Midterm results

25

20 —

0-9 10-19 20-29 30-39 40-49 50-59 60-69 70-79 80-89 90-99 100
¢ Mean: 27.72, median: 24

1/42

Midterm results

0
100% T g

80%
60% /
40% w

I
I
1
20% / 1
|
|
|
|

//

0 2024 40 60 80 100

0%

* Systems students should insist on a CDF!

1/42

¢ Recall we will have a resurrection final

- Don’t panic if you didn’t do well on midterm
- But make sure you understand all the answers
- There may be questions on same topics on the final

* New CA with weekend office hours
- Advay Pal, Saturday 2pm-6pm

* I’m holding in-person office hours this Friday 3pm-4pm
- Bytes cafe, outside Packard
- Welcome to come whether or not you have questions

2/42

@ Malloc and fragmentation
@ Exploiting program behavior
© Allocator designs

@ User-level MMU tricks

© Garbage collection

3/42

Dynamic memory allocation

* Almost every useful program uses it

- Gives wonderful functionality benefits

> Don’t have to statically specify complex data structures
> Can have data grow as a function of input size

> Allows recursive procedures (stack growth)
- But, can have a huge impact on performance

* Today: how to implement it
- Lecture based on [Wilson
¢ Some interesting facts:

- Two or three line code change can have huge, non-obvious impact
on how well allocator works (examples to come)
- Proven: impossible to construct an "always good" allocator

- Surprising result: memory management still poorly understood

4/42

https://www.scs.stanford.edu/22wi-cs212/sched/readings/wilson.pdf

Why is it hard?

 Satisfy arbitrary set of allocation and frees.

* Easy without free: set a pointer to the beginning of some big
chunk of memory (“heap”) and increment on each allocation:

heap (free memory)

allocation ¢
_— oge
current free position

* Problem: free creates holes (“fragmentation”)
Result? Lots of free space but cannot satisfy request!

5/42

More abstractly

freelist

e What an allocator mustdo? [1 T T _—F—nNuLL

- Track which parts of memory in use, which parts are free
- ldeal: no wasted space, no time overhead

* What the allocator cannot do?
- Control order of the number and size of requested blocks
- Know the number, size, or lifetime of future allocations
- Move allocated regions (bad placement decisions permanent)

malloc(20)? 20 10 20 10 20

* The core fight: minimize fragmentation

- App frees blocks in any order, creating holes in “heap”
- Holes too small? cannot satisfy future requests

6/42

What is fragmentation really?

¢ Inability to use memory that is free
* Two factors required for fragmentation

1. Different lifetimes—if adjacent objects die at different times, then
fragmentation:

> If all objects die at the same time, then no fragmentation:

2. Different sizes: If all requests the same size, then no fragmentation
(that’s why no external fragmentation with paging):

7/42

Important decisions

* Placement choice: where in free memory to put a requested
block?
- Freedom: can select any memory in the heap
- Ideal: put block where it won’t cause fragmentation later
(impossible in general: requires future knowledge)
* Split free blocks to satisfy smaller requests?
- Fights internal fragmentation
- Freedom: can choose any larger block to split
- One way: choose block with smallest remainder (best fit)

* Coalescing free blocks to yield larger blocks

20 j10f 30 |[—| 30 30

- Freedom: when to coalesce (deferring can save work)
- Fights external fragmentation

8/42

Impossible to “solve” fragmentation

* If you read allocation papers to find the best allocator

- All discussions revolve around tradeoffs
- The reason? There cannot be a best allocator

¢ Theoretical result:

- For any possible allocation algorithm, there exist streams of
allocation and deallocation requests that defeat the allocator and
force it into severe fragmentation.

* How much fragmentation should we tolerate?
- Let M = bytes of live data, n,;, = smallest allocation, npax = largest -
How much gross memory required?
- Bad allocator: M - (Nmax/Nmin)
> E.g., only ever use a memory location for a single size
> E.g., make all allocations of size nmax regardless of requested size
- Good allocator: ~ M - log(Nmax/Nmin)

9/42

Pathological examples

e Suppose heap currently has 7 20-byte chunks

20 20 20 20 20 20 20

- What’s a bad stream of frees and then allocates?

* Given a 128-byte limit on malloced space
- What'’s a really bad combination of mallocs & frees?

* Next: two allocators (best fit, first fit) that, in practice, work
pretty well

- “pretty well” = ~20% fragmentation under many workloads

10/42

Pathological examples

e Suppose heap currently has 7 20-byte chunks

20 20 20 20 20 20 20

- What’s a bad stream of frees and then allocates?
- Free every other chunk, then alloc 21 bytes

* Given a 128-byte limit on malloced space
- What'’s a really bad combination of mallocs & frees?

* Next: two allocators (best fit, first fit) that, in practice, work
pretty well

- “pretty well” = ~20% fragmentation under many workloads

10/42

Pathological examples

e Suppose heap currently has 7 20-byte chunks

20 20 20 20 20 20 20

- What’s a bad stream of frees and then allocates?
- Free every other chunk, then alloc 21 bytes
* Given a 128-byte limit on malloced space

- What'’s a really bad combination of mallocs & frees?

- Malloc 128 1-byte chunks, free every other

- Malloc 32 2-byte chunks, free every other (1- & 2-byte) chunk
- Malloc 16 4-byte chunks, free every other chunk...

* Next: two allocators (best fit, first fit) that, in practice, work
pretty well

- “pretty well” = ~20% fragmentation under many workloads

10/42

¢ Strategy: minimize fragmentation by allocating space from
block that leaves smallest fragment

- Data structure: heap is a list of free blocks, each has a header
holding block size and a pointer to the next block

20 A 30 A 30 M 37

- Code: Search freelist for block closest in size to the request.
(Exact match is ideal)

- During free (usually) coalesce adjacent blocks

* Potential problem: Sawdust

- Remainder so small that over time left with “sawdust” everywhere
- Fortunately not a problem in practice

11/42

Best fit gone wrong

* Simple bad case: allocate n, m (n < m) in alternating orders,
free all the ns, then try to allocateann + 1

e Example: start with 99 bytes of memory
- alloc19,21,19,21,19
19 21 19 21 19

- free 19,19, 19:
19 21 19 21 19

- alloc 207 Fails! (wasted space = 57 bytes)
* However, doesn’t seem to happen in practice

12/42

o Strategy: pick the first block that fits
- Data structure: free list, sorted LIFO, FIFO, or by address
- Code: scan list, take the first one
* LIFO: put free object on front of list.
- Simple, but causes higher fragmentation
- Potentially good for cache locality
* Address sort: order free blocks by address
- Makes coalescing easy (just check if next block is free)
- Also preserves empty/idle space (locality good when paging)
* FIFO: put free object at end of list
- Gives similar fragmentation as address sort, but unclear why

13/42

Subtle pathology: LIFO FF

» Storage management example of subtle impact of simple
decisions
* LIFO first fit seems good:
- Put object on front of list (cheap), hope same size used again
(cheap + good locality)
* But, has big problems for simple allocation patterns:

- E.g., repeatedly intermix short-lived 2n-byte allocations, with
long-lived (n + 1)-byte allocations

- Each time large object freed, a small chunk will be quickly taken,
leaving useless fragment. Pathological fragmentation

14/42

e First fit sorted by address order, in practice:
- Blocks at front preferentially split, ones at back only split when no
larger one found before them
- Result? Seems to roughly sort free list by size
- So? Makes first fit operationally similar to best fit: a first fit of a
sorted list = best fit!

* Problem: sawdust at beginning of the list

- Sorting of list forces a large requests to skip over many small
blocks. Need to use a scalable heap organization

* Suppose memory has free blocks: | 20 3 15

- If allocation ops are 10 then 20, best fit wins
- When is FF better than best fit?

15/42

e First fit sorted by address order, in practice:
- Blocks at front preferentially split, ones at back only split when no
larger one found before them
- Result? Seems to roughly sort free list by size
- So? Makes first fit operationally similar to best fit: a first fit of a
sorted list = best fit!

* Problem: sawdust at beginning of the list

- Sorting of list forces a large requests to skip over many small
blocks. Need to use a scalable heap organization

\

* Suppose memory has free blocks: | 20 3 15

- If allocation ops are 10 then 20, best fit wins
- When is FF better than best fit?
- Suppose allocation ops are 8, 12, then 12 = first fit wins

15/42

Some worse ideas

e Worst-fit:

- Strategy: fight against sawdust by splitting blocks to maximize
leftover size

- Inreal life seems to ensure that no large blocks around
* Next fit:

- Strategy: use first fit, but remember where we found the last thing
and start searching from there

- Seems like a good idea, but tends to break down entire list

* Buddy systems:

- Round up allocations to power of 2 to make management faster
- Result? Heavy internal fragmentation

16/42

@ Malloc and fragmentation
@ Exploiting program behavior
© Allocator designs

@ User-level MMU tricks

© Garbage collection

17/42

Known patterns of real programs

* So far we’ve treated programs as black boxes.

* Most real programs exhibit 1 or 2 (or all 3) of the following
patterns of alloc/dealloc:

- Ramps: accumulate data monotonically over time

0 N

[V]

.‘;\ /

Q0

- Peaks: allocate many objects, use briefly, then free all
- Plateaus: allocate many objects, use for a long time

N

vl \

N

bytes

bytes

S
7

18/42

Pattern 1: ramps

Bytes in use
\
\
- = —— =}

time
trace from an LRU simulator

¢ In a practical sense: ramp = no free!

- Implication for fragmentation?
- What happens if you evaluate allocator with ramp programs only?

19/42

Pattern 2: peaks

Bytes in use

time
trace of gcc compiling with full optimization

* Peaks: allocate many objects, use briefly, then free all

- Fragmentation a real danger
- What happens if peak allocated from contiguous memory?
- Interleave peak & ramp? Interleave two different peaks?

20/42

Exploiting peaks

* Peak phases: allocate a lot, then free everything

- Change allocation interface: allocate as before, but only support
free of everything all at once

- Called “arena allocation”, “obstack” (object stack), or
alloca/procedure call (by compiler people)

* Arena = a linked list of large chunks of memory

- Advantages: alloc is a pointer increment, free is “free”
No wasted space for tags or list pointers

64k

] 64k
“— free pointer

21/42

Pattern 3: Plateaus

—\,_._/WMW

Bytes in use

~

time
trace of perl running a string processing script

* Plateaus: allocate many objects, use for a long time
- What happens if overlap with peak or different plateau?

22/42

Fighting fragmentation

» Segregation = reduced fragmentation:

- Allocated at same time ~ freed at same time
- Different type ~ freed at different time

HEEEE I — | [T
1 Y e

* Implementation observations:

Programs allocate a small number of different sizes
Fragmentation at peak usage more important than at low usage
Most allocations small (< 10 words)

Work done with allocated memory increases with size
Implications?

23/42

@ Malloc and fragmentation
@ Exploiting program behavior
© Allocator designs

@ User-level MMU tricks

© Garbage collection

24/42

Slab allocation [Bonwick]

* Kernel allocates many instances of same structures
- E.g.,a1.7 kB task_struct for every process on system

Often want contiguous physical memory (for DMA)

Slab allocation optimizes for this case:
- Aslab is multiple pages of contiguous physical memory
- A cache contains one or more slabs
- Each cache stores only one kind of object (fixed size)

Each slab is full, empty, or partial

E.g., need new task_struct?
- Look in the task_struct cache
- If there is a partial slab, pick free task_struct in that
- Else, use empty, or may need to allocate new slab for cache

Advantages: speed, and no internal fragmentation

25/42

https://www.scs.stanford.edu/22wi-cs212/sched/readings/bonwick:slab.pdf

Simple, fast segregated free lists

 Array of free lists for small sizes, tree for larger
- Place blocks of same size on same page
- Have count of allocated blocks: if goes to zero, can return page
* Pro: segregate sizes, no size tag, fast small alloc
* Con: worst case waste: 1 page per size even w/o free,
After pessimal free: waste 1 page per object
* TCMalloc [Ghemawat] is a well-documented malloc like this
- Also uses “thread caching” to reduce coherence misses

26/42

http://goog-perftools.sourceforge.net/doc/tcmalloc.html

Typical space overheads

Free list bookkeeping and alignment determine minimum
allocatable size:

If not implicit in page, must store size of block

Must store pointers to next and previous freelist element

112 —| 16 >
T T 4 byte alighment: addr%4=0
0x40£0 0x40fc

Allocator doesn’t know types
- Must align memory to conservative boundary

Minimum allocation unit? Space overhead when allocated?
[demo mtest]

27/42

Getting more space from OS

* On Unix, can use sbrk
- E.g., to activate a new zero-filled page:

stack /* add nbytes of valid virtual address space */
void *get_free_space(size_t nbytes) {

void *p = sbrk(nbytes);

if (p == (void *) -1)

strk error ("virtual memory exhausted");
return p;
heap } P
r/o data
+ code

* For large allocations, sbrk a bad idea
- May want to give memory back to 0OS
- Can’t with sbrk unless big chunk last thing allocated
- So allocate large chunk using mmap’s MAP_ANON

28/42

@ Malloc and fragmentation
@ Exploiting program behavior
© Allocator designs

@ User-level MMU tricks

© Garbage collection

29/42

Faults + resumption = power

* Resuming after fault lets us emulate many things
- “All problems in CS can be solved by another layer of indirection”

* Example: sub-page protection
* To protect sub-page region in paging system:

r/o

Set entire page to most restrictive permission; record in PT

write ——| r/o — write fault

Any access that violates permission will cause a fault
Fault handler checks if page special, and if so, if access allowed
Allowed? Emulate write (“tracing”), otherwise raise error

30/42

More fault resumption examples

* Emulate accessed bits:
- Set page permissions to “invalid”.
- On any access will get a fault: Mark as accessed
* Avoid save/restore of floating point registers
- Make first FP operation cause fault so as to detect usage
¢ Emulate non-existent instructions:
- Giveinst anillegal opcode; OS fault handler detects and emulates

fake instruction
- W|n98

° RunOSontopofanotheros! N })

Slam OS into normal process

When does something “privileged,” real OS
gets woken up with a fault.

If operation is allowed, do it or emulate it; otherwise kill guest
IBM’s VM/370. Vmware (sort of)

pr ivileged

31/42

Not just for kernels

* User-level code can resume after faults, too. Recall:
- mprotect - protects memory
- sigaction - catches signal after page fault
- Return from signal handler restarts faulting instruction

* Many applications detailed by [Appel & Li]

* Example: concurrent snapshotting of process

Mark all of process’s memory read-only with mprotect
One thread starts writing all of memory to disk

Other thread keeps executing

On fault - write that page to disk, make writable, resume

32/42

https://www.scs.stanford.edu/22wi-cs212/sched/readings/vmpup.pdf

Distributed shared memory

page table + Remote
_/ machine(s)
7)
B
)
N—

¢ Virtual memory allows us to go to memory or disk

- But, can use the same idea to go anywhere! Even to another
computer. Page across network rather than to disk. Faster, and
allows network of workstations (NOW)

33/42

Persistent stores

* ldea: Objects that persist across program invocations
- E.g., object-oriented database; useful for CAD/CAM type apps
* Achieve by memory-mapping a file
- Write your own “malloc” for memory in afile
* But only write changes to file at end if commit
- Use dirty bits to detect which pages must be written out
- Or emulate dirty bits with mprotect/sigaction (using write faults)
* On 32-bit machine, store can be larger than memory

But single run of program won’t access > 4GB of objects

Keep mapping of 32-bit memory pointers <« 64-bit disk offsets
Use faults to bring in pages from disk as necessary

After reading page, translate pointers—known as swizzling

34/42

@ Malloc and fragmentation
@ Exploiting program behavior
© Allocator designs

@ User-level MMU tricks

© Garbage collection

35/42

Garbage collection

* In safe languages, runtime knows about all pointers
- So can move an object if you change all the pointers

* What memory locations might a program access?
- Any globals or objects whose pointers are currently in registers
- Recursively, any pointers in objects it might access
- Anything else is unreachable, or garbage; memory can be re-used

* Example: stop-and-copy garbage collection

- Memory full? Temporarily pause program, allocate new heap
- Copy all objects pointed to by registers into new heap
> Mark old copied objects as copied, record new location
- Start scanning through new heap. For each pointer:
> Copied already? Adjust pointer to new location
> Not copied? Then copy it and adjust pointer
- Free old heap—program will never access it—and continue

36/42

Concurrent garbage collection

* ldea: Stop & copy, but without the stop
- Mutator thread runs program, collector concurrently does GC

e When collector invoked:

- Protect from space & unscanned to space from mutator

- Copy objects in registers into to space, resume mutator

- All pointers in scanned to space point to to space

- If mutator accesses unscanned area, fault, scan page, resume

scanned |unscanned
area area

1 2 3 4 5 6 mutator faults
: : E E E on access
from space to space
(See [Appel & Li].)

37/42

https://www.scs.stanford.edu/22wi-cs212/sched/readings/vmpup.pdf

Heap overflow detection

* Many GCed languages need fast allocation

- E.g.,in lisp, constantly allocating cons cells
- Allocation can be as often as every 50 instructions

* Fast allocation is just to bump a pointer

char *next_free;
char *heap_limit;

void *alloc (unsigned size) {
if (next_free + size > heap_limit) /* 1 */
invoke_garbage_collector (); /* 2 x/
char *ret = next_free;
next_free += size;
return ret;

¥

¢ But would be even faster to eliminate lines 1 & 2!

38/42

Heap overflow detection 2

* Mark page at end of heap inaccessible
- mprotect (heap_limit, PAGE_SIZE, PROT_NONE);

Program will allocate memory beyond end of heap

Program will use memory and fault

- Note: Depends on specifics of language
- But many languages will touch allocated memory immediately

Invoke garbage collector
- Must now put just allocated object into new heap

Note: requires more than just resumption

- Faulting instruction must be resumed
- But must resume with different target virtual address
- Doable on most architectures since GC updates registers

39/42

Reference counting

* Seemingly simpler GC scheme:

- Each object has “ref count” of pointers to it
- Increment when pointer set to it
- Decremented when pointer killed @
(C++ destructors handy—c.f. shared_ptr)
void foo(bar c) {
bar a b;
a=c; // c.refcnt++
b = a; // a.refcnt++

a = 0; // c.refcnt--
return; // b.refcnt--

3

- ref count == 07? Free object

e Works well for hierarchical data structures
- E.g., pages of physical memory

40/42

http://en.cppreference.com/w/cpp/memory/shared_ptr

Reference counting pros/cons

 Circular data structures always have ref count > 0
- No external pointers means lost memory

e Can do manually w/o PL support, but error-prone
* Potentially more efficient than real GC

- No need to halt program to run collector

- Avoids weird unpredictable latencies
* Potentially less efficient than real GC

- With real GC, copying a pointer is cheap

- With refcounts, must update count each time & possibly take lock

(but C++11 std::move can avoid overhead)
41/42

http://en.cppreference.com/w/cpp/utility/move

Ownership types

* Another approach: avoid GC by exploiting type system
- Use ownership types, which prohibit copies

* You can move a value into a new variable (e.g., copy pointer)
- But then the original variable is no longer usable

* You can borrow a value by creating a pointer to it

- But must prove pointer will not outlive borrowed value
- And can’t use original unless both are read-only (to avoid races)

* Ownership types available now in Rust language
- First serious competitor to C/C++ for OSes, browser engines
e C++11 does something similar but weaker with unique types

- std::unique_ptr, std: :unique_lock,...
- Can std::move but not copy these

42/42

https://doc.rust-lang.org/book/
http://en.cppreference.com/w/cpp/memory/unique_ptr
http://en.cppreference.com/w/cpp/thread/unique_lock
http://en.cppreference.com/w/cpp/utility/move

	Malloc and fragmentation
	Exploiting program behavior
	Allocator designs
	User-level MMU tricks
	Garbage collection

