referenced as offsets into special string segments
• Remember ELF header had section header string table index

- That’s so you can interpret names in section header
20 / 44

Symbol table

$ readelf -s hello2.o
Num: Value Size Type Bind Vis Ndx Name

...
3: 00000000 39 FUNC LOCAL DEFAULT 1 my_strlen

...
9: 00000000 13 OBJECT GLOBAL DEFAULT 5 greeting

10: 00000027 62 FUNC GLOBAL DEFAULT 1 main
11: 00000000 0 NOTYPE GLOBAL DEFAULT UND my_write

...

• Lists all global, exported symbols
- Sometimes local ones, too, for debugging (e.g., my_strlen)

• Each symbol has an offset in a particular section number
- On previous slide, 1 = .text, 5 = .rodata
- Special undefined section 0 means need symbol from other file

21 / 44

How to lay out emitted objects?

• At link time, linker first:
- Coalesces all like segments (e.g., all .text, .rodata) from all files
- Determines the size of each segment and the resulting address to

place each object at
- Stores all global definitions in a global symbol table that maps the

definition to its final virtual address

• Then in a second phase:
- Ensure each symbol has exactly 1 definition (except weak symbols,

when compiling with -fcommon)
- For each relocation:

▷ Look up referenced symbol’s virtual address in symbol table
▷ Fix reference to reflect address of referenced symbol

22 / 44

What is a library?

• A static library is just a collection of .o files
• Bind them together with ar program, much like tar

- E.g., ar cr libmylib.a obj1.o obj2.o obj3.o
- On many OSes, run ranlib libmylib.a (to build index)

• You can also list (t) and extract (x) files
- E.g., try: ar tv /usr/lib/libc.a

• When linking a .a (archive) file, linker only pulls in needed files
- Ensures resulting executable can be smaller than big library

• readelf will operate on every archive member (unweildy)
- But often convenient to disassemble with
objdump -d /usr/lib/libc.a

23 / 44

Examining programs with nm

int uninitialized;
int initialized = 1;
const int constant = 2;
int main ()
{

return 0;
}

$ nm a.out
...
0400400

VA

T

symbol type

_start
04005bc R constant
0601008 W data_start
0601020 D initialized
04004b8 T main
0601028 B uninitialized

• If don’t need full readelf, can use nm (nm -D on shared objects)
- Handy -o flag prints file, useful with grep

• R means read-only data (.rodata in elf)
- Note constant VA on same page as main
- Share pages of read-only data just like text

• B means uninitialized data in “BSS”
• Lower-case letters correspond to local symbols (static in C)

24 / 44

Examining sections with objdump

$ objdump -h a.out
a.out: file format elf64-x86-64
Sections:
Idx Name Size VMA LMA File off Algn
...
12 .text 000001a8 00400400 00400400 00000400 2**4

CONTENTS, ALLOC, LOAD, READONLY, CODE
...
14 .rodata 00000008 004005b8 004005b8 000005b8 2**2

CONTENTS, ALLOC, LOAD, READONLY, DATA
...
17 .ctors 00000010 00600e18 00600e18 00000e18 2**3

CONTENTS, ALLOC, LOAD, DATA
...
23 .data 0000001c 00601008 00601008 00001008 2**3

CONTENTS, ALLOC, LOAD, DATA
...
24 .bss 0000000c 00601024 00601024 00001024 2**2

ALLOC
... No contents in file

Note Load mem addr. and File off have
same page alignment for easy mmapping

• Another portable alternative to readelf
25 / 44

Name mangling

// C++
int foo (int a)
{

return 0;
}

int foo (int a, int b)
{

return 0;
}

% nm overload.o
0000000 T _Z3fooi
000000e T _Z3fooii

U __gxx_personality_v0

% nm overload.o | c++filt
Demangle names

0000000 T foo(int)
000000e T foo(int, int)

U __gxx_personality_v0

Mangling not
compatible across
compiler versions

• C++ can have many functions with the same name
• Compiler therefore mangles symbols

- Makes a unique name for each function
- Also used for methods/namespaces (obj::fn), template

instantiations, & special functions such as operator new

26 / 44

Initialization and destruction

// C++
int a_foo_exists;
struct foo_t {

foo_t () {
a_foo_exists = 1;

}
};
foo_t foo;

• Initializers run before main
- Mechanism is platform-specific

• Example implementation:
- Compiler emits static function in

each file running initializers
- Wrap linker with collect2 program

that generates ___main function
calling all such functions

- Compiler inserts call to ___main
when compiling real main

% cc -S -o- ctor.C | c++filt
...

.text

.align 2
__static_initialization_and_destruction_0(int, int):
...

call foo_t::foo_t()

27 / 44

Other information in executables

// C++
struct foo_t {

~foo_t() {/*...*/}
except() { throw 0; }

};
void fn ()
{

foo_t foo;
foo.except();
/* ... */

}

• Throwing exceptions destroys
automatic variables

• During exception, must find
- All such variables with non-trivial

destructors
- In all procedures’ call frames until

exception caught

• Record info in special sections

• Executables can include debug info (compile w. -g)
- What source line does each binary instruction correspond to?

28 / 44

Dynamic (runtime) linking (hello3.c)

#include <dlfcn.h>
int main(int argc, char **argv, char **envp)
{
size_t (*my_strlen)(const char *p);
int (*my_write)(int, const void *, size_t);
void *handle = dlopen("dest/libmy.so", RTLD_LAZY);
if (!handle

|| !(my_strlen = dlsym(handle, "my_strlen"))
|| !(my_write = dlsym(handle, "my_write")))

return 1;
return my_write (1, greeting, my_strlen(greeting)) < 0;

}

• Link time isn’t special, can link at runtime too
- Get code (e.g., plugins) not available when program compiled

• Issues:
- How can behavior differ compared to static linking?
- Where to get unresolved symbols (e.g., my_write) from?
- How does my_write know its own addresses (e.g., for my_errno)?

29 / 44

Dynamic linking (continued)

• How can behavior differ compared to static linking?
- Runtime failure (can’t find file, doesn’t contain symbols)
- No type checking of functions, variables

• Where to get unresolved symbols (e.g., my_write) from?
- dlsym must parse ELF file to find symbols

• How does my_write know its own addresses?

$ readelf -r dest/libmy.so

Relocation section ’.rel.dyn’ at offset 0x20c contains 1 entry:
Offset Info Type Sym.Value Sym. Name

00003ffc 00000106 R_386_GLOB_DAT 0000400c my_errno

- dlopen, too, must parse ELF to patch relocations

30 / 44

Static shared libraries

• Observation: everyone links in standard libraries (libc.a.),
these libs consume space in every executable.

• Insight: we can have a single copy on disk if we don’t actually
include libc code in executable

31 / 44

Static shared libraries

• Define a “shared library segment” at same address in every
program’s address space

• Every shared lib is allocated a unique
range in this seg, and computes where
its external defs reside

• Linker links program against lib
(why?) but does not bring in actual code

• Loader marks shared lib region as unreadable
• When process calls lib code, seg faults: embedded linker

brings in lib code from known place & maps it in.
• Now different running programs can share code!

32 / 44

Dynamic shared libraries

• Static shared libraries require system-wide pre-allocation of
address space

- Clumsy, inconvenient
- What if a library gets too big for its space? (fragmentation)
- Can’t upgrade libraries w/o relinking applications
- Can space ever be reused?

• Solution: Dynamic shared libraries
- Combine shared library and dynamic linking ideas
- Any library can be loaded at any VA, chosen at runtime

• New problem: Linker won’t know what names are valid
- Solution: stub library

• New problem: How to call functions whose position varies?
- Solution: next page. . .

33 / 44

Position-independent code

• Code must be able to run
anywhere in virtual mem

• Runtime linking would prevent
code sharing, so. . .

• Add a level of indirection!

34 / 44

Lazy dynamic linking

• Linking all the functions at
startup costs time

• Program might only call a few of
them

• Only link each function on its
first call

35 / 44

Dynamic linking with ELF

• Every dynamically linked executable needs an interpreter
- Embedded as string in special .interp section
- readelf -p .interp /bin/ls→ /lib64/ld-linux-x86-64.so.2
- So all the kernel has to do is run ld-linux

• dlfixup uses hash table to find symbols when needed
• Hash table lookups can be quite expensive [Drepper]

- E.g., big programs like OpenOffice very slow to start
- Solution 1: Use a better hash function

▷ linux added .gnu.hash section, later removed .hash sections
- Solution 2: Export fewer symbols. Now fashionable to use:

▷ gcc -fvisibility=hidden (keep symbols local to DSO)
▷ #pragma GCC visibility push(hidden)/visibility pop
▷ __attribute__(visibility("default")), (override for a symbol)

36 / 44

http://www.akkadia.org/drepper/dsohowto.pdf

Dynamic shared library example: hello4

$ objdump -Sr hello4
...

08049030 <my_write@plt>:
8049030: ff 25 0c c0 04 08 jmp *0x804c00c
8049036: 68 00 00 00 00 push $0x0
804903b: e9 e0 ff ff ff jmp 8049020 <.plt>

08049040 <my_strlen@plt>:
8049040: ff 25 10 c0 04 08 jmp *0x804c010
8049046: 68 08 00 00 00 push $0x8
804904b: e9 d0 ff ff ff jmp 8049020 <.plt>

...
804917a: 68 08 a0 04 08 push $0x804a008
804917f: e8 bc fe ff ff call 8049040 <my_strlen@plt>

• 0x804c00c and 0x804c010 initially point to next instruction
- Calls dlfixup with relocation index
- dlfixup needs no relocation because jmp takes relative address

37 / 44

hello4 relocations

$ readelf -r hello4
Relocation section ’.rel.plt’ at offset 0x314 contains 2 entries:
Offset Info Type Sym.Value Sym. Name

0804c00c 00000107 R_386_JUMP_SLOT 00000000 my_write
0804c010 00000507 R_386_JUMP_SLOT 00000000 my_strlen

• PLT = procedure linkage table on last slide
- Small 16 byte snippets, read-only executable code

• dlfixup Knows how to parse relocations, symbol table
- Looks for symbols by name in hash tables of shared libraries

• my_write & my_strlen are pointers in global offset table (GOT)
- GOT non-executable, read-write (so dlfixup can fix up)

• Note hello4 knows address of greeting, PLT, and GOT
- How does a shared object (libmy.so) find these?
- PLT is okay because calls are relative
- In PIC, compiler reserves one register %ebx for GOT address

38 / 44

hello4 shared object contents

mywrite.c
int my_errno;
int my_write(int fd, const void *buf, size_t len) {
int ret;
asm volatile (/* ... */);
if (ret < 0) {
my_errno = -ret;
return -1;

}
return ret;

}

mywrite.s

negl %eax
movl %eax, my_errno

mywrite-pic.s
negl %eax
movl %eax, %edx
movl my_errno@GOT(%ebx), %eax
movl %edx, (%eax)

39 / 44

How does %ebx get set?

mywrite-pic.s
my_write:

pushl %ebp
movl %esp, %ebp
pushl %ebx
subl $16, %esp
call __x86.get_pc_thunk.bx
addl $_GLOBAL_OFFSET_TABLE_, %ebx
...

__x86.get_pc_thunk.bx:
movl (%esp), %ebx
ret

$ readelf -r .libs/mywrite.o
Offset Info Type Sym.Value Sym. Name

00000008 00000a02 R_386_PC32 00000000 __x86.get_pc_thunk.bx
0000000e 00000b0a R_386_GOTPC 00000000 _GLOBAL_OFFSET_TABLE_
00000036 0000082b R_386_GOT32X 00000000 my_errno

40 / 44

Linking and security

void fn ()
{
char buf[80];
gets (buf);
/* ... */

}

1. Attacker puts code in buf
- Overwrites return address to jump to code

2. Attacker puts shell command above buf
- Overwrites return address so function

“returns” to system function in libc

• People try to address problem with linker
• W^X: No memory both writable and executable

- Prevents 1 but not 2, must be disabled for jits
• Address space randomization

- Makes attack #2 a little harder, not impossible
- Leads to position-independent executable, compiled -fpie and

linked -pie—like PIC for executables
• Also address with compiler (stack protector, CFI)

41 / 44

Linking Summary

• Compiler/Assembler: 1 object file for each source file
- Problem: incomplete world view
- Where to put variables and code? How to refer to them?
- Names definitions symbolically (“printf”), refers to

routines/variable by symbolic name

• Linker: combines all object files into 1 executable file
- Big lever: global view of everything. Decides where everything

lives, finds all references and updates them
- Important interface with OS: what is code, what is data, where is

start point?

• OS loader reads object files into memory:
- Allows optimizations across trust boundaries (share code)
- Provides interface for process to allocate memory (sbrk)

42 / 44

Code = data, data = code

• No inherent difference between code and data
- Code is just something that can be run through a CPU without

causing an “illegal instruction fault”
- Can be written/read at runtime just like data “dynamically

generated code”

• Why? Speed (usually)
- Big use: eliminate interpretation overhead. Gives 10-100x

performance improvement
- Example: Just-in-time Javascript compiler, or qemu vs. bochs
- In general: optimizations thrive on information. More information

at runtime.

• The big tradeoff:
- Total runtime = code gen cost + cost of running code

43 / 44

How?

• Determine binary encoding of desired instructions

• Write these integer values into a memory buffer

• Use mprotect to disable W^X
• Jump to the address of the buffer: ((int (*)())code)();

44 / 44

