Application

@ Networking overview
@ Systemsissues
© Implementing networking in the kernel

@ Network file systems
e Goal: two applications on different computers exchange data

* Requires inter-process (not just inter-node) communication

1/47 2/41

The 7-Layer and 4-Layer Models Link Layer: Ethernet

¢ Originally designed for shared medium (coax), now generally

osl TCP/IP not shared medium (switched)

- ¢ Vendors give each device a unique 48-bit MAC address
7| Application _ o :

Applications - Specifies which card should receive a packet
6 | Presentation ‘Tﬁmr_,') * Ethernet switches can scale to switch local area networks
5 S ’ (thousands of hosts), but not much larger
64 48 48 16 32
4 Transport TCP (host-to-host) Dest Src
 Packet format: | Preamble| qgr | aadr |TYPC
3 Network P
- Preamble helps device recognize start of packet

2 Data link Network access - CRC allows receiving card to ignore corrupted packets
. Physical (usuclly Ethernet) - Body up to 1,500 bytes for same destination

- All other fields must be set by sender’s OS
(NIC cards tell the OS what the card’s MAC address is,
Special addresses used for broadcast/multicast)

3/47 4/47

Network Layer: Internet Protocol (IP) Principle: Encapsulation

¢ |P used to connect multiple networks
- Runs over a variety of physical networks—Ethernet, DSL, 5G

* Every host has a unique 4-byte IP address (16-bytes for IPv6)
- (Or at least thinks it has, when there is address shortage)

o Stick packets inside packets
* How you realize packet switching and layering in a system

- E.g., an Ethernet packet may encapsulate an IP packet

o - An IP router forwards a packet from one Ethernet to another,
* Packets are routed based on destination IP address creating a new Ethernet packet containing the same IP packet

- In principle, an inner layer should not depend on outer layers (not
always true)

- Address space is structured to make
routing practical at global scale

- E.g.,171.66.** goes to Stanford

- So packets need IP addresses in addition
to MAC addresses

Application

Transport (TCP)

* Inside IP: UDP or TCP transport layer adds 16-bit port number

- UDP - unreliable datagram protocol, exposes
lost/reordered/delayed (but typically not corrupted) packets

- TCP - transmission control protocol ~ reliable pipe

Network level (IP)

o [[7e] o [P]

5/47 6/47

Link level (eth)

Network does not deliver packets reliably
G Networking overview - May drop, reorder, delay, corrupt, duplicate packets

0S must implement reliable TCP on top of IP

@ Systemsissues e Straw man: Wait for ack for each packet
- Send a packet, wait for acknowledgment, send next packet

© Implementing networking in the kernel - Ifno ack, timeout and try again

Problems?

@ Network file systems

7/47 8/47

Unreliability of IP Performance: Bandwidth-delay

* Network delay over WAN will never improve much

Network does not deliver packets reliably
- May drop, reorder, delay, corrupt, duplicate packets

* But throughput (bits/sec) is constantly improving

e Can view network as a pipe
0S must implement reliable TCP on top of IP Delay

e Straw man: Wait for ack for each packet
- Send a packet, wait for acknowledgment, send next packet Bandwidth ‘ .)

- If no ack, timeout and try again

Problems: - For full utilization want # bytes in flight > bandwidthxdelay

- Low performance over high-delay network (But don’t want to overload the network, either)

(bandwidth is one packet per round-trip time) * What if protocol doesn’t involve bulk transfer?
- Possible congestive collapse of network - E.g., ping-pong protocol will have poor throughput

(if everyone keeps retransmitting when network overloaded) L . .
e Another implication: Concurrency & response time critical for

good network utilization

8/41 9/47
A little bit about TCP Lots of OS issues for TCP
e Want to save network from congestion collapse ¢ Have to track unacknowledged data
- Packet loss usually means congestion, so back off exponentially - Keep a copy around until recipient acknowledges it
» Want multiple outstanding packets at a time - Keep timer around to retransmit if no ack
- Get transmit rate up to n-packet window per round-trip - Receiver must keep out of order segments & reassemble
* Must figure out appropriate value of n for network When to wake process receiving data?
- Slowly increase transmission by one packet per acked window - E.g.,sender callswrite (fd, message, 8000);
- When a packet is lost, cut window size in half - First TCP segment arrives, but is only 512 bytes

« Connection set up and teardown complicated - Could wake recipient, but useless w/o full message

- Sender never knows when last packet might be lost - TCP sets “PusH” bit at end of 8000 by.te write data
- Must keep state around for a while (2MSL, e.g., 4 min) after close * When to send short segment, vs. wait for more data
- Usually send only one unacked short segment

* Lots more hacks required for good performance ; .
- But bad for some apps, so provide NODELAY option

- Initially ramp n up faster (but too fast caused collapse in ; .
1986 [Jacobson], so TCP had to be changed) e Must ack received segments very quickly

- Fast retransmit when single packet lost - Otherwise, effectively increases RTT, decreasing bandwidth

10/47 11/47

o X Sockets ~ bi-directional pipes
Networking overview

Name endpoints by IP address and 16-bit port number

e A connection is thus named by 5 components

- Protocol (TCP), local IP, local port, remote IP, remote port
- Note TCP requires connected sockets, while UDP does not

@ Systemsissues

©® Implementing networking in the kernel

Kernel stores connection state in a protocol control block
structure (PCB)

@ Network file systems - Keepall PCB’s in a hash table
- When packet arrives (if destination IP address belongs to host), use
5-tuple to find PCB and determine what to do with packet

12/47 13/47

Socket implementation mbuf details

* Packets made up of multiple mbufs

m_next
* Need to implement layering efficiently hiﬂé’x"c‘p‘kf ““““““ . Chainéjd together by m_next)
- Add UDP header to data, Add IP header to UDP packet, ... m—len) S.UCh .llnked m.bufs called chains
- De-encapsulate Ethernet packet so IP code doesn’t get confused jm_data * Chains linked with n_nextpkt
by Ethernet header m_type | - Linked chains known as queues
* Don’t store packets in contiguous memory ﬁjﬁzs ~~~~~~~~~~~~ . T‘;t:'lgr;gz:':z‘;uztg:t:“:“;30 data
- Moving data to make room for new header would be slow pkt.len bytes (depends on size of pointers)
¢ BSD solution: mbufs [Leffler] pkt.rcvif - Firstin chain has pkt header
(Note [Leffler] calls m_nextpkt by old name m_act) ext . buf o Cluster mbufs have more data
- Small, fixed-size (256 byte) structures ext free - ext header points to data
- Makes allocation/deallocation easy (no fragmentation) ext.size | fp-dat - Up to 2 KB not collocated with mbuf
* BSD Mbufs working example for this lecture \ - m_dat not used
- Linux uses sk_buffs, which are similar idea / ° m_flags is bitwise or of various bits
optional - E.g., if cluster, or if pkt header used
14/47 15/47

Adding/deleting data with mbufs mbuf utility functions

® mbuf *m_copym(mbuf *m, int off, int len, int wait);
- Creates a copy of a subset of an mbuf chain
- Doesn’t copy clusters, just increments reference count
- wait says what to do if no memory (wait or return NULL)

* m_data always points to start of data
- Can bem_dat, or ext.buf for cluster mbuf
- Or can point into middle of that area

To strip off a packet header (e.g., TCP/IP)
- Incrementm_data, decrementm_len

® void m_adj(struct mbuf *mp, int len);

- Trim |1en| bytes from head or (if negative) tail of chain

To strip off end of packet
- Decrementm_len

Can add data to mbuf if buffer not full * Example: Ethernet packet containing IP datagram
Otherwise, add data to chain - Trim Ethernet header using m_ad

® mbuf *m_pullup(struct mbuf *n, int len);

- Put first 1en bytes of chain contiguously into first mbuf

- Chain new mbuf at head/tail of existing chain - Callm_pullup (n, sizeof (ip_hdr));
- Access IP header as regular C data structure

16/47 17/47

¢ Each socket fd has associated socket structure with:

Send and receive buffers

Queues of incoming connections (on listen socket)
A protocol control block (PCB)

A protocol handle (struct protosw *)

¢ PCB contains protocol-specific info. E.g., for TCP:
5-tuple of protocol (TCP), source/destination IP address and port

* pr_slowtimo - called every 1/2 sec for timeout processing

Information about received packets & position in stream

Information about unacknowledged sent packets
Information about timeouts
Information about connection state (setup/teardown)

® pr_drain - called when system low on space

® pr_input - returns mbuf chain of data read from socket
e pr_output - takes mbuf chain of data written to socket

® pr_usrreq - multi-purpose user-request hook

- Used for bind/listen/accept/connect/disconnect operations

Used for out-of-band data

e NIC driver figures out protocol of incoming packet

* Enqueues packet for appropriate protocol handler

If queue full, drop packet (can create livelock [Mogul])

* Posts “soft interrupt” for protocol-layer processing

Runs at lower priority than hardware (NIC) interrupt
...but higher priority than process-context kernel code

18/47

20/47

22/471

¢ Goal: abstract away differences between protocols

- In C++, might use virtual functions on a generic socket struct

- Here just put function pointers in protosw structure

e Also includes a few data fields

- domain, type, protocol - to match socket syscall args, so know

which protosw to select
- flags - to specify important properties of protocol

* Some protocol flags:

- ATOMIC - exchange atomic messages only (like UDP, not TCP)
- ADDR - address given with messages (like unconnected UDP)

- CONNREQUIRED - requires connection (like TCP)

- WANTRCVD - notify socket of consumed data (e.g., so TCP can wake

up a sending process blocked by flow control)

e Each NIC driver provides an ifnet data structure
- Like protosw, tries to abstract away the details

¢ Data fields:
- Interface name (e.g., “eth0”)

- Address list (e.g., Ethernet address, broadcast address, ...

- Maximum packet size
- Send queue
¢ Function pointers

- if_output - prepend header and enqueue packet
- if_start - start transmitting queued packets
- Alsoioctl, timeout, initialize, reset

¢ An OS must route all transmitted packets

- Machine may have multiple NICs plus “loopback” interface

19/47

21/47

- Which interface should a packet be sent to, and what MAC address

should packet have?

Routing is based purely on the destination address
- Even if host has multiple NICs w. different IP addresses

- (Though linux lets you select a routing table by source IP)

¢ OS maintains routing table
- Maps IP address & prefix-length — next hop
¢ Use radix tree for efficient lookup

- Branch at each node in tree based on single bit of target

- When you reach leaf, that is your next hop
* Most OSes provide packet forwarding

- Received packets for non-local address routed out another

interface

23/47

e What’s a network file system?
- Looks like a file system (e.g., FFS) to applications
- But data potentially stored on another machine
- Reads and writes must go over the network
- Also called distributed file systems

@ Networking overview

@ Systems issues ¢ Advantages of network file systems

- Easy to share if files available on multiple machines
© Implementing networking in the kernel - Often easier to administer servers than clients
- Access way more data than fits on your local disk

e Net K fil ¢ - Network + remote buffer cache faster than local disk
etwork file systems
/ ¢ Disadvantages

- Network + remote disk slower than local disk
- Network or server may fail even when client OK
- Complexity, security issues

24/471 25/47
NFS version 2 [Sandberg] NFS version 2 [Sandberg]
* Background: ND (networked disk) e Background: ND (networked disk)
- Creates disk-like device even on diskless workstations - Creates disk-like device even on diskless workstations
- Can create a regular (e.g., FFS) file system on it - Can create a regular (e.g., FFS) file system on it
- But no sharing—Why? - But no sharing—Why?
- FFS assumes disk doesn’t change under it
* ND idea still used today by Linux NBD * ND idea still used today by Linux NBD
- Useful for network booting/diskless machines, not file sharing - Useful for network booting/diskless machines, not file sharing
* Some Goals of NFS * Some Goals of NFS
- Access same FS from multiple machines simultaneously - Access same FS from multiple machines simultaneously
- Maintain Unix semantics - Maintain Unix semantics
- Crash recovery - Crash recovery
- Competitive performance with ND - Competitive performance with ND
* NFS version 2 protocol specified in [RFC 1094] * NFS version 2 protocol specified in [RFC 1094]
26/47 26/47

NFS implementation Stateless operation

e Virtualized the file system with vnodes
- Basically poor man’s C++ (like protosw struct)

Designed for “stateless operation”
" - Motivated by need to recover from server crashes
* Vnode structure represents an open (or openable) file y
o« S * Requests are self-contained
e Bunch of generic “vnode operations”:
- lookup, create, open, close, getattr, setattr, read, write, fsync, * Requests are idempotent
remove, link, rename, mkdir, rmdir, symlink, readdir, readlink, ...

- Called through function pointers, so most system calls don’t care
what type of file system a file resides on

- Unreliable UDP transport
- Client retransmits requests until it gets a reply

- Writes must be stable before server returns
* NFS vnode operations perform Remote Procedure Calls (RPC)

- Client sends request to server over network, awaits response
- Each system call may require a series of RPCs

- System mostly determined by RPC [RFC 1831] Protocol

- Uses XDR protocol specification language [RFC 1832]

e Can this really work?

27/47 28/47

e Same general architecture as NFS 2

Designed for “stateless operation”
- Motivated by need to recover from server crashes

Specified in RFC 1813 (subset of Open Group spec)

- XDR defines C structures that can be sent over network;

° Requests are self-contained
9 includes tagged unions (to know which union field active)

mostl
* Requests areAidVempotent - Protocol defined as a set of Remote Procedure Calls (RPCs)
- Unreliable UDP transport * New access RPC
- Client retransmits requests until it gets a reply - Supports clients and servers with different uids/gids

- Writes must be stable before server returns

Better support for caching

Can this really work? - Unstable writes while data still cached at client
- Of course, FS not stateless - it stores files - More information for cache consistency
- E.g., mkdir can’t be idempotent - second time dir exists
- But many operations, e.g., read, write are idempotent

o Better support for exclusive file creation

28/47 29/47

NFSv3 File handles File attributes

struct nfs_fh3 {
/* XDR notation for variable-length array
* with 0-64 opaque bytes: */

opaque data<6d>; struct fattr3 { specdata3 rdev;
’ ftype3 type; uint64 fsid;
* Server assigns an opaque file handle to each file Eiﬁ;gg ﬁcl’gzk ngiegli:ildn;_
- Client obtains first file handle out-of-band (mount protocol) uint32 uid; nfstime3 mtime;
- File handle hard to guess - security enforced at mount time uint32 gid; nfstime3 ctime;
3 . uint64 size; };
- Subsequent file handles obtained through lookups wint64 used:

* File handle internally specifies file system & file
- Device number, i-number, generation number, ...
- Generation number changes when inode recycled

* Most operations can optionally return fattr3
e Attributes used for cache-consistency
¢ Handle generally doesn’t contain filename

- Clients may keep accessing an open file after it’s renamed

30/47 31/47

T

struct create3args {

struct diropargs3 { struct lookup3resok { . .

nfs_fh3 dir; nfs_fh3 object; diropargs3 where;

filename3 name; post_op_attr obj_attributes; createhow3 how;
}; post_op_attr dir_attributes; };

’ union createhow3 switch (createmode3 mode) {

union lookup3res switch (nfsstat3 status) { case UNCHECKED:
case NFS3_0K: case GUARDED:

lookup3resok resok; sattr3 obj_attributes;
default: case EXCLUSIVE:

post_op_attr resfail; createverf3 verf;

® Maps (directory handle, filename) — handle © UNCHECKED - succeed if file exists

- Client walks hierarchy one file at a time o GUARDED - fail if file exists

- No symlinks expanded or file system boundaries crossed

) . ° EXCLUSIVE - persistent record of create
- Client must expand symlinks

32/47 33/47

struct read3resok {
post_op_attr file_attributes;
uint32 count;
bool eof;
opaque data<>;

5>

struct read3args {
nfs_fh3 file;
uint64 offset;
uint32 count;

};

union read3res switch (nfsstat3 status) {
case NFS3_0K:

read3resok resok;
default:

post_op_attr resfail;

» Offset explicitly specified (not implicit in handle)
* Client can cache result

* When is it okay to lose data after a crash?
- Local file system?

___ Witedisaussion] KFSwawritecall

* When is it okay to lose data after a crash?
- Local file system?
If no calls to fsync, OK to lose 30 seconds of work after crash

- Network file system?
What if server crashes but not client?
Application not killed, so shouldn’t lose previous writes

* NFSv2 addresses problem by having server write data to disk

before replying to a write RPC
- Caused performance problems

* Could NFS2 clients just perform write-behind?
- Implementation issues - used blocking kernel threads on write
- Semantics - how to guarantee consistency after server crash

- Solution: small # of pending write RPCs, but write through on
close; if server crashes, client keeps re-writing until acked

¢ Client can cache blocks of data read and written

e Consistency based on times in fattr3
- mtime: Time of last modification to file

- ctime: Time of last change to inode
(Changed by explicitly setting mtime, increasing size of file,
changing permissions, etc.)

o Algorithm: If mtime or ctime changed by another client, flush
cached file blocks

34/47 35/47

* When is it okay to lose data after a crash?

- Local file system?
If no calls to fsync, OK to lose 30 seconds of work after crash

- Network file system?

36/47 36/47

union attrstat
switch (stat status) {

struct writeargs {
fhandle file;

VA case NFS_OK:
unsigned offset; fattr attributes;
VAT default:
nfsdata data; void;

3 I

attrstat NFSPROC_WRITE(writeargs) = 8;

¢ On successful write, returns new file attributes
e Can NFSv2 keep cached copy of file after writing it?

36/47 37/47

Write race condition NFSv3 Write arguments

Client A Server Client B
——witeAl | |
lf//l_/write/BlJ
I , A
—witeA2 | |
D —— |
Vv Vv Vv

* Suppose client overwrites 2-block file
- Client A knows attributes of file after writes A1 & A2
- Butclient B could overwrite block 1 between the A1 & A2
- No way for client A to know this hasn’t happened
- Must flush cache before next file read (or at least open)

struct write3resok { struct wcc_attr {
wcc_data file_wcc; uint64 size;
uint32 count; nfstime3 mtime;
stable_how committed; nfstime3 ctime;
writeverf3 verf; };
};
struct wcc_data {
union write3res wcc_attr xbefore;
switch (nfsstat3 status) { post_op_attr after;
case NFS3_0K: };
write3resok resok;
default:

wcc_data resfail;
};
» Several fields added to achieve these goals

Write stability Commit operation

» Server write must be at least as stable as requested

¢ |If server returns write UNSTABLE

- Means permissions okay, enough free disk space, ...
- But data not on disk and might disappear (after crash)

If DATA_SYNC, data on disk, maybe not attributes
If FILE_SYNC, operation complete and stable

38/47

40/47

42/47

struct write3args { enum stable_how {
nfs_fh3 file; UNSTABLE = O,
uint64 offset; DATA_SYNC = 1,
uint32 count; FILE_SYNC = 2
stable_how stable; };
opaque data<>;

};

* Two goals for NFSv3 write:

- Don’t force clients to flush cache after writes

- Don’t equate cache consistency with crash consistency
l.e., don’t wait for disk just so another client can see data

39/47

* Write will change mtime/ctime of a file
- “after” will contain new times
- With NFSv2, would require cache to be flushed
e With NFSv3, “before” contains previous values

- If before matches cached values, no other client has changed file
- Okay to update attributes without flushing data cache

41/47

¢ Client cannot discard any UNSTABLE write
- If server crashes, data will be lost

° COMMIT RPC commits a range of a file to disk
- Invoked by client when client cleaning buffer cache
- Invoked by client when user closes/flushes a file

¢ How does client know if server crashed?

- Write and commit return writeverf3
- Value changes after each server crash (can be boot time)
- Client must resend all writes if verf value changes

43/47

Attribute caching NFS version 4 [RFC 3530]

* Much more complicated than version 3
* Close-to-open consistency - NFS2: 27 page spec, NFS3: 126 pages,
- Annoying if writes not visible after a file close NFS4: 275 pages, NFS4.1: 617 pages

(Edit file, compile on another machine, get old version) Designed to run over higher-latency networks
- Nowadays, all NFS opens fetch attributes from server - Support for multi-component lookups to save RTTs

o Still, lots of other need for attributes (e.g., 1s -al) - Support for batching multiple operations in one RPC
» Attributes cached between 5 and 60 seconds - Supp(i.rt for leases (in two slides) and stateful (open, close)
operation

- Files recently changed more likely to change again
- Do weighted cache expiration based on age of file

Designed to be more generic and less Unix-specific

 Drawbacks: - E.g., support for extended file attributes, etc.

Lots of security stuff

NFS 4.1 [RFC5661] has better support for NAS
- Store file data and metadata in different places

- Must pay for round-trip to server on every file open
- Can get stale info when statting a file

44 /47 45/47

* NFSv2 and v3 poll server for cache consistency

- Client requests attributes (via ACCESS) when file opened
- Attributes validate or invalidate cached copy of file

Hybrid mix of polling and callbacks

- Server agrees to notify client of changes for a limited period of
time - the lease term

- After the lease expires, client must poll for freshness

e Alternative: Server calls back to clients caching file
- Invalidate immediately, rather than when cache needed

- Requires server to maintain list of all clients caching info

* Avoids paying for a server round trip in many cases
¢ Advantages paying P y

- Tight consistency, 0 RTT opens of cached files

Server doesn’t need to keep long-term track of callbacks

- E.g., lease time can be shorter than crash-reboot—no need to keep

 Disadvantages callbacks persistently

- Server must maintain a lot of state

- Updates potentially slow
> Must persistently record who is caching things on server
> Must wait for n clients to acknowledge invalidations

- When a client goes down, other clients will block

If client crashes, resume normal operation after lease
expiration

46/47 41/41

