@ Networking overview
€) Systemsissues
© Implementing networking in the kernel

@ Network file systems

1/47

Computer networking

* Goal: two applications on different computers exchange data

* Requires inter-process (not just inter-node) communication

2/47

The 7-Layer and 4-Layer Models

Qsl TCP/IP

7 lication

Aep Applications
) Presentation (FTP, SMTP,
5 Session
4 Transport TCP (host-to-host)
3 Network IP
2 Data link Network access
: Physical (usually Ethernet)

3/47

Link Layer: Ethernet

e Originally designed for shared medium (coax), now generally
not shared medium (switched)
* Vendors give each device a unique 48-bit MAC address
- Specifies which card should receive a packet

e Ethernet switches can scale to switch local area networks
(thousands of hosts), but not much larger

64 48 48 16 32

Dest Src
» Packet format; | Preamble| 45, addr | 1YPe B°dy%CRC

Preamble helps device recognize start of packet
CRC allows receiving card to ignore corrupted packets
Body up to 1,500 bytes for same destination

All other fields must be set by sender’s OS
(NIC cards tell the OS what the card’s MAC address is,
Special addresses used for broadcast/multicast)

4/47

Network Layer: Internet Protocol (IP)

¢ |P used to connect multiple networks
- Runs over a variety of physical networks—Ethernet, DSL, 5G

* Every host has a unique 4-byte IP address (16-bytes for IPv6)
- (Or at least thinks it has, when there is address shortage)

e Packets are routed based on destination IP address

- Address space is structured to make
routing practical at global scale

- E.g.,171.66** goes to Stanford

- So packets need IP addresses in addition
to MAC addresses

* Inside IP: UDP or TCP transport layer adds 16-bit port number

- UDP - unreliable datagram protocol, exposes
lost/reordered/delayed (but typically not corrupted) packets

- TCP - transmission control protocol ~ reliable pipe

5/47

Principle: Encapsulation

¢ Stick packets inside packets

* How you realize packet switching and layering in a system

- E.g., an Ethernet packet may encapsulate an IP packet

- An IP router forwards a packet from one Ethernet to another,
creating a new Ethernet packet containing the same IP packet

- In principle, an inner layer should not depend on outer layers (not
always true)

Application

Transport (TCP) TCP

Network level (IP)

Link level (eth)

6/47

@ Networking overview
@ Systemsissues
© Implementing networking in the kernel

@ Network file systems

7/47

Unreliability of IP

Network does not deliver packets reliably
- May drop, reorder, delay, corrupt, duplicate packets

OS must implement reliable TCP on top of IP

Straw man: Wait for ack for each packet

- Send a packet, wait for acknowledgment, send next packet
- If no ack, timeout and try again

Problems?

8/47

Unreliability of IP

Network does not deliver packets reliably
- May drop, reorder, delay, corrupt, duplicate packets

OS must implement reliable TCP on top of IP

Straw man: Wait for ack for each packet

- Send a packet, wait for acknowledgment, send next packet
- If no ack, timeout and try again

Problems:

- Low performance over high-delay network
(bandwidth is one packet per round-trip time)

- Possible congestive collapse of network
(if everyone keeps retransmitting when network overloaded)

8/47

Performance: Bandwidth-delay

* Network delay over WAN will never improve much
* But throughput (bits/sec) is constantly improving

* Canview network as a pipe
Delay

Bandwidth] .)

- For full utilization want # bytes in flight > bandwidth xdelay
(But don’t want to overload the network, either)

* What if protocol doesn’t involve bulk transfer?
- E.g., ping-pong protocol will have poor throughput

e Another implication: Concurrency & response time critical for
good network utilization

9/47

A little bit about TCP

* Want to save network from congestion collapse

- Packet loss usually means congestion, so back off exponentially
Want multiple outstanding packets at a time

- Get transmit rate up to n-packet window per round-trip

Must figure out appropriate value of n for network
- Slowly increase transmission by one packet per acked window
- When a packet is lost, cut window size in half
Connection set up and teardown complicated
- Sender never knows when last packet might be lost
- Must keep state around for a while (2MSL, e.g., 4 min) after close

Lots more hacks required for good performance

- Initially ramp n up faster (but too fast caused collapse in
1986 [Jacobson], so TCP had to be changed)

- Fast retransmit when single packet lost

10/47

https://www.eecs.berkeley.edu/~sylvia/papers/congavoid.pdf

Lots of OS issues for TCP

* Have to track unacknowledged data
- Keep a copy around until recipient acknowledges it
- Keep timer around to retransmit if no ack
- Receiver must keep out of order segments & reassemble
* When to wake process receiving data?
- E.g.,sender callswrite (fd, message, 8000);
- First TCP segment arrives, but is only 512 bytes
- Could wake recipient, but useless w/o full message
- TCP sets “PusH” bit at end of 8000 byte write data
* When to send short segment, vs. wait for more data
- Usually send only one unacked short segment
- But bad for some apps, so provide NODELAY option
* Must ack received segments very quickly
- Otherwise, effectively increases RTT, decreasing bandwidth

11/47

@ Networking overview
@ Systems issues
©® Implementing networking in the kernel

@ Network file systems

12/47

Sockets ~ bi-directional pipes

Name endpoints by IP address and 16-bit port number

A connection is thus named by 5 components

- Protocol (TCP), local IP, local port, remote IP, remote port
- Note TCP requires connected sockets, while UDP does not

Kernel stores connection state in a protocol control block
structure (PCB)

- Keep all PCB’s in a hash table

- When packet arrives (if destination IP address belongs to host), use
5-tuple to find PCB and determine what to do with packet

13/47

Socket implementation

* Need to implement layering efficiently

- Add UDP header to data, Add IP header to UDP packet, ...

- De-encapsulate Ethernet packet so IP code doesn’t get confused
by Ethernet header

* Don’t store packets in contiguous memory
- Moving data to make room for new header would be slow

* BSD solution: mbufs [Leffler]
(Note [Leffler] calls m_nextpkt by old name m_act)

- Small, fixed-size (256 byte) structures
- Makes allocation/deallocation easy (no fragmentation)

* BSD Mbufs working example for this lecture
- Linux uses sk_buffs, which are similar idea

14/ 47

https://www.scs.stanford.edu/22wi-cs212/sched/readings/sockets.pdf
http://vger.kernel.org/~davem/skb.html

mbuf details

* Packets made up of multiple mbufs

m-next Chained together b
m_nextpkt """""" - a/ng ogetner by m_next .
m den T - Such linked mbufs called chains
'm_data ¢ Chains linked with m_nextpkt
m_type - Linked chains known as queues
m_type - E.g., device output queue
m_flags * Total mbuf size 256 B = ~230 data
pkt.len bytes (depends on size of pointers)
pkt.rcvif - First in chain has pkt header
ext.buf * Cluster mbufs have more data
ext.free dat - ext header points to data
ext.size | [*- - Up to 2 KB not collocated with mbuf
\ - m_dat not used
/ * m_flags is bitwise or of various bits
optional - E.g., if cluster, or if pkt header used

15/47

Adding/deleting data with mbufs

* m_data always points to start of data
- Can bem_dat, or ext.buf for cluster mbuf
- Orcan point into middle of that area

To strip off a packet header (e.g., TCP/IP)
- Incrementm_data, decrementm_len

To strip off end of packet
- Decrementm_len
Can add data to mbuf if buffer not full

Otherwise, add data to chain
- Chain new mbuf at head/tail of existing chain

16 /47

mbuf utility functions

¢ mbuf *m_copym(mbuf *m, int off, int len, int wait);
- Creates a copy of a subset of an mbuf chain
- Doesn’t copy clusters, just increments reference count
- wait says what to do if no memory (wait or return NULL)
® void m_adj(struct mbuf *mp, int len);
- Trim |1len| bytes from head or (if negative) tail of chain
¢ mbuf *m_pullup(struct mbuf *n, int len);
- Put first 1en bytes of chain contiguously into first mbuf
* Example: Ethernet packet containing IP datagram
- Trim Ethernet header using m_ad;j

- Callm_pullup (n, sizeof (ip_hdr));
- Access IP header as regular C data structure

17/47

Socket implementation

* Each socket fd has associated socket structure with:
- Send and receive buffers
- Queues of incoming connections (on listen socket)
- A protocol control block (PCB)
- Aprotocol handle (struct protosw *)

* PCB contains protocol-specific info. E.g., for TCP:

5-tuple of protocol (TCP), source/destination IP address and port
Information about received packets & position in stream
Information about unacknowledged sent packets

Information about timeouts

Information about connection state (setup/teardown)

18/47

protosw structure

* Goal: abstract away differences between protocols
- In C++, might use virtual functions on a generic socket struct
- Here just put function pointers in protosw structure

* Alsoincludes a few data fields

- domain, type, protocol - to match socket syscall args, so know
which protosw to select

- flags - to specify important properties of protocol

* Some protocol flags:
- ATOMIC - exchange atomic messages only (like UDP, not TCP)
- ADDR - address given with messages (like unconnected UDP)
- CONNREQUIRED - requires connection (like TCP)

- WANTRCVD - notify socket of consumed data (e.g., so TCP can wake
up a sending process blocked by flow control)

19/47

protosw functions

e pr_slowtimo - called every 1/2 sec for timeout processing
* pr_drain - called when system low on space

e pr_input - returns mbuf chain of data read from socket

* pr_output - takes mbuf chain of data written to socket

* pr_usrreq - multi-purpose user-request hook

- Used for bind/listen/accept/connect/disconnect operations
- Used for out-of-band data

20/47

Network interface cards

* Each NIC driver provides an ifnet data structure
- Like protosw, tries to abstract away the details

* Data fields:
- Interface name (e.g., “eth0”)
Address list (e.g., Ethernet address, broadcast address, ...)
- Maximum packet size
- Send queue

* Function pointers

- if_output - prepend header and enqueue packet
- if_start - start transmitting queued packets
- Also ioctl, timeout, initialize, reset

21/47

Input handling

* NIC driver figures out protocol of incoming packet

* Enqueues packet for appropriate protocol handler
- If queue full, drop packet (can create livelock [Mogul])

* Posts “soft interrupt” for protocol-layer processing

- Runs at lower priority than hardware (NIC) interrupt
...but higher priority than process-context kernel code

22/47

https://www.scs.stanford.edu/22wi-cs212/sched/readings/livelock.pdf

* An OS must route all transmitted packets
- Machine may have multiple NICs plus “loopback” interface

- Which interface should a packet be sent to, and what MAC address
should packet have?

Routing is based purely on the destination address
- Even if host has multiple NICs w. different IP addresses
- (Though linux lets you select a routing table by source IP)
O0S maintains routing table
- Maps IP address & prefix-length — next hop
Use radix tree for efficient lookup
- Branch at each node in tree based on single bit of target
- When you reach leaf, that is your next hop
Most OSes provide packet forwarding

- Received packets for non-local address routed out another
interface

23/47

@ Networking overview
€) Systemsissues
© Implementing networking in the kernel

O Network file systems

24/47

Network file systems

* What’s a network file system?
- Looks like a file system (e.g., FFS) to applications
- But data potentially stored on another machine
- Reads and writes must go over the network
- Also called distributed file systems

* Advantages of network file systems
- Easy to share if files available on multiple machines
- Often easier to administer servers than clients
- Access way more data than fits on your local disk
- Network + remote buffer cache faster than local disk

* Disadvantages
- Network + remote disk slower than local disk
- Network or server may fail even when client OK
- Complexity, security issues

25/47

NFS version 2 [Sandberg]

* Background: ND (networked disk)

- Creates disk-like device even on diskless workstations
- Can create a regular (e.g., FFS) file system on it
- But no sharing—Why?

* ND idea still used today by Linux NBD
- Useful for network booting/diskless machines, not file sharing

* Some Goals of NFS

Access same FS from multiple machines simultaneously
Maintain Unix semantics

Crash recovery

Competitive performance with ND

* NFS version 2 protocol specified in [RFC 1094]

26/47

https://www.scs.stanford.edu/22wi-cs212/sched/readings/nfs.pdf
https://nbd.sourceforge.io/
http://www.ietf.org/rfc/rfc1094.txt

NFS version 2 [Sandberg]

* Background: ND (networked disk)

- Creates disk-like device even on diskless workstations
- Can create a regular (e.g., FFS) file system on it

- But no sharing—Why?

- FFS assumes disk doesn’t change under it

* ND idea still used today by Linux NBD
- Useful for network booting/diskless machines, not file sharing

e Some Goals of NFS

Access same FS from multiple machines simultaneously
Maintain Unix semantics

Crash recovery

Competitive performance with ND

* NFS version 2 protocol specified in [RFC 1094]

26/47

https://www.scs.stanford.edu/22wi-cs212/sched/readings/nfs.pdf
https://nbd.sourceforge.io/
http://www.ietf.org/rfc/rfc1094.txt

NFS implementation

e Virtualized the file system with vnodes
- Basically poor man’s C++ (like protosw struct)

* Vnode structure represents an open (or openable) file

* Bunch of generic “vnode operations”:
- lookup, create, open, close, getattr, setattr, read, write, fsync,
remove, link, rename, mkdir, rmdir, symlink, readdir, readlink, ...

- Called through function pointers, so most system calls don’t care
what type of file system a file resides on

* NFS vnode operations perform Remote Procedure Calls (RPC)
- Client sends request to server over network, awaits response

Each system call may require a series of RPCs

System mostly determined by RPC [RFC 1831] Protocol

Uses XDR protocol specification language [RFC 1832]

27/47

http://www.ietf.org/rfc/rfc1831.txt
http://www.ietf.org/rfc/rfc1832.txt

Stateless operation

* Designed for “stateless operation”
- Motivated by need to recover from server crashes

* Requests are self-contained

* Requests are idempotent

- Unreliable UDP transport
- Client retransmits requests until it gets a reply
- Writes must be stable before server returns

¢ Can this really work?

28/47

Stateless operation

* Designed for “stateless operation”
- Motivated by need to recover from server crashes

* Requests are self-contained

mos.tgf
* Requests are , idempotent

- Unreliable UDP transport
- Client retransmits requests until it gets a reply
- Writes must be stable before server returns

¢ Can this really work?

- Of course, FS not stateless - it stores files
- E.g., mkdir can’t be idempotent - second time dir exists
- But many operations, e.g., read, write are idempotent

28/47

* Same general architecture as NFS 2

Specified in RFC 1813 (subset of Open Group spec)

- XDR defines C structures that can be sent over network;
includes tagged unions (to know which union field active)

- Protocol defined as a set of Remote Procedure Calls (RPCs)

* New access RPC
- Supports clients and servers with different uids/gids

Better support for caching

- Unstable writes while data still cached at client
- More information for cache consistency

Better support for exclusive file creation

29/47

http://www.ietf.org/rfc/rfc1813.txt
http://www.opengroup.org/onlinepubs/9629799/toc.htm

NFSv3 File handles

struct nfs_fh3 {
/* XDR notation for variable-length array
* with 0-64 opaque bytes: */
opaque data<64>;

» Server assigns an opaque file handle to each file
- Client obtains first file handle out-of-band (mount protocol)
- File handle hard to guess - security enforced at mount time
- Subsequent file handles obtained through lookups

* File handle internally specifies file system & file
- Device number, i-number, generation number, ...
- Generation number changes when inode recycled

* Handle generally doesn’t contain filename
- Clients may keep accessing an open file after it’s renamed

30/47

File attributes

struct fattr3 { specdata3 rdev;
ftype3 type; uint64 fsid;
uint32 mode; uint64 fileid;
uint32 nlink; nfstime3 atime;
uint32 uid; nfstime3 mtime;
uint32 gid; nfstime3 ctime;
uint64 size; };

uint64 used;

* Most operations can optionally return fattr3
* Attributes used for cache-consistency

31/47

struct diropargs3 { struct lookup3resok {
nfs_fh3 dir; nfs_fh3 object;
filename3 name; post_op_attr obj_attributes;
}; post_op_attr dir_attributes;
s

union lookup3res switch (nfsstat3 status) {
case NFS3_0K:

lookup3resok resok;
default:

post_op_attr resfail;

H

e Maps (directory handle, filename) — handle

- Client walks hierarchy one file at a time
- No symlinks expanded or file system boundaries crossed
- Client must expand symlinks

32/47

struct create3args {
diropargs3 where;
createhow3 how;

};

union createhow3 switch (createmode3 mode) {
case UNCHECKED:
case GUARDED:
sattr3 obj_attributes;
case EXCLUSIVE:
createverf3 verf;

};
* UNCHECKED - succeed if file exists
* GUARDED - fail if file exists
* EXCLUSIVE - persistent record of create

33/47

struct read3args { struct read3resok {

nfs_fh3 file; post_op_attr file_attributes;
uint64 offset; uint32 count;

uint32 count; bool eof;
}; opaque data<>;

b

union read3res switch (nfsstat3 status) {
case NFS3_0OK:

read3resok resok;
default:

post_op_attr resfail;

» Offset explicitly specified (not implicit in handle)

e Client can cache result

34/47

¢ Client can cache blocks of data read and written

* Consistency based on times in fattr3

- mtime: Time of last modification to file

- ctime: Time of last change to inode
(Changed by explicitly setting mtime, increasing size of file,
changing permissions, etc.)

 Algorithm: If mtime or ctime changed by another client, flush
cached file blocks

35/47

* Whenis it okay to lose data after a crash?
- Local file system?

36/47

* When is it okay to lose data after a crash?

- Local file system?
If no calls to fsync, OK to lose 30 seconds of work after crash

- Network file system?

36/47

* When is it okay to lose data after a crash?

- Local file system?
If no calls to fsync, OK to lose 30 seconds of work after crash

- Network file system?
What if server crashes but not client?
Application not killed, so shouldn’t lose previous writes

* NFSv2 addresses problem by having server write data to disk
before replying to a write RPC
- Caused performance problems

¢ Could NFS2 clients just perform write-behind?
- Implementation issues - used blocking kernel threads on write
- Semantics - how to guarantee consistency after server crash

- Solution: small # of pending write RPCs, but write through on
close; if server crashes, client keeps re-writing until acked

36/47

struct writeargs { union attrstat
fhandle file; switch (stat status) {
/* .. %/ case NFS_0K:
unsigned offset; fattr attributes;
VA T default:
nfsdata data; void;
I 3

attrstat NFSPROC_WRITE(writeargs) = 8;

* On successful write, returns new file attributes
e Can NFSv2 keep cached copy of file after writing it?

37/47

Write race condition

Client A Server Client B
% I
| |
|
|
|
V A v
* Suppose client overwrites 2-block file
- Client A knows attributes of file after writes A1 & A2
- But client B could overwrite block 1 between the A1 & A2
- No way for client A to know this hasn’t happened
- Must flush cache before next file read (or at least open)

38/47

NFSv3 Write arguments

struct write3args { enum stable_how {
nfs_fh3 file; UNSTABLE = 0,
uint64 offset; DATA_SYNC = 1,
uint32 count; FILE_SYNC = 2
stable_how stable; };

opaque data<>;

};

* Two goals for NFSv3 write:

- Don’t force clients to flush cache after writes

- Don’t equate cache consistency with crash consistency
l.e., don’t wait for disk just so another client can see data

39/47

struct write3resok { struct wcc_attr {
wcc_data file_wcc; uint64 size;
uint32 count; nfstime3 mtime;
stable_how committed; nfstime3 ctime;
writeverf3 verf; };
};
struct wcc_data {
union write3res wcc_attr xbefore;
switch (nfsstat3 status) { post_op_attr after;
case NFS3_0K: };
write3resok resok;
default:
wcc_data resfail;
}s

» Several fields added to achieve these goals

40/47

Data caching after a write

* Write will change mtime/ctime of a file
- “after” will contain new times
- With NFSv2, would require cache to be flushed
e With NFSv3, “before” contains previous values

- If efore matches cached values, no other client has changed file
- Okay to update attributes without flushing data cache

41/47

Write stability

Server write must be at least as stable as requested

If server returns write UNSTABLE

- Means permissions okay, enough free disk space, ...
- But data not on disk and might disappear (after crash)

If DATA_SYNC, data on disk, maybe not attributes
If FILE_SYNC, operation complete and stable

42/47

Commit operation

¢ Client cannot discard any UNSTABLE write
- If server crashes, data will be lost

* COMMIT RPC commits a range of a file to disk
- Invoked by client when client cleaning buffer cache
- Invoked by client when user closes/flushes a file

* How does client know if server crashed?

- Write and commit return writeverf3
- Value changes after each server crash (can be boot time)
- Client must resend all writes if verf value changes

43/47

Close-to-open consistency

- Annoying if writes not visible after a file close
(Edit file, compile on another machine, get old version)

- Nowadays, all NFS opens fetch attributes from server

Still, lots of other need for attributes (e.g., 1s -al)

Attributes cached between 5 and 60 seconds

- Files recently changed more likely to change again
- Do weighted cache expiration based on age of file

Drawbacks:

- Must pay for round-trip to server on every file open
- Can get stale info when statting a file

4447

NFS version 4 [RFC 3530]

¢ Much more complicated than version 3
- NFS2: 27 page spec, NFS3: 126 pages,
NFS4: 275 pages, NFS4.1: 617 pages
Designed to run over higher-latency networks
- Support for multi-component lookups to save RTTs
- Support for batching multiple operations in one RPC

- Support for leases (in two slides) and stateful (open, close)
operation

Designed to be more generic and less Unix-specific
- E.g., support for extended file attributes, etc.

Lots of security stuff

NFS 4.1 [RFC5661] has better support for NAS
- Store file data and metadata in different places

45/47

http://www.ietf.org/rfc/rfc3530.txt
http://www.ietf.org/rfc/rfc1094.txt
http://www.ietf.org/rfc/rfc1813.txt
http://www.ietf.org/rfc/rfc3530.txt
http://www.ietf.org/rfc/rfc5661.txt
http://www.ietf.org/rfc/rfc5661.txt

Callbacks

* NFSv2 and v3 poll server for cache consistency
- Client requests attributes (via ACCESS) when file opened
- Attributes validate or invalidate cached copy of file
 Alternative: Server calls back to clients caching file
- Invalidate immediately, rather than when cache needed
- Requires server to maintain list of all clients caching info
* Advantages
- Tight consistency, 0 RTT opens of cached files

* Disadvantages

- Server must maintain a lot of state

- Updates potentially slow
> Must persistently record who is caching things on server
> Must wait for n clients to acknowledge invalidations

- When a client goes down, other clients will block

46 /47

Hybrid mix of polling and callbacks

- Server agrees to notify client of changes for a limited period of
time - the lease term

- After the lease expires, client must poll for freshness

Avoids paying for a server round trip in many cases

Server doesn’t need to keep long-term track of callbacks

- E.g., lease time can be shorter than crash-reboot—no need to keep
callbacks persistently

If client crashes, resume normal operation after lease
expiration

47/47

	Networking overview
	Systems issues
	Implementing networking in the kernel
	Network file systems

