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Computer networking

Host

HostHost

Channel

Application

Host

Application

Host

• Goal: two applications on different computers exchange data
• Requires inter-process (not just inter-node) communication
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The 7-Layer and 4-Layer Models
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Link Layer: Ethernet

• Originally designed for shared medium (coax), now generally
not shared medium (switched)

• Vendors give each device a unique 48-bitMAC address
- Specifies which card should receive a packet

• Ethernet switches can scale to switch local area networks
(thousands of hosts), but not much larger

• Packet format: Dest
addr

64 48 32

CRCPreamble Src
addr

Type Body

1648

- Preamble helps device recognize start of packet
- CRC allows receiving card to ignore corrupted packets
- Body up to 1,500 bytes for same destination
- All other fields must be set by sender’s OS

(NIC cards tell the OS what the card’s MAC address is,
Special addresses used for broadcast/multicast)

4 / 47

Network Layer: Internet Protocol (IP)

• IP used to connect multiple networks
- Runs over a variety of physical networks—Ethernet, DSL, 5G

• Every host has a unique 4-byte IP address (16-bytes for IPv6)
- (Or at least thinks it has, when there is address shortage)

• Packets are routed based on destination IP address

D

S- Address space is structured to make
routing practical at global scale

- E.g., 171.66.*.* goes to Stanford
- So packets need IP addresses in addition

to MAC addresses

• Inside IP: UDP or TCP transport layer adds 16-bit port number
- UDP – unreliable datagram protocol, exposes

lost/reordered/delayed (but typically not corrupted) packets
- TCP – transmission control protocol ≈ reliable pipe
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Principle: Encapsulation

• Stick packets inside packets
• How you realize packet switching and layering in a system

- E.g., an Ethernet packet may encapsulate an IP packet
- An IP router forwards a packet from one Ethernet to another,

creating a new Ethernet packet containing the same IP packet
- In principle, an inner layer should not depend on outer layers (not

always true)
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Unreliability of IP

• Network does not deliver packets reliably
- May drop, reorder, delay, corrupt, duplicate packets

• OS must implement reliable TCP on top of IP
• Straw man: Wait for ack for each packet

- Send a packet, wait for acknowledgment, send next packet
- If no ack, timeout and try again

• Problems?

- Low performance over high-delay network
(bandwidth is one packet per round-trip time)

- Possible congestive collapse of network
(if everyone keeps retransmitting when network overloaded)

8 / 47

Unreliability of IP

• Network does not deliver packets reliably
- May drop, reorder, delay, corrupt, duplicate packets

• OS must implement reliable TCP on top of IP
• Straw man: Wait for ack for each packet

- Send a packet, wait for acknowledgment, send next packet
- If no ack, timeout and try again

• Problems:
- Low performance over high-delay network

(bandwidth is one packet per round-trip time)
- Possible congestive collapse of network

(if everyone keeps retransmitting when network overloaded)

8 / 47

Performance: Bandwidth-delay

• Network delay over WAN will never improve much
• But throughput (bits/sec) is constantly improving
• Can view network as a pipe

Bandwidth

Delay

- For full utilization want # bytes in flight ≥ bandwidth×delay
(But don’t want to overload the network, either)

• What if protocol doesn’t involve bulk transfer?
- E.g., ping-pong protocol will have poor throughput

• Another implication: Concurrency & response time critical for
good network utilization
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A little bit about TCP

• Want to save network from congestion collapse
- Packet loss usually means congestion, so back off exponentially

• Want multiple outstanding packets at a time
- Get transmit rate up to n-packet window per round-trip

• Must figure out appropriate value of n for network
- Slowly increase transmission by one packet per acked window
- When a packet is lost, cut window size in half

• Connection set up and teardown complicated
- Sender never knows when last packet might be lost
- Must keep state around for a while (2MSL, e.g., 4 min) after close

• Lots more hacks required for good performance
- Initially ramp n up faster (but too fast caused collapse in

1986 [Jacobson], so TCP had to be changed)
- Fast retransmit when single packet lost
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Lots of OS issues for TCP

• Have to track unacknowledged data
- Keep a copy around until recipient acknowledges it
- Keep timer around to retransmit if no ack
- Receiver must keep out of order segments & reassemble

• When to wake process receiving data?
- E.g., sender calls write (fd, message, 8000);
- First TCP segment arrives, but is only 512 bytes
- Could wake recipient, but useless w/o full message
- TCP sets “PUSH” bit at end of 8000 byte write data

• When to send short segment, vs. wait for more data
- Usually send only one unacked short segment
- But bad for some apps, so provide NODELAY option

• Must ack received segments very quickly
- Otherwise, effectively increases RTT, decreasing bandwidth
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Sockets

• Sockets ≈ bi-directional pipes
• Name endpoints by IP address and 16-bit port number
• A connection is thus named by 5 components

- Protocol (TCP), local IP, local port, remote IP, remote port
- Note TCP requires connected sockets, while UDP does not

• Kernel stores connection state in a protocol control block
structure (PCB)

- Keep all PCB’s in a hash table
- When packet arrives (if destination IP address belongs to host), use

5-tuple to find PCB and determine what to do with packet
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Socket implementation

• Need to implement layering efficiently
- Add UDP header to data, Add IP header to UDP packet, . . .
- De-encapsulate Ethernet packet so IP code doesn’t get confused

by Ethernet header
• Don’t store packets in contiguous memory

- Moving data to make room for new header would be slow
• BSD solution: mbufs [Leffler]

(Note [Leffler] calls m_nextpkt by old name m_act)
- Small, fixed-size (256 byte) structures
- Makes allocation/deallocation easy (no fragmentation)

• BSD Mbufs working example for this lecture
- Linux uses sk_buffs, which are similar idea
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mbuf details

ext.size

ext.buf

pkt.rcvif
pkt.len

m_flags
m_type
m_type
m_data
m_len
m_nextpkt
m_next

ext.free
m_dat

optional

• Packets made up of multiple mbufs
- Chained together by m_next
- Such linked mbufs called chains

• Chains linked with m_nextpkt

- Linked chains known as queues
- E.g., device output queue

• Total mbuf size 256 B ⇒∼230 data
bytes (depends on size of pointers)

- First in chain has pkt header
• Clustermbufs have more data

- ext header points to data
- Up to 2 KB not collocated with mbuf
- m_dat not used

• m_flags is bitwise or of various bits
- E.g., if cluster, or if pkt header used
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Adding/deleting data with mbufs

• m_data always points to start of data
- Can be m_dat, or ext.buf for cluster mbuf
- Or can point into middle of that area

• To strip off a packet header (e.g., TCP/IP)
- Increment m_data, decrement m_len

• To strip off end of packet
- Decrement m_len

• Can add data to mbuf if buffer not full
• Otherwise, add data to chain

- Chain new mbuf at head/tail of existing chain
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mbuf utility functions

• mbuf *m_copym(mbuf *m, int off, int len, int wait);

- Creates a copy of a subset of an mbuf chain
- Doesn’t copy clusters, just increments reference count
- wait says what to do if no memory (wait or return NULL)

• void m_adj(struct mbuf *mp, int len);

- Trim |len| bytes from head or (if negative) tail of chain
• mbuf *m_pullup(struct mbuf *n, int len);

- Put first len bytes of chain contiguously into first mbuf
• Example: Ethernet packet containing IP datagram

- Trim Ethernet header using m_adj
- Call m_pullup (n, sizeof (ip_hdr));
- Access IP header as regular C data structure
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Socket implementation

• Each socket fd has associated socket structure with:
- Send and receive buffers
- Queues of incoming connections (on listen socket)
- A protocol control block (PCB)
- A protocol handle (struct protosw *)

• PCB contains protocol-specific info. E.g., for TCP:
- 5-tuple of protocol (TCP), source/destination IP address and port
- Information about received packets & position in stream
- Information about unacknowledged sent packets
- Information about timeouts
- Information about connection state (setup/teardown)
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protosw structure

• Goal: abstract away differences between protocols
- In C++, might use virtual functions on a generic socket struct
- Here just put function pointers in protosw structure

• Also includes a few data fields
- domain, type, protocol – to match socket syscall args, so know

which protosw to select
- flags – to specify important properties of protocol

• Some protocol flags:
- ATOMIC – exchange atomic messages only (like UDP, not TCP)
- ADDR – address given with messages (like unconnected UDP)
- CONNREQUIRED – requires connection (like TCP)
- WANTRCVD – notify socket of consumed data (e.g., so TCP can wake

up a sending process blocked by flow control)

19 / 47

protosw functions

• pr_slowtimo – called every 1/2 sec for timeout processing
• pr_drain – called when system low on space
• pr_input – returns mbuf chain of data read from socket
• pr_output – takes mbuf chain of data written to socket
• pr_usrreq – multi-purpose user-request hook

- Used for bind/listen/accept/connect/disconnect operations
- Used for out-of-band data
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Network interface cards

• Each NIC driver provides an ifnet data structure
- Like protosw, tries to abstract away the details

• Data fields:
- Interface name (e.g., “eth0”)
- Address list (e.g., Ethernet address, broadcast address, . . . )
- Maximum packet size
- Send queue

• Function pointers
- if_output – prepend header and enqueue packet
- if_start – start transmitting queued packets
- Also ioctl, timeout, initialize, reset
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Input handling

protocol
A

protocol
B

input
queue

input
queue

interface 1 interface 2 interface 3

• NIC driver figures out protocol of incoming packet
• Enqueues packet for appropriate protocol handler

- If queue full, drop packet (can create livelock [Mogul])
• Posts “soft interrupt” for protocol-layer processing

- Runs at lower priority than hardware (NIC) interrupt
. . . but higher priority than process-context kernel code
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Routing

• An OS must route all transmitted packets
- Machine may have multiple NICs plus “loopback” interface
- Which interface should a packet be sent to, and what MAC address

should packet have?
• Routing is based purely on the destination address

- Even if host has multiple NICs w. different IP addresses
- (Though linux lets you select a routing table by source IP)

• OS maintains routing table
- Maps IP address & prefix-length → next hop

• Use radix tree for efficient lookup
- Branch at each node in tree based on single bit of target
- When you reach leaf, that is your next hop

• Most OSes provide packet forwarding
- Received packets for non-local address routed out another

interface
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Network file systems

• What’s a network file system?
- Looks like a file system (e.g., FFS) to applications
- But data potentially stored on another machine
- Reads and writes must go over the network
- Also called distributed file systems

• Advantages of network file systems
- Easy to share if files available on multiple machines
- Often easier to administer servers than clients
- Access way more data than fits on your local disk
- Network + remote buffer cache faster than local disk

• Disadvantages
- Network + remote disk slower than local disk
- Network or server may fail even when client OK
- Complexity, security issues
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NFS version 2 [Sandberg]

• Background: ND (networked disk)
- Creates disk-like device even on diskless workstations
- Can create a regular (e.g., FFS) file system on it
- But no sharing—Why?

- FFS assumes disk doesn’t change under it

• ND idea still used today by Linux NBD
- Useful for network booting/diskless machines, not file sharing

• Some Goals of NFS
- Access same FS from multiple machines simultaneously
- Maintain Unix semantics
- Crash recovery
- Competitive performance with ND

• NFS version 2 protocol specified in [RFC 1094]
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NFS implementation

• Virtualized the file system with vnodes
- Basically poor man’s C++ (like protosw struct)

• Vnode structure represents an open (or openable) file
• Bunch of generic “vnode operations”:

- lookup, create, open, close, getattr, setattr, read, write, fsync,
remove, link, rename, mkdir, rmdir, symlink, readdir, readlink, . . .

- Called through function pointers, so most system calls don’t care
what type of file system a file resides on

• NFS vnode operations perform Remote Procedure Calls (RPC)
- Client sends request to server over network, awaits response
- Each system call may require a series of RPCs
- System mostly determined by RPC [RFC 1831] Protocol
- Uses XDR protocol specification language [RFC 1832]
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Stateless operation

• Designed for “stateless operation”
- Motivated by need to recover from server crashes

• Requests are self-contained

• Requests are

mostly
∧

idempotent
- Unreliable UDP transport
- Client retransmits requests until it gets a reply
- Writes must be stable before server returns

• Can this really work?

- Of course, FS not stateless – it stores files
- E.g., mkdir can’t be idempotent – second time dir exists
- But many operations, e.g., read, write are idempotent
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NFS version 3

• Same general architecture as NFS 2
• Specified in RFC 1813 (subset of Open Group spec)

- XDR defines C structures that can be sent over network;
includes tagged unions (to know which union field active)

- Protocol defined as a set of Remote Procedure Calls (RPCs)
• New access RPC

- Supports clients and servers with different uids/gids
• Better support for caching

- Unstable writes while data still cached at client
- More information for cache consistency

• Better support for exclusive file creation
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NFSv3 File handles

struct nfs_fh3 {
/* XDR notation for variable-length array
* with 0-64 opaque bytes: */
opaque data<64>;

};

• Server assigns an opaque file handle to each file
- Client obtains first file handle out-of-band (mount protocol)
- File handle hard to guess – security enforced at mount time
- Subsequent file handles obtained through lookups

• File handle internally specifies file system & file
- Device number, i-number, generation number, . . .
- Generation number changes when inode recycled

• Handle generally doesn’t contain filename
- Clients may keep accessing an open file after it’s renamed
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File attributes

struct fattr3 { specdata3 rdev;
ftype3 type; uint64 fsid;
uint32 mode; uint64 fileid;
uint32 nlink; nfstime3 atime;
uint32 uid; nfstime3 mtime;
uint32 gid; nfstime3 ctime;
uint64 size; };
uint64 used;

• Most operations can optionally return fattr3

• Attributes used for cache-consistency
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Lookup

struct diropargs3 { struct lookup3resok {
nfs_fh3 dir; nfs_fh3 object;
filename3 name; post_op_attr obj_attributes;

}; post_op_attr dir_attributes;
};

union lookup3res switch (nfsstat3 status) {
case NFS3_OK:
lookup3resok resok;

default:
post_op_attr resfail;

};

• Maps ⟨directory handle, filename⟩ → handle
- Client walks hierarchy one file at a time
- No symlinks expanded or file system boundaries crossed
- Client must expand symlinks
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Create

struct create3args {
diropargs3 where;
createhow3 how;

};

union createhow3 switch (createmode3 mode) {
case UNCHECKED:
case GUARDED:
sattr3 obj_attributes;

case EXCLUSIVE:
createverf3 verf;

};

• UNCHECKED – succeed if file exists
• GUARDED – fail if file exists
• EXCLUSIVE – persistent record of create
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Read

struct read3args { struct read3resok {
nfs_fh3 file; post_op_attr file_attributes;
uint64 offset; uint32 count;
uint32 count; bool eof;

}; opaque data<>;
};

union read3res switch (nfsstat3 status) {
case NFS3_OK:
read3resok resok;

default:
post_op_attr resfail;

};

• Offset explicitly specified (not implicit in handle)
• Client can cache result
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Data caching

• Client can cache blocks of data read and written
• Consistency based on times in fattr3

- mtime: Time of last modification to file
- ctime: Time of last change to inode

(Changed by explicitly setting mtime, increasing size of file,
changing permissions, etc.)

• Algorithm: If mtime or ctime changed by another client, flush
cached file blocks

35 / 47

Write discussion

• When is it okay to lose data after a crash?
- Local file system?

If no calls to fsync, OK to lose 30 seconds of work after crash
- Network file system?

What if server crashes but not client?
Application not killed, so shouldn’t lose previous writes

• NFSv2 addresses problem by having server write data to disk
before replying to a write RPC

- Caused performance problems
• Could NFS2 clients just perform write-behind?

- Implementation issues – used blocking kernel threads on write
- Semantics – how to guarantee consistency after server crash
- Solution: small # of pending write RPCs, but write through on

close; if server crashes, client keeps re-writing until acked
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NFSv2 write call

struct writeargs { union attrstat
fhandle file; switch (stat status) {
/* ... */ case NFS_OK:
unsigned offset; fattr attributes;
/* ... */ default:
nfsdata data; void;

}; };

attrstat NFSPROC_WRITE(writeargs) = 8;

• On successful write, returns new file attributes
• Can NFSv2 keep cached copy of file after writing it?
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Write race condition

Server
write A1

write A2

write B1

Client A Client B

• Suppose client overwrites 2-block file
- Client A knows attributes of file after writes A1 & A2
- But client B could overwrite block 1 between the A1 & A2
- No way for client A to know this hasn’t happened
- Must flush cache before next file read (or at least open)
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NFSv3 Write arguments

struct write3args { enum stable_how {
nfs_fh3 file; UNSTABLE = 0,
uint64 offset; DATA_SYNC = 1,
uint32 count; FILE_SYNC = 2
stable_how stable; };
opaque data<>;

};

• Two goals for NFSv3 write:
- Don’t force clients to flush cache after writes
- Don’t equate cache consistency with crash consistency

I.e., don’t wait for disk just so another client can see data
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Write results

struct write3resok { struct wcc_attr {
wcc_data file_wcc; uint64 size;
uint32 count; nfstime3 mtime;
stable_how committed; nfstime3 ctime;
writeverf3 verf; };

};
struct wcc_data {

union write3res wcc_attr *before;
switch (nfsstat3 status) { post_op_attr after;

case NFS3_OK: };
write3resok resok;

default:
wcc_data resfail;

};
• Several fields added to achieve these goals
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Data caching after a write

• Write will change mtime/ctime of a file
- “after” will contain new times
- With NFSv2, would require cache to be flushed

• With NFSv3, “before” contains previous values
- If before matches cached values, no other client has changed file
- Okay to update attributes without flushing data cache
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Write stability

• Server write must be at least as stable as requested
• If server returns write UNSTABLE

- Means permissions okay, enough free disk space, . . .
- But data not on disk and might disappear (after crash)

• If DATA_SYNC, data on disk, maybe not attributes
• If FILE_SYNC, operation complete and stable
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Commit operation

• Client cannot discard any UNSTABLE write
- If server crashes, data will be lost

• COMMIT RPC commits a range of a file to disk
- Invoked by client when client cleaning buffer cache
- Invoked by client when user closes/flushes a file

• How does client know if server crashed?
- Write and commit return writeverf3
- Value changes after each server crash (can be boot time)
- Client must resend all writes if verf value changes
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Attribute caching

• Close-to-open consistency
- Annoying if writes not visible after a file close

(Edit file, compile on another machine, get old version)
- Nowadays, all NFS opens fetch attributes from server

• Still, lots of other need for attributes (e.g., ls -al)
• Attributes cached between 5 and 60 seconds

- Files recently changed more likely to change again
- Do weighted cache expiration based on age of file

• Drawbacks:
- Must pay for round-trip to server on every file open
- Can get stale info when statting a file
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NFS version 4 [RFC 3530]

• Much more complicated than version 3
- NFS2: 27 page spec, NFS3: 126 pages,

NFS4: 275 pages, NFS4.1: 617 pages
• Designed to run over higher-latency networks

- Support for multi-component lookups to save RTTs
- Support for batching multiple operations in one RPC
- Support for leases (in two slides) and stateful (open, close)

operation
• Designed to be more generic and less Unix-specific

- E.g., support for extended file attributes, etc.
• Lots of security stuff
• NFS 4.1 [RFC5661] has better support for NAS

- Store file data and metadata in different places
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Callbacks

• NFSv2 and v3 poll server for cache consistency
- Client requests attributes (via ACCESS) when file opened
- Attributes validate or invalidate cached copy of file

• Alternative: Server calls back to clients caching file
- Invalidate immediately, rather than when cache needed
- Requires server to maintain list of all clients caching info

• Advantages
- Tight consistency, 0 RTT opens of cached files

• Disadvantages
- Server must maintain a lot of state
- Updates potentially slow

▷ Must persistently record who is caching things on server
▷ Must wait for n clients to acknowledge invalidations

- When a client goes down, other clients will block
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Leases

• Hybrid mix of polling and callbacks
- Server agrees to notify client of changes for a limited period of

time – the lease term
- After the lease expires, client must poll for freshness

• Avoids paying for a server round trip in many cases
• Server doesn’t need to keep long-term track of callbacks

- E.g., lease time can be shorter than crash-reboot—no need to keep
callbacks persistently

• If client crashes, resume normal operation after lease
expiration
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