
Administrivia

• Friday 10am section: different zoom link, same password
- Please attend first section this Friday to learn about project 1

• Project 1 due Friday, Jan 21 at 10am
- 5pm if you attend/watch lecture

• Ask cs212-staff for extension if you can’t finish
- Tell us where you are with the project,
- How much more you need to do, and
- How much longer you need to finish

• No credit for late assignments w/o extension
• Project groups should be 2–3 people

- Solo groups by permission only, under extenuating circumstances
(e.g., time zone more than 3 hours away from California)
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In-person update

• Classroom B03 seems like it can support hybrid instruction
- When practical, I hope to move to in-person lectures with

synchronous zoom participation and archived video
• Current placeholder midterm policy: in-person

- Come to classroom to take exam, with printed notes
- We book you a conference room if you have a time conflict
- SCPD students can use proctors

• Will revise one week before exams prior in light of current
COVID situation/policy

- No mater what, we will accommodate remote SCPD students &
students who have schedule conflicts

• Suggestions welcome (now or to cs212-staff). Priorities:
- No one spends more than 90 minutes on midterm
- Give students high confidence that peers aren’t cheating
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Processes

• A process is an instance of a program running
• Modern OSes run multiple processes simultaneously
• Examples (can all run simultaneously):

- gcc file_A.c – compiler running on file A
- gcc file_B.c – compiler running on file B
- emacs – text editor
- firefox – web browser

• Non-examples (implemented as one process):
- Multiple emacs frames or firefox windows (can be one process)

• Why processes?
- Simplicity of programming
- Speed: Higher throughput, lower latency
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Speed

• Multiple processes can increase CPU utilization
- Overlap one process’s computation with another’s wait

emacs wait for input wait for input

gcc

• Multiple processes can reduce latency
- Running A then B requires 100 sec for B to complete

A B
80s 20s

- Running A and B concurrently makes B finish faster
A

B

- A is slower than if it had whole machine to itself,
but still < 100 sec unless both A and B completely CPU-bound
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Processes in the real world

• Processes and parallelism have been a fact of life much longer
than OSes have been around

- E.g., say takes 1 worker 10 months to make 1 widget
- Company may hire 100 workers to make 100 widgets
- Latency for first widget >> 1/10 month
- Throughput may be < 10 widgets per month

(if can’t perfectly parallelize task)
- Or 100 workers making 10,000 widgets may achieve > 10

widgets/month (e.g., if workers never idly wait for paint to dry)

• You will see these effects in you Pintos project group
- May block waiting for partner to complete task
- Takes time to coordinate/explain/understand one another’s code
- Labs won’t take 1/3 time with three people
- But you will graduate faster than if you took only 1 class at a time
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A process’s view of the world

• Each process has own view of machine
- Its own address space – *(char *)0xc000

different in P1 & P2

- Its own open files
- Its own virtual CPU (through preemptive

multitasking)

• Simplifies programming model
- gcc does not care that firefox is running

• Sometimes want interaction between processes
- Simplest is through files: emacs edits file, gcc compiles it
- More complicated: Shell/command, Window manager/app.
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Inter-Process Communication

• How can processes interact in real time?

(a) By passing messages through the kernel
(b) By sharing a region of physical memory
(c) Through asynchronous signals or alerts
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Outline

1 (UNIX-centric) User view of processes

2 Kernel view of processes

3 Threads

4 Thread implementation details
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Creating processes

• Original UNIX paper is a great reference on core system calls
• int fork (void);

- Create new process that is exact copy of current one
- Returns process ID of new process in “parent”
- Returns 0 in “child”

• int waitpid (int pid, int *stat, int opt);

- pid – process to wait for, or -1 for any
- stat – will contain exit value, or signal
- opt – usually 0 or WNOHANG
- Returns process ID or -1 on error
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Deleting processes

• void exit (int status);

- Current process ceases to exist
- status shows up in waitpid (shifted)
- By convention, status of 0 is success, non-zero error

• int kill (int pid, int sig);

- Sends signal sig to process pid
- SIGTERM most common value, kills process by default

(but application can catch it for “cleanup”)
- SIGKILL stronger, kills process always
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Running programs

• int execve (char *prog, char **argv, char **envp);

- prog – full pathname of program to run
- argv – argument vector that gets passed to main
- envp – environment variables, e.g., PATH, HOME

• Generally called through a wrapper functions
- int execvp (char *prog, char **argv);

Search PATH for prog, use current environment
- int execlp (char *prog, char *arg, ...);

List arguments one at a time, finish with NULL

• Example: minish.c
- Loop that reads a command, then executes it

• Warning: Pintos exec more like combined fork/exec
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minish.c (simplified)

pid_t pid; char **av;
void doexec () {
execvp (av[0], av);
perror (av[0]);
exit (1);

}

/* ... main loop: */
for (;;) {
parse_next_line_of_input (&av, stdin);
switch (pid = fork ()) {
case -1:
perror ("fork"); break;

case 0:
doexec ();

default:
waitpid (pid, NULL, 0); break;

}
}
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Manipulating file descriptors

• int dup2 (int oldfd, int newfd);

- Closes newfd, if it was a valid descriptor
- Makes newfd an exact copy of oldfd
- Two file descriptors will share same offset

(lseek on one will affect both)
• int fcntl (int fd, int cmd, ...) – misc fd configuration

- fcntl (fd, F_SETFD, val) – sets close-on-exec flag
When val == 0, fd not inherited by spawned programs

- fcntl (fd, F_GETFL) – get misc fd flags
- fcntl (fd, F_SETFL, val) – set misc fd flags

• Example: redirsh.c
- Loop that reads a command and executes it
- Recognizes command < input > output 2> errlog
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redirsh.c

void doexec (void) {
int fd;
if (infile) { /* non-NULL for "command < infile" */
if ((fd = open (infile, O_RDONLY)) < 0) {
perror (infile);
exit (1);

}
if (fd != 0) {
dup2 (fd, 0);
close (fd);

}
}

/* ... do same for outfile→fd 1, errfile→fd 2 ... */

execvp (av[0], av);
perror (av[0]);
exit (1);

}
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Pipes

• int pipe (int fds[2]);

- Returns two file descriptors in fds[0] and fds[1]
- Data written to fds[1] will be returned by read on fds[0]
- When last copy of fds[1] closed, fds[0] will return EOF
- Returns 0 on success, -1 on error

• Operations on pipes
- read/write/close – as with files
- When fds[1] closed, read(fds[0]) returns 0 bytes
- When fds[0] closed, write(fds[1]):

▷ Kills process with SIGPIPE
▷ Or if signal ignored, fails with EPIPE

• Example: pipesh.c
- Sets up pipeline command1 | command2 | command3 ...
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pipesh.c (simplified)

void doexec (void) {
while (outcmd) {
int pipefds[2]; pipe (pipefds);
switch (fork ()) {
case -1:
perror ("fork"); exit (1);

case 0:
dup2 (pipefds[1], 1);
close (pipefds[0]); close (pipefds[1]);
outcmd = NULL;
break;

default:
dup2 (pipefds[0], 0);
close (pipefds[0]); close (pipefds[1]);
parse_command_line (&av, &outcmd, outcmd);
break;

}
}
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Multiple file descriptors

• What if you have multiple pipes to multiple processes?
• poll system call lets you know which fd you can read/write1

typedef struct pollfd {
int fd;
short events; // OR of POLLIN, POLLOUT, POLLERR, ...
short revents; // ready events returned by kernel

};
int poll(struct pollfd *pfds, int nfds, int timeout);

• Also put pipes/sockets into non-blockingmode
if ((n = fcntl (s.fd_, F_GETFL)) == -1

|| fcntl (s.fd_, F_SETFL, n | O_NONBLOCK) == -1)
perror("O_NONBLOCK");

- Returns errno EGAIN instead of waiting for data
- Does not work for normal files (see aio for that)

1In practice, more efficient to use epoll on linux or kqueue on *BSD
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Why fork?

• Most calls to fork followed by execve

• Could also combine into one spawn system call
(like Pintos exec)

• Occasionally useful to fork one process
- Unix dump utility backs up file system to tape
- If tape fills up, must restart at some logical point
- Implemented by forking to revert to old state if tape ends

• Real win is simplicity of interface
- Tons of things you might want to do to child: Manipulate file

descriptors, alter namespace, manipulate process limits . . .
- Yet fork requires no arguments at all
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Examples

• login – checks username/password, runs user shell
- Runs with administrative privileges
- Lowers privileges to user before exec’ing shell
- Note doesn’t need fork to run shell, just execve

• chroot – change root directory
- Useful for setting/debugging different OS image in a subdirectory

• Some more linux-specific examples
- systemd-nspawn – runs program in container-like environment
- ip netns – runs program with different network namespace
- unshare – decouple namespaces from parent and exec program
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Spawning a process without fork

• Without fork, needs tons of different options for new process
• Example: Windows CreateProcess system call

- Also CreateProcessAsUser, CreateProcessWithLogonW,
CreateProcessWithTokenW, . . .

BOOL WINAPI CreateProcess(
_In_opt_ LPCTSTR lpApplicationName,
_Inout_opt_ LPTSTR lpCommandLine,
_In_opt_ LPSECURITY_ATTRIBUTES lpProcessAttributes,
_In_opt_ LPSECURITY_ATTRIBUTES lpThreadAttributes,
_In_ BOOL bInheritHandles,
_In_ DWORD dwCreationFlags,
_In_opt_ LPVOID lpEnvironment,
_In_opt_ LPCTSTR lpCurrentDirectory,
_In_ LPSTARTUPINFO lpStartupInfo,
_Out_ LPPROCESS_INFORMATION lpProcessInformation

);
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Implementing processes

• Keep a data structure for each process
- Process Control Block (PCB)
- Called proc in Unix, task_struct in Linux,

and just struct thread in Pintos

• Tracks state of the process
- Running, ready (runnable), waiting, etc.

• Includes information necessary to run
- Registers, virtual memory mappings, etc.
- Open files (including memory mapped files)

• Various other data about the process
- Credentials (user/group ID), signal mask,

controlling terminal, priority, accounting
statistics, whether being debugged, which
system call binary emulation in use, . . .

Registers

Program counter

Address space
(VM data structs)

Process state
Process ID

User id, etc.

Open files

PCB
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Process states

new

ready running

terminated

waiting

admitted

interrupt

scheduler
dispatch exit

I/O or event
completion

I/O or event wait

• Process can be in one of several states
- new & terminated at beginning & end of life
- running – currently executing (or will execute on kernel return)
- ready – can run, but kernel has chosen different process to run
- waiting – needs async event (e.g., disk operation) to proceed

• Which process should kernel run?
- if 0 runnable, run idle loop (or halt CPU), if 1 runnable, run it
- if >1 runnable, must make scheduling decision
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Scheduling

• How to pick which process to run
• Scan process table for first runnable?

- Expensive. Weird priorities (small pids do better)
- Divide into runnable and blocked processes

• FIFO?
- Put threads on back of list, pull them from front:

head t1 t2 t3 t4
tail

- Pintos does this—see ready_list in thread.c

• Priority?
- Give some threads a better shot at the CPU
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Scheduling policy

• Want to balance multiple goals
- Fairness – don’t starve processes
- Priority – reflect relative importance of procs
- Deadlines – must do X (play audio) by certain time
- Throughput – want good overall performance
- Efficiency – minimize overhead of scheduler itself

• No universal policy
- Many variables, can’t optimize for all
- Conflicting goals (e.g., throughput or priority vs. fairness)

• We will spend a whole lecture on this topic
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Preemption

• Can preempt a process when kernel gets control
• Running process can vector control to kernel

- System call, page fault, illegal instruction, etc.
- May put current process to sleep—e.g., read from disk
- May make other process runnable—e.g., fork, write to pipe

• Periodic timer interrupt
- If running process used up quantum, schedule another

• Device interrupt
- Disk request completed, or packet arrived on network
- Previously waiting process becomes runnable
- Schedule if higher priority than current running proc.

• Changing running process is called a context switch
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Context switch
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Context switch details

• Very machine dependent. Typical things include:
- Save program counter and integer registers (always)
- Save floating point or other special registers
- Save condition codes
- Change virtual address translations

• Non-negligible cost
- Save/restore floating point registers expensive

▷ Optimization: only save if process used floating point
- May require flushing TLB (memory translation hardware)

▷ HW Optimization 1: don’t flush kernel’s own data from TLB
▷ HW Optimization 2: use tag to avoid flushing any data

- Usually causes more cache misses (switch working sets)
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Threads

• A thread is a schedulable execution context
- Program counter, stack, registers, . . .

• Simple programs use one thread per process
• But can also have multi-threaded programs

- Multiple threads running in same process’s address space
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Why threads?

• Most popular abstraction for concurrency
- Lighter-weight abstraction than processes
- All threads in one process share memory, file descriptors, etc.

• Allows one process to use multiple CPUs or cores
• Allows program to overlap I/O and computation

- Same benefit as OS running emacs & gcc simultaneously
- E.g., threaded web server services clients simultaneously:

for (;;) {
c = accept_client();
thread_create(service_client, c);

}

• Most kernels have threads, too
- Typically at least one kernel thread for every process
- Switch kernel threads when preempting process
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Thread package API

• tid thread_create (void (*fn) (void *), void *);

- Create a new thread, run fn with arg

• void thread_exit ();

- Destroy current thread

• void thread_join (tid thread);

- Wait for thread thread to exit

• Plus lots of support for synchronization [in 3 weeks]
• See [Birell] for good introduction
• Can have preemptive or non-preemptive threads

- Preemptive causes more race conditions
- Non-preemptive can’t take advantage of multiple CPUs
- Before prevalence of multicore, most kernels non-preemptive

32 / 45

https://www.scs.stanford.edu/22wi-cs212/sched/readings/birrell.pdf


Kernel threads2

• Can implement thread_create as a system call
• To add thread_create to an OS that doesn’t have it:

- Start with process abstraction in kernel
- thread_create like process creation with features stripped out

▷ Keep same address space, file table, etc., in new process
▷ rfork/clone syscalls actually allow individual control

• Faster than a process, but still very heavy weight
2i.e., native or non-green threads; “kernel threads” can also mean threads

inside the kernel, which typically implement native threads)
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Limitations of kernel-level threads

• Every thread operation must go through kernel
- create, exit, join, synchronize, or switch for any reason
- On my laptop: syscall takes 100 cycles, fn call 5 cycles
- Result: threads 10x-30x slower when implemented in kernel

• One-size fits all thread implementation
- Kernel threads must please all people
- Maybe pay for fancy features (priority, etc.) you don’t need

• General heavy-weight memory requirements
- E.g., requires a fixed-size stack within kernel
- Other data structures designed for heavier-weight processes
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Alternative: User threads

• Implement as user-level library (a.k.a. green threads)
- One kernel thread per process
- thread_create, thread_exit, etc., just library functions
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Implementing user-level threads

• Allocate a new stack for each thread_create

• Keep a queue of runnable threads
• Replace networking system calls (read/write/etc.)

- If operation would block, switch and run different thread

• Schedule periodic timer signal (setitimer)
- Switch to another thread on timer signals (preemption)

• Multi-threaded web server example
- Thread calls read to get data from remote web browser
- “Fake” read function makes read syscall in non-blocking mode
- No data? schedule another thread
- On timer or when idle check which connections have new data
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Background: calling conventions

• Registers divided into 2 groups
- Functions free to clobber caller-saved regs

(%eax [return val], %edx, & %ecx on x86)
- But must restore callee-saved ones to

original value upon return (on x86, %ebx,
%esi, %edi, plus %ebp and %esp)

• sp register always base of stack
- Frame pointer (fp) is old sp

• Local variables stored in registers and on
stack

• Function arguments go in caller-saved
regs and on stack

- With 32-bit x86, all arguments on stack

and temps
Local vars

registers
callee-saved
old frame ptr

arguments
Call

sp

return addr

fp
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Background: procedure calls

Procedure call
save active caller registers
push arguments to stack
call foo (pushes pc)

save needed callee registers
. . .do stuff. . .
restore callee saved registers
jump back to calling function

restore stack+caller regs.

• Caller must save some state across function call
- Return address, caller-saved registers

• Other state does not need to be saved
- Callee-saved regs, global variables, stack pointer
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Pintos thread implementation

• Pintos implements user processes on top of its own threads
- Code for threads in kernel very similar to green threads

• Per-thread state in thread control block structure
struct thread {

...
uint8_t *stack; /* Saved stack pointer. */
...

};
uint32_t thread_stack_ofs = offsetof(struct thread, stack);

• C declaration for asm thread-switch function:
- struct thread *switch_threads (struct thread *cur,

struct thread *next);

• Also thread initialization function to create new stack:
- void thread_create (const char *name,

thread_func *function, void *aux);
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i386 switch_threads

pushl %ebx; pushl %ebp # Save callee-saved regs
pushl %esi; pushl %edi

mov thread_stack_ofs, %edx # %edx = offset of stack field
# in thread struct

movl 20(%esp), %eax # %eax = cur
movl %esp, (%eax,%edx,1) # cur->stack = %esp

movl 24(%esp), %ecx # %ecx = next
movl (%ecx,%edx,1), %esp # %esp = next->stack

popl %edi; popl %esi # Restore calle-saved regs
popl %ebp; popl %ebx

ret # Resume execution

• This is actual code from Pintos switch.S (slightly reformatted)
- See Thread Switching in documentation
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i386 switch_threads

%esp

%esp

current
stack

return addr
current

next

next
stack
next

current

return addr

%esi

%edi

%ebx

%ebp

• This is actual code from Pintos switch.S (slightly reformatted)
- See Thread Switching in documentation
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i386 switch_threads

%esp

%esi

%edi

%ebx

%ebp

%esp

current
stack

return addr
current

next

next
stack
next

current

return addr
%ebx

%ebp

%esi

%edi

• This is actual code from Pintos switch.S (slightly reformatted)
- See Thread Switching in documentation
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i386 switch_threads

%esi

%edi

%ebx

%ebp

%esp

current
stack

return addr
current

next

next
stack
next

current

return addr
%ebx

%ebp

%esi

%edi
%esp

• This is actual code from Pintos switch.S (slightly reformatted)
- See Thread Switching in documentation
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i386 switch_threads

%esp

registers
restored

callee-saved

current
stack

return addr
current

next

next
stack
next

current

return addr
%ebx

%ebp

%esi

%edi
%esp

• This is actual code from Pintos switch.S (slightly reformatted)
- See Thread Switching in documentation
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Limitations of user-level threads

• A user-level thread library can do the same thing as Pintos
• Can’t take advantage of multiple CPUs or cores
• A blocking system call blocks all threads

- Can use O_NONBLOCK to avoid blocking on network connections
- But doesn’t work for disk (e.g., even aio doesn’t work for metadata)
- So one uncached disk read/synchronous write blocks all threads

• A page fault blocks all threads
• Possible deadlock if one thread blocks on another

- May block entire process and make no progress
- [More on deadlock in future lectures.]
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User threads on kernel threads

• User threads implemented on kernel threads
- Multiple kernel-level threads per process
- thread_create, thread_exit still library functions as before

• Sometimes called n : m threading
- Have n user threads per m kernel threads

(Simple user-level threads are n : 1, kernel threads 1 : 1)
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Limitations of n : m threading

• Many of same problems as n : 1 threads
- Blocked threads, deadlock, . . .

• Hard to keep same # ktrheads as available CPUs
- Kernel knows how many CPUs available
- Kernel knows which kernel-level threads are blocked
- But tries to hide these things from applications for transparency
- So user-level thread scheduler might think a thread is running

while underlying kernel thread is blocked

• Kernel doesn’t know relative importance of threads
- Might preempt kthread in which library holds important lock
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Lessons

• Threads best implemented as a library
- But kernel threads not best interface on which to do this

• Better kernel interfaces have been suggested
- See Scheduler Activations [Anderson et al.]
- Maybe too complex to implement on existing OSes (some have

added then removed such features)

• Standard threads still fine for most purposes
- Use kernel threads if I/O concurrency main goal
- Use n : m threads for highly concurrent (e.g,. scientific

applications) with many thread switches

• But concurrency greatly increases complexity
- More on that in concurrency, synchronization lectures. . .
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