* Friday 10am section: different zoom link, same password
- Please attend first section this Friday to learn about project 1
Project 1 due Friday, Jan 21 at 10am
- 5pm if you attend/watch lecture

Ask cs212-staff for extension if you can’t finish
- Tell us where you are with the project,
- How much more you need to do, and
- How much longer you need to finish

No credit for late assignments w/o extension

Project groups should be 2-3 people

- Solo groups by permission only, under extenuating circumstances
(e.g., time zone more than 3 hours away from California)

1/45

In-person update

* Classroom B03 seems like it can support hybrid instruction

- When practical, | hope to move to in-person lectures with
synchronous zoom participation and archived video

¢ Current placeholder midterm policy: in-person

- Come to classroom to take exam, with printed notes
- We book you a conference room if you have a time conflict
- SCPD students can use proctors

* Will revise one week before exams prior in light of current
COVID situation/policy

- No mater what, we will accommodate remote SCPD students &
students who have schedule conflicts

» Suggestions welcome (now or to cs212-staff). Priorities:
- No one spends more than 90 minutes on midterm
- Give students high confidence that peers aren’t cheating

2/45

Processes

* Aprocess is an instance of a program running

Modern OSes run multiple processes simultaneously

* Examples (can all run simultaneously):
- gcc file_A.c-compiler runningon file A
- gcc file_B.c-compiler runningon file B
- emacs - text editor
- firefox - web browser

Non-examples (implemented as one process):
- Multiple emacs frames or firefox windows (can be one process)

Why processes?
- Simplicity of programming
- Speed: Higher throughput, lower latency

3/45

* Multiple processes can increase CPU utilization
- Overlap one process’s computation with another’s wait

emacs ——>wait for input———wait for input——

gec — _—

e Multiple processes can reduce latency
- Running A then B requires 100 sec for B to complete

80s 20s
A > B >

- Running A and B concurrently makes B finish faster
A > > >

B —_— —

- Ais slower than if it had whole machine to itself,
but still < 100 sec unless both A and B completely CPU-bound

4/45

Processes in the real world

* Processes and parallelism have been a fact of life much longer
than OSes have been around

E.g., say takes 1 worker 10 months to make 1 widget

Company may hire 100 workers to make 100 widgets

Latency for first widget >> 1/10 month

Throughput may be < 10 widgets per month

(if can’t perfectly parallelize task)

- Or 100 workers making 10,000 widgets may achieve > 10
widgets/month (e.g., if workers never idly wait for paint to dry)

* You will see these effects in you Pintos project group
- May block waiting for partner to complete task
Takes time to coordinate/explain/understand one another’s code
Labs won’t take 1/3 time with three people
But you will graduate faster than if you took only 1 class at a time

5/45

A process’s view of the world

max

stack
* Each process has own view of machine l

- Its own address space - *(char *)0xc000
differentin P; & P,

- Its own open files)

- Its own virtual CPU (through preemptive heap
multitasking)

data

* Simplifies programming model
- gcc does not care that firefox is running

text

0
* Sometimes want interaction between processes

- Simplest is through files: emacs edits file, gcc compiles it
- More complicated: Shell/command, Window manager/app.

6/45

Inter-Process Communication

process A E process A |
1

shared ;
2

process B IE process B 4-'

2 1
kernel M | kernel
(a) (b)

* How can processes interact in real time?

(a) By passing messages through the kernel
(b) By sharing a region of physical memory
(c) Through asynchronous signals or alerts

7/45

@ (UNIX-centric) User view of processes
@ Kernel view of processes
© Threads

@ Thread implementation details

8/45

Creating processes

e Original UNIX paper is a great reference on core system calls

® int fork (void);

- Create new process that is exact copy of current one
- Returns process ID of new process in “parent”
- Returns 0in “child”

® int waitpid (int pid, int *stat, int opt);

pid - process to wait for, or -1 for any
stat — will contain exit value, or signal
opt — usually 0 or WNOHANG

Returns process ID or -1 on error

9/45

https://www.scs.stanford.edu/22wi-cs212/sched/readings/unix.pdf

Deleting processes

® void exit (int status);
- Current process ceases to exist
- status shows up in waitpid (shifted)
- By convention, status of 0 is success, non-zero error

¢ int kill (int pid, int sig);
- Sends signal sig to process pid

- SIGTERM most common value, kills process by default
(but application can catch it for “cleanup”)

- SIGKILL stronger, kills process always

10/45

® int execve (char *prog, char *xargv, char **envp);
- prog - full pathname of program to run
- argv - argument vector that gets passed to main
- envp - environment variables, e.g., PATH, HOME

* Generally called through a wrapper functions

- int execvp (char *prog, char **argv);
Search PATH for prog, use current environment

- int execlp (char *prog, char *arg, ...);
List arguments one at a time, finish with NULL

* Example: minish.c
- Loop that reads a command, then executes it

* Warning: Pintos exec more like combined fork/exec

11/45

https://www.scs.stanford.edu/22wi-cs212/pintos/pintos_3.html#IDX6

minish.c (simplified)

pid_t pid; char *x*av;

void doexec () {
execvp (av[0], av);
perror (av[0]);

exit (1);
}
/* ... main loop: */
for (5;) {

parse_next_line_of_input (&av, stdin);
switch (pid = fork) {
case -1:
perror ("fork"); break;
case O:
doexec ();

default:
waitpid (pid, NULL, 0); break;

12/45

Manipulating file descriptors

® int dup2 (int oldfd, int newfd);
- Closes newfd, if it was a valid descriptor
- Makes newfd an exact copy of o1dfd

- Two file descriptors will share same offset
(1seek on one will affect both)

® int fentl (int fd, int cmd, ...) - misc fd configuration

- fcntl (fd, F_SETFD, val) - sets close-on-exec flag
When val == 0, fd not inherited by spawned programs

- fentl (f£d, F_GETFL) - get misc fd flags

- fentl (£d, F_SETFL, val) - set miscfd flags

* Example: redirsh.c

- Loop that reads a command and executes it
- Recognizes command < input > output 2> errlog

13/45

redirsh.c

void doexec (void) {
int fd;
if (infile) { /* non-NULL for "command < infile" */
if ((fd = open (infile, O_RDONLY)) < 0) {
perror (infile);
exit (1);
}
if (£fd '= 0) {
dup2 (fd, 0);
close (fd);
}
}

/* ... do same for outfile—fd 1, errfile—fd 2 ... */
execvp (av[0], av);

perror (av[0]);
exit (1);

14/45

¢ int pipe (int fds[2]);
- Returns two file descriptors in £ds[0] and fds[1]
- Data written to fds[1] will be returned by read on fds [0]
- When last copy of £ds[1] closed, £ds [0] will return EOF
- Returns 0 on success, -1 on error

e Operations on pipes
- read/write/close - as with files

- When £ds[1] closed, read (£ds[0]) returns 0 bytes

- When fds [0] closed, write (fds[1]):
> Kills process with SIGPIPE
> Orif signal ignored, fails with EPIPE

e Example: pipesh.c
- Sets up pipeline command1 | command2 | command3 ...

15/45

pipesh.c (simplified)

void doexec (void) {
while (outcmd) {

int pipefds[2]; pipe (pipefds);

switch (fork () {

case -1:
perror ("fork"); exit (1);

case 0:
dup2 (pipefds[1], 1);
close (pipefds[0]); close (pipefds[1]);
outcmd = NULL;
break;

default:
dup2 (pipefds[0], 0);
close (pipefds[0]); close (pipefds[1]);
parse_command_line (&av, &outcmd, outcmd) ;
break;

¥

16/45

Multiple file descriptors

* What if you have multiple pipes to multiple processes?

* poll system call lets you know which fd you can read/write?

typedef struct pollfd {
int fd;
short events; // OR of POLLIN, POLLOUT, POLLERR,
short revents; // ready events returned by kernel
3
int poll(struct pollfd *pfds, int nfds, int timeout);

* Also put pipes/sockets into non-blocking mode

if ((n = fentl (s.fd_, F_GETFL)) == -
|| fentl (s.fd_, F_SETFL, n | O_NONBLOCK) == -1)
perror ("O_NONBLOCK") ;

- Returns errno EGAIN instead of waiting for data
- Does not work for normal files (see aio for that)

Yn practice, more efficient to use epol11 on linux or kqueue on *BSD
— - 17/45

https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/poll.h.html
https://pubs.opengroup.org/onlinepubs/009695399/basedefs/aio.h.html
http://man7.org/linux/man-pages/man7/epoll.7.html
https://man.openbsd.org/kqueue.2

Why fork?

* Most calls to fork followed by execve

* Could also combine into one spawn system call
(like Pintos exec)
¢ Occasionally useful to fork one process

- Unix dump utility backs up file system to tape
- If tapefills up, must restart at some logical point
- Implemented by forking to revert to old state if tape ends

* Real win is simplicity of interface

- Tons of things you might want to do to child: Manipulate file
descriptors, alter namespace, manipulate process limits....

- Yet fork requires no arguments at all

18/45

https://www.scs.stanford.edu/22wi-cs212/pintos/pintos_3.html#IDX6

* login - checks username/password, runs user shell

- Runs with administrative privileges

- Lowers privileges to user before exec’ing shell

- Note doesn’t need fork to run shell, just execve
® chroot - change root directory

- Useful for setting/debugging different OS image in a subdirectory
¢ Some more linux-specific examples

- systemd-nspawn - runs program in container-like environment

- ip netns - runs program with different network namespace

- unshare - decouple namespaces from parent and exec program

19/45

http://man7.org/linux/man-pages/man1/chroot.1.html
http://man7.org/linux/man-pages/man1/systemd-nspawn.1.html
http://man7.org/linux/man-pages/man8/ip-netns.8.html
http://man7.org/linux/man-pages/man1/unshare.1.html

Spawning a process without fork

* Without fork, needs tons of different options for new process
* Example: Windows CreateProcess system call

- Also CreateProcessAsUser, CreateProcessWithLogonW,
CreateProcessWithTokenl,...

BOOL WINAPI CreateProcess(

_In_opt_ LPCTSTR lpApplicationName,

_Inout_opt_ LPTSTR lpCommandLine,

_In_opt_ LPSECURITY_ATTRIBUTES lpProcessAttributes,
_In_opt_ LPSECURITY_ATTRIBUTES lpThreadAttributes,
In BOOL bInheritHandles,

In DWORD dwCreationFlags,

_In_opt_ LPVOID lpEnvironment,

_In_opt_ LPCTSTR 1lpCurrentDirectory,

In LPSTARTUPINFO lpStartupInfo,

Out LPPROCESS_INFORMATION lpProcessInformation

)3

20/45

http://msdn.microsoft.com/en-us/library/ms682425(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms682429(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms682431(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms682434(v=VS.85).aspx

@ (UNIX-centric) User view of processes
@ Kernel view of processes
© Threads

@ Thread implementation details

21/45

Implementing processes

Keep a data structure for each process

- Process Control Block (PCB) Process state
- Called proc in Unix, task_struct in Linux, Process ID
and just struct thread in Pintos Userid. etc
, etc.
* Tracks state of the process Program counter
- Running, ready (runnable), waiting, etc.
. Registers

Includes information necessary to run

- Registers, virtual memory mappings, etc. Address space
- Openfiles (including memory mapped files) (VM data structs)

Various other data about the process

- Credentials (user/group ID), signal mask, Open files
controlling terminal, priority, accounting
statistics, whether being debugged, which PCB

system call binary emulation in use, ...
22/45

Process states
0‘\adtmitted Sgliﬁg?clﬁr i terminated

1/O or even interrupt 1/0 or event wait
completlon @

* Process can be in one of several states
- new & terminated at beginning & end of life
- running - currently executing (or will execute on kernel return)
- ready - can run, but kernel has chosen different process to run
- waiting - needs async event (e.g., disk operation) to proceed

* Which process should kernel run?
- if O runnable, run idle loop (or halt CPU), if 1 runnable, run it

- if >1 runnable, must make scheduling decision
23/45

Scheduling

How to pick which process to run

Scan process table for first runnable?
- Expensive. Weird priorities (small pids do better)
- Divide into runnable and blocked processes
FIFO?
- Put threads on back of list, pull them from front:

head ¢— 1) ¢—) +— t; «— 14
tail < =

- Pintos does this—see ready_list in thread.c

Priority?
- Give some threads a better shot at the CPU

24/45

Scheduling policy

* Want to balance multiple goals

- Fairness - don’t starve processes

Priority - reflect relative importance of procs
Deadlines - must do X (play audio) by certain time
Throughput - want good overall performance
Efficiency - minimize overhead of scheduler itself

* No universal policy

- Many variables, can’t optimize for all
- Conflicting goals (e.g., throughput or priority vs. fairness)

* We will spend a whole lecture on this topic

25/45

* Can preempt a process when kernel gets control

* Running process can vector control to kernel
- System call, page fault, illegal instruction, etc.
- May put current process to sleep—e.g., read from disk
- May make other process runnable—e.g., fork, write to pipe

Periodic timer interrupt
- If running process used up quantum, schedule another

Device interrupt
- Disk request completed, or packet arrived on network
- Previously waiting process becomes runnable
- Schedule if higher priority than current running proc.

Changing running process is called a context switch

26/45

process P, operating system process P,

interrupt or system call

executing ﬂ' /—l

| save state into PCB, |
: idle

[reload state from PCB; |)

ridle interrupt or system call executing

I ~— Y

| save state into PCB; |
: idle
L]

|re|oad state from PCBO|

executlng U\—l

27/45

Context switch details

* Very machine dependent. Typical things include:
Save program counter and integer registers (always)
Save floating point or other special registers

Save condition codes

Change virtual address translations

* Non-negligible cost
- Save/restore floating point registers expensive
> Optimization: only save if process used floating point
- May require flushing TLB (memory translation hardware)
> HW Optimization 1: don’t flush kernel’s own data from TLB
> HW Optimization 2: use tag to avoid flushing any data
- Usually causes more cache misses (switch working sets)

28/45

@ (UNIX-centric) User view of processes
@ Kernel view of processes
©® Threads

@ Thread implementation details

29/45

| code H data H files | ‘ code H data || files l

‘ stack | ‘ registers ‘ ‘ registers | | registers I

‘ stack H stack || stack i

thread —> é ; é ;4—— thread

single-threaded process multithreaded process
e Athread is a schedulable execution context
- Program counter, stack, registers, ...
e Simple programs use one thread per process
* But can also have multi-threaded programs
- Multiple threads running in same process’s address space

30/45

Why threads?

* Most popular abstraction for concurrency

- Lighter-weight abstraction than processes

- Allthreads in one process share memory, file descriptors, etc.
* Allows one process to use multiple CPUs or cores

* Allows program to overlap 1/O and computation
- Same benefit as OS running emacs & gcc simultaneously
- E.g., threaded web server services clients simultaneously:
for (55) {

c = accept_client();
thread_create(service_client, c);

}

¢ Most kernels have threads, too

- Typically at least one kernel thread for every process
- Switch kernel threads when preempting process

31/45

Thread package API

® tid thread_create (void (*fn) (void *), void *);

- Create a new thread, run fn with arg

® void thread_exit ();

- Destroy current thread

® void thread_join (tid thread);
- Wait for thread thread to exit

* Plus lots of support for synchronization [in 3 weeks]
» See [Birell] for good introduction

¢ Can have preemptive or non-preemptive threads

- Preemptive causes more race conditions
- Non-preemptive can’t take advantage of multiple CPUs
- Before prevalence of multicore, most kernels non-preemptive

32/45

https://www.scs.stanford.edu/22wi-cs212/sched/readings/birrell.pdf

Kernel threads?

<«— user thread

BN
O ¢ éw.

e Canimplement thread_create as a system call

* To add thread_create to an OS that doesn’t have it:
- Start with process abstraction in kernel

- thread_create like process creation with features stripped out
> Keep same address space, file table, etc., in new process

> rfork/clone syscalls actually allow individual control

» Faster than a process, but still very heavy weight

2j.e., native or non-green threads; “kernel threads” can also mean threads
inside the kernel, which typically implement native threads)

33/45

Limitations of kernel-level threads

* Every thread operation must go through kernel

- create, exit, join, synchronize, or switch for any reason

- On my laptop: syscall takes 100 cycles, fn call 5 cycles

- Result: threads 10x-30x slower when implemented in kernel
* One-size fits all thread implementation

- Kernel threads must please all people

- Maybe pay for fancy features (priority, etc.) you don’t need
* General heavy-weight memory requirements

- E.g., requires a fixed-size stack within kernel
- Other data structures designed for heavier-weight processes

34/45

Alternative: User threads
g g ; 34— user thread

<«— kernel thread

* Implement as user-level library (a.k.a. green threads)
- One kernel thread per process

- thread_create, thread_exit, etc., just library functions)
35/45

Implementing user-level threads

* Allocate a new stack for each thread_create
* Keep a queue of runnable threads

* Replace networking system calls (read/write/etc.)
- If operation would block, switch and run different thread

Schedule periodic timer signal (setitimer)
- Switch to another thread on timer signals (preemption)

Multi-threaded web server example
- Thread calls read to get data from remote web browser
- “Fake” read function makes read syscall in non-blocking mode
- No data? schedule another thread
- On timer or when idle check which connections have new data

36/45

@ (UNIX-centric) User view of processes
@ Kernel view of processes
© Threads

@ Thread implementation details

37/45

Background: calling conventions

* Registers divided into 2 groups
- Functions free to clobber caller-saved regs Call
(%eax [return val], %edx, & %ecx on x86) arguments
- But must restore callee-saved ones to return addr
original value upon return (on x86, %ebx, ;
%esi, %edi, plus %ebp and %esp) fp old frame ptr
* sp register always base of stack carl(lee?;:;/sed
- Frame pointer (fp) is old sp &
* Local variables stored in registers and on Lo;al vars
stack - and temps
* Function arguments go in caller-saved
regs and on stack

- With 32-bit x86, all arguments on stack

38/45

Background: procedure calls

Procedure call

save active caller registers
push arguments to stack

call foo (pushes pc)
\ save needed callee registers

...do stuff...
restore callee saved registers

jump back to calling function
restore stack+caller regs. /

* Caller must save some state across function call
- Return address, caller-saved registers

* Other state does not need to be saved
- Callee-saved regs, global variables, stack pointer

39/45

Pintos thread implementation

* Pintos implements user processes on top of its own threads
- Code for threads in kernel very similar to green threads

¢ Per-thread state in thread control block structure
struct thread {

uint8_t *stack; /* Saved stack pointer. */

};
uint32_t thread_stack_ofs = offsetof (struct thread, stack);
¢ Cdeclaration for asm thread-switch function:

- struct thread *switch_threads (struct thread *cur,
struct thread *next);

e Also thread initialization function to create new stack:

- void thread_create (const char *name,
thread_func *function, void *aux);

40/45

i386 switch_threads

pushl Y%ebx; pushl %ebp # Save callee-saved regs
pushl %esi; pushl %edi

mov thread_stack_ofs, %edx # Yedx = offset of stack field
in thread struct

movl 20(%esp), %heax # %eax = cur

movl %esp, (%eax,%edx,1) # cur->stack = %esp

movl 24(%esp), hecx # %ecx = next

movl (Yecx,%edx,1), %esp # Jiesp = next->stack

popl %edi; popl Yesi # Restore calle-saved regs
popl %ebp; popl %ebx

ret # Resume execution

 This is actual code from Pintos switch.S (slightly reformatted)
- See Thread Switching in documentation

41/45

https://www.scs.stanford.edu/22wi-cs212/pintos/pintos_6.html#SEC99

i386 switch_threads

current next
stack stack
next next
current current
, return addr return addr
hesp
%ebx
ebp
%esi
%edi

 This is actual code from Pintos switch.S (slightly reformatted)
- See Thread Switching in documentation

41/45

https://www.scs.stanford.edu/22wi-cs212/pintos/pintos_6.html#SEC99

i386 switch_threads

current next
stack stack
next next

current current

return addr return addr

%hebx hebx
%ebp hebp
%hesi hesi
%hedi hedi

hesp

 This is actual code from Pintos switch.S (slightly reformatted)
- See Thread Switching in documentation

41/45

https://www.scs.stanford.edu/22wi-cs212/pintos/pintos_6.html#SEC99

i386 switch_threads

current next
stack stack
next next

current current

return addr return addr

%hebx hebx
%ebp hebp
hesi hesi
%hedi hedi

hesp

 This is actual code from Pintos switch. S (slightly reformatted)
- See Thread Switching in documentation

41/45

https://www.scs.stanford.edu/22wi-cs212/pintos/pintos_6.html#SEC99

i386 switch_threads

current next
stack stack
next next

current current

return addr return addr .
; hesp
%hebx
%ebp callee-saved
Yesi registers
restored

%edi

 This is actual code from Pintos switch. S (slightly reformatted)
- See Thread Switching in documentation

41/45

https://www.scs.stanford.edu/22wi-cs212/pintos/pintos_6.html#SEC99

Limitations of user-level threads

* Auser-level thread library can do the same thing as Pintos
¢ Can’t take advantage of multiple CPUs or cores

* A blocking system call blocks all threads

- Can use 0_NONBLOCK to avoid blocking on network connections
- But doesn’t work for disk (e.g., even aio doesn’t work for metadata)
- So one uncached disk read/synchronous write blocks all threads

* A page fault blocks all threads

e Possible deadlock if one thread blocks on another

- May block entire process and make no progress
- [More on deadlock in future lectures.]

42/45

User threads on kernel threads

34— user thread

<«—kernel thread

¢ User threads implemented on kernel threads

- Multiple kernel-level threads per process

- thread_create, thread_exit still library functions as before
* Sometimes called n : m threading

- Have n user threads per m kernel threads

(Simple user-level threads are n : 1, kernel threads 1 : 1)
43/45

Limitations of n : m threading

e Many of same problems as n : 1 threads
- Blocked threads, deadlock, ...

* Hard to keep same # ktrheads as available CPUs

Kernel knows how many CPUs available
Kernel knows which kernel-level threads are blocked
But tries to hide these things from applications for transparency

So user-level thread scheduler might think a thread is running
while underlying kernel thread is blocked

* Kernel doesn’t know relative importance of threads
- Might preempt kthread in which library holds important lock

44/ 45

¢ Threads best implemented as a library
- But kernel threads not best interface on which to do this

* Better kernel interfaces have been suggested

- See Scheduler Activations [Anderson et al.]

- Maybe too complex to implement on existing OSes (some have
added then removed such features)

¢ Standard threads still fine for most purposes

- Use kernel threads if I/O concurrency main goal

- Use n : m threads for highly concurrent (e.g,. scientific
applications) with many thread switches

* But concurrency greatly increases complexity
- More on that in concurrency, synchronization lectures...

45/45

http://www.cs.washington.edu/homes/tom/pubs/sched_act.pdf

	(UNIX-centric) User view of processes
	Kernel view of processes
	Threads
	Thread implementation details

