Midterm Review

CS112/212 Winter 2022

Admin

e Whenisit?
o Midterm is on Monday Feb 7 (1:30 pm - 3 pm)
e What resources can I use?

o Open note, can print lecture slides
o No textbook or electronics

e How much of my grade does it count for?
o 50% of overall grade is: max(midterm > 0 ? final : 0, (midterm + final)/2)

Content

Processes & Threads
Concurrency

Scheduling

Virtual Memory (HW/OS)
Synchronization

Linking

Themes

e Memory models
o Sequential consistency
e Races
o Implementing locks
o Producer/consumer
e Design tradeoffs
o Using the past to predict the future
e Uniprocessor vs. multiprocessor

Processes & Threads

Processes

® Process

o Aninstance of a program running
o Has its own view of the machine: address space, open files

e Process control block (PCB)

o Stores information about the process, including:
m State (running, ready, waiting)
m Registers
m Virtual memory mappings
m Openfiles
o struct thread in pintos

Processes

e Why?
o Higher throughput*

emacs ——>wait for input——— wait for input———

gcc > >

o Lower latency*

Running A then B requires 100 sec for B to complete

80s 20s
A > B >

Running A and B concurrently makes B finish faster
A 2 > >

B — —

*potentially

Threads

Thread
o Schedulable execution context
o Allows one process to use multiple CPUs
o Lighter-weight than process

code data files code data files
registers stack registers ||| registers ||| registers
stack stack stack
thread —> <«—thread

single-threaded process

multithreaded process

Kernel vs. User Threads

e Kernel threads

o Pro: control
m Scheduling

m Priority
@) Con: heavy—weight <«—Kkernel thread

m All operations go through kernel
m More memory/features than needed

<«— user thread

1 user thread : 1 kernel thread

<«— user thread ; 3
<«—user thread
«—

e User threads ;
o Also known as “green threads”
o Pro: more lightweight and flexible
o Con: control
m IO on one thread blocks all
kemel thread kol hreadt

n user threads : 1 kernel thread n user threads : m kernel threads

Context Switching

e Context switch
. . . . scheduler
o Change which process is running ¢\adlmltt6d dispatch
e How?
o Save registers of current thread
o Restore registers of next thread

running

)

\

. / -
o Return into next thread 'éc?n?{)@{?é'rf o / ALl Ll
waiting

e When?

o State change

m Blocking call

m Device interrupt (e.g. disk access completed, packet arrived on network)
o Can preempt when kernel gets control*

m Traps: system call, page fault, illegal instruction

m Periodic timer interrupt

*unless non-preemptive (thread executes until blocking call)

Scheduling

Scheduling

Given a list of runnable processes, which do we run?

Problem
O
Goals
o Throughput
o Turnaround time
o Response time
o CPU utilization
o Waiting time

Context switch costs

(@)

(@)

CPU time in kernel
Indirect costs

grep

matrix
multiply

wait for
disk

wait for
disk

wait for
disk

I

k wait for CPU /

Scheduling Algorithms

e First come first serve

e Shortest job first

24

27

30

e Round-robin
e Priority scheduling
e MLFQS (multilevel feedback queues)

30

Multiprocessor Scheduling

e Problem

o Given a list of runnables processes, which do we run and which CPUs do we run them on?
e Considerations

o Load balancing

o Minimize direct/indirect costs
e Approaches

o Affinity scheduling
m Keep process on same CPU
o Gang scheduling
m Schedule related processes/threads together

Virtual Memory

Virtual Memory HW

Problem

(@)

(@)

Want multiple processes to co-exist
How should processes interface with memory?

Issues with using physical addresses

o Protection
o Transparency
o Resource exhaustion
Solution
o Give each program its own virtual address space
o Memory Management Unit (MMU)

translates between physical and virtual addresses

| No: to fault handler

virtual address
0x30408

virtual address
0x30408

3 MM

U

» MMU

Is address
legal?

Is address
legal?

“* Yes: phys.

addr 0x92408

memory

s memory

How to Map Memory

e Base + bound
o Physical address = virtual address + base

e Segmentation
o Divide memory into segments, each of which has a base + bound

e Demand Paging
o Divide memory into small, equal-sized pages
o Each process has its own page table
m Multilevel
m Translation Lookaside Buffer (TLB) caches recently used translations
o Any process can have any page, idle pages stored on disk, paged in when used
o Eviction?
m Least recently used: use past to predict future

Considerations

e Fragmentation
o Inability to use free memory
o External fragmentation (e.g. segmentation)
m Many small holes between memory segments
o Internal fragmentation (e.g. paging)
m Unused memory within allocated segments
e Speed
o Disk much slower than memory
o 80/20rule
m Hot 20 in memory = “working set”

e Local or global page allocation
e Thrashing

o Working set can’t fit in memory

Concurrency

Memory Model

e Sequential consistency
o Asifall operations were executed in some sequential order
o Downsides
m Thwarts hardware/compiler optimizations (e.g. prefetching/reordering)
o Requirements
m Maintain program order on individual processors
m Ensure write atomicity

Preventing Races

e Requirements to fake SC?
o Mutual exclusion
o Progress
o Bounded waiting
e How to meet requirements?
o Synchronization primitives
m Locks, semaphores, condition variables
e What if sharing data with interrupt handler?

o Uniprocessor: disable interrupts
o Multiprocessor: disable interrupts + spinlock

Synchronization

Memory System Properties

e (Coherence

o Concerns access to a single memory location
m If A writes x=1 and B writes x=2, all processes should see the same ordering

e Consistency
o Concerns ordering across multiple memory locations
m Ifx=1,y=2, Areads x,y and B writes x=3,y=4, could A ever see x=1,y=4?
o Sequential consistency matches our intuition

Considerations

e Amdahl’s law

o Ultimate limit on parallel speedup if part of task must be sequential

e Necessary conditions for data race

o Multiple threads access the same data
o Atleast one of the accesses is a write

e There is no such thing as a benign data race

e Necessary conditions for deadlock
o Limited access (mutual exclusion)
o No preemption
o Multiple independent requests (hold and wait)
o Circularity in graph of requests
m A holds mutex x, wants mutex y; B holds y, wants x

Memory Ordering and Fences

e What if we don’t need sequential consistency?

o Weaker consistency models
o Atomics, lock-free data structures

e X-Y{fence
o operations of type X sequenced before the fence happen before operations of type Y sequenced

after the fence

Acquire fence
Acq_rel fence

[[Load-Load | Load-Store]]

Store-Load 1 Store-Store k

'S
) e

R

Re‘lease fence
Seq_cst fence

Linking

Components of Memory

e Heap kernel
o Allocated and laid out at runtime by malloc i stack

e Stack q . «—~—__ mmapped
o Allocated at runtime, layout by compiler RIS — [regions

e Global data/code
o Allocated by compiler, layout by linker

e Mmapped regions
o Managed by programmer or linker static<

heap

N\

uninitialized data (bss)

initialized data
read-only data

code (text)

Program Lifecycle

e Source code — program running

e Compiler/Assembler
o Generates one object file for each source file (e.g. main.c — main.o)
m References to other files are incomplete (e.g. printf is in stdio.o)
e Linker
o Combines all object files into executable file
e OS Loader

o Reads executables into memory

Linker

e Goal

o Object files — executable
e How

o Passi

m Coalesce like segments
m Construct global symbol table
m Compute virtual address of each segment
o Pass2
m Fix addresses of code and data using global symbol table

| Unsolicited] Advice

Advice

e Old exams won’t necessarily cover the same material or have the same format

e Understand core themes
o Identify races in code
o Identify pros/cons of new approaches
o Given a workload, be able to select a good approach
e Notice what is/isn’t specified in a question (and state assumptions!)
o Sequential consistency
o Uniprocessor vs. multiprocessor
e Rely on notes for facts
o Might be time-constrained
o Create a cheat sheet instead of printing all lecture slides (or both?)

e Deep understanding of most material > cursory understanding of all

Good luck!

