View access control as a matrix Two ways to slice the matrix

Objects

File 1 |File 2 |File 3 ... |Filen

¢ Along columns:

User 1 |read |write |- - read
- Kernel stores list of who can access object along with object
User 2 |write |write |write |- - - Most systems you’ve used probably do this
Subjects - Examples: Unix file permissions, Access Control Lists (ACLs)
User 3 |- - - read |read

e Along rows:
- Capability systems do this
- More on these later...

User |read |write |read |write |read
m

* Subjects (processes/users) access objects (e.g., files)

* Each cell of matrix has allowed permissions
1/44 2/44

e Each process has a User ID & one or more group IDs

@ Unix protection * System stores with each file:
- User who owns the file and group file is in

@ uni ity hol - Permissions for user, any one in file group, and other
nix security holes
e Shown by output of 1s -1 command:

user group other owner group
NN AN AN
-Irw- rw- r-- dm cs140 ... index.html

- Each group of three letters specifies a subset of
read, write, and execute permissions

- User permissions apply to processes with same user ID
- Else, group permissions apply to processes in same group
- Else, other permissions apply

@ Capability-based protection

@ Microarchitectural attacks

3/44 4/44

* Directories have permission bits, too

- Need write permission on a directory to create or delete a file
- Execute permission means ability to use pathnames in the

* Many devices show up in file system
- E.g., /dev/ttyl permissions just like for files

directory, separate from read permission which allows listing Other access controls not represented in file system
* Special user root (UID 0) has all privileges ¢ E.g., must usually be root to do the following:
- E.g., Read/write any file, change owners of files - Bind any TCP or UDP port number less than 1024
- Required for administration (backup, creating new users, etc.) - Change the current process’s user or group ID

- Mount or unmount most file systems

- Create device nodes (such as /dev/tty1) in the file system
- Change the owner of afile

- Set the time-of-day clock; halt or reboot machine

* Example:
- drwxr-xr-x 56 root wheel 4096 Apr 4 10:08 /etc
- Directory writable only by root, readable by everyone
- Means non-root users cannot directly delete files in /etc

5/44 6/44

e Unix users typically stored in files in /etc

Files passwd, group, and often shadow or master. passwd

* For each user, files contain:

Textual username (e.g., “dm”, or “root”

Numeric user 1D, and group ID(s)

One-way hash of user’s password: {salt, H(salt, passwd)}
Should have tunable difficulty d: {d, salt, Hy(salt, passwd)}

Other information, such as user’s full name, login shell, etc.

® /usr/bin/login runs as root

Reads username & password from terminal
Looks up username in /etc/passwd, etc.

Computes H(salt, typed password) & checks that it matches
If matches, sets group ID & user ID corresponding to username

Execute user’s shell with execve system call

* Examples

- ping (historically) - uses raw IP sockets to send/receive ICMP

passwd - changes user’s password
su - acquire new user ID (given correct password)
sudo - run one command as root

* Have to be very careful when writing setuid code

- Attackers can run setuid programs any time (no need to wait for

root to run a vulnerable job)
Attacker controls many aspects of program’s environment

* Example attacks when running a setuid program

Change PATH or IFS if setuid prog calls system(3)
Set maximum file size to zero (if app rebuilds DB)

7/44

- Close fd 2 before running program—may accidentally send error

message into protected file

* When can process A send a signal to process B with kill?

Allow if sender and receiver have same effective UID

But need ability to kill processes you launch even if suid
So allow if real UIDs match, as well

Can also send SIGCONT w/o UID match if in same session

* Debugger system call ptrace

Lets one process modify another’s memory

Setuid gives a program more privilege than invoking user
So don’t let a process ptrace a more privileged process
E.g., Require sender to match real & effective UID of target
Also disable/ignore setuid if ptraced target calls exec
Exception: root can ptrace anyone

9/44

11/44

* Some legitimate actions require more privs than UID

- E.g., how should users change their passwords?
- Stored in root-owned /etc/passwd & /etc/shadov files

¢ Solution: Setuid/setgid programs
- Run with privileges of file’s owner or group
- Each process has real and effective UID/GID
- real is user who launched setuid program
- effective is owner/group of file, used in access checks
- Actual rules and interfaces somewhat complicated [Chen]

e Shown as “s” in file listings
- -rws--x--x 1 root root 52528 Oct 29 08:54 /bin/passwd
- Obviously need to own file to set the setuid bit
- Need to own file and be in group to set setgid bit

8/44

* Wireshark needs network access, not ability to delete all files
e Linux subdivides root’s privileges into ~ 40 capabilities, e.g.:
- cap_net_admin - configure network interfaces (IP address, etc.)
- cap_net_raw - use raw sockets (bypassing UDP/TCP)
- cap_sys_boot - reboot; cap_sys_time - adjust system clock
¢ Usually root gets all, but behavior can be modified by
“securebits” (see prctl(2))

* Capabilities don’t survive execve unless bits are set in both
thread & inode (exception: ambient capabilities)

* “Effective” bit in inode acts like setuid for capability
$ 1s -al /usr/bin/dumpcap
-rwxr-xr-- 1 root wireshark 116808 Jan 30 06:23 /usr/bin/dumpcap
$ getcap /usr/bin/dumpcap
/usr/bin/dumpcap cap_dac_override,cap_net_admin,cap_net_raw=eip
[Oops, cap_dac_override ~ root! neeeded for USB capture]

¢ See also: getcap(8), setcap(8), capsh(1)

10/44

@ Unix protection
@ Unix security holes
© Capability-based protection

@ Microarchitectural attacks

12/44

find/rm

Even without root or setuid, attackers can trick root owned
processes into doing things...

Example: Want to clear unused files in /tmp
Every night, automatically run this command as root:
find /tmp -atime +3 -exec rm -f -- {} \;
find identifies files not accessed in 3 days
- executes rm, replacing {} with file name
m -f -- path deletes file path
- Note “--” prevents path from being parsed as option

What’s wrong here?

13/44

Attacker

mkdir (“/tmp/badetc”)
creat (“/tmp/badetc/passwd”)

readdir (“/tmp”) — “badetc”
Istat (“/tmp/badetc”) — DIRECTORY
readdir (“/tmp/badetc”) — “passwd”

rename (“/tmp/badetc” — “/tmp/x”)

symlink (“/etc”, “/tmp/badetc”)

unlink (“/tmp/badetc/passwd”)

xterm command xterm command

Time-of-check-to-time-of-use [TOCTTOU] bug
- find checks that /tmp/badetc is not symlink
- But meaning of file name changes before it is used

14/44

Provides a terminal window in X-windows
Used to run with setuid root privileges

- Requires kernel pseudo-terminal (pty) device

- Required root privs to change ownership of pty to user

- Also writes protected utmp/wtmp files to record users
Had feature to log terminal session to file

if (access (logfile, W_0K) < 0)
return ERROR;

fd = open (logfile, O_CREAT|O_WRONLY|O_TRUNC, 0666);
VAT Vi

xterm is root, but shouldn’t log to file user can’t write

access call avoids dangerous security hole
- Does permission check with real, not effective UID

15/44

find/rm Attacker

mkdir (“/tmp/badetc”)

creat (“/tmp/badetc/passwd”)
readdir (“/tmp”) — “badetc”
Istat (“/tmp/badetc”) — DIRECTORY
readdir (“/tmp/badetc”) — “passwd”

unlink (“/tmp/badetc/passwd”)

14/44

* Provides a terminal window in X-windows

e Used to run with setuid root privileges
- Requires kernel pseudo-terminal (pty) device
- Required root privs to change ownership of pty to user
- Also writes protected utmp/wtmp files to record users

¢ Had feature to log terminal session to file

fd = open (logfile, O_CREAT|O_WRONLY|O_TRUNC, 0666) ;
VATV

e What’s wrong here?

15/44

* Provides a terminal window in X-windows
e Used to run with setuid root privileges
- Requires kernel pseudo-terminal (pty) device
- Required root privs to change ownership of pty to user
- Also writes protected utmp/wtmp files to record users
Had feature to log terminal session to file

if (access (logfile, W_0K) < 0)
return ERROR;

fd = open (logfile, O_CREAT|O_WRONLY|O_TRUNC, 0666) ;
/x oL %/
e xtermis root, but shouldn’t log to file user can’t write
access call avoids dangerous security hole
- Does permission check with real, not effective UID
- Wrong: Another TOCTTOU bug

15/44

xterm Attacker

creat (“/tmp/log”)
access (“/tmp/1log”) — OK
unlink (“/tmp/10g”)

symlink (“/tmp/log” — “/etc/passwd”)

open (“/tmp/log”)

e Attacker changes /tmp/log between check and use

- xterm unwittingly overwrites /etc/passwd
- Another TOCTTOU bug

* OpenBSD man page: “CAVEATS: access() is a potential security

hole and should never be used.”

SSH configuration files Trick question: ptrace bug

* SSH 1.2.12 client ran as root for several reasons:

- Needed to bind TCP port under 1024 (privileged operation)
- Needed to read client private key (for host authentication)

¢ Also needed to read & write files owned by user

- Read configuration file ~/.ssh/config
- Record server keys in ~/.ssh/known_hosts

* Software structured to avoid TOCTTOU bugs:

- First bind socket & read root-owned secret key file
- Second drop all privileges—set real, & effective UIDs to user
- Only then access user files

- ldea: avoid using any user-controlled arguments/files until you
have no more privileges than the user

- What might still have gone wrong?

A Linux security hole

* Some programs acquire then release privileges
- E.g., su user is setuid root, becomes user if password correct

e Consider the following:

- Aand B unprivileged processes owned by attacker

- A ptraces B (works even with Yama, as B could be child of A)
- Aexecutes “su user” to its own identity

- With effective UID (EUID) 0, su asks for password & waits

- While A's EUID is 0, B execs su root
(B’s exec honors setuid—not disabled—since A’s EUID is 0)

- Atypes password, gets shell, and is attached to su root
- Can manipulate su root’s memory to get root shell

16/44

18/44

20/44

¢ Use new APIs that are relative to an opened directory fd

- openat, renameat, unlinkat, symlinkat, faccessat

- fchown, fchownat, fchmod, fchmodat, fstat, fstatat

- 0_NOFOLLOV flag to open avoids symbolic links in last component
- But canstill have TOCTTOU problems with hardlinks

* Lock resources, though most systems only lock files (and locks

are typically advisory)

e Wrap groups of operations in OS transactions

- Microsoft supports for transactions on Windows Vista and newer
CreateTransaction, CommitTransaction, RollbackTransaction

- Afew research projects for POSIX [Valor] [TxOS]

17/44

e Actually do have more privileges than user!

- Bound privileged port and read host private key

Dropping privs allows user to “debug” SSH

- Depends on OS, but at the time several had ptrace
implementations that made SSH vulnerable

Once in debugger

- Could use privileged port to connect anywhere
- Could read secret host key from memory
- Could overwrite local user name to get privs of other user

The fix: restructure into 3 processes!
- Perhaps overkill, but really wanted to avoid problems

Today some linux distros restrict ptrace with Yama

19/44

Previous examples show two limitations of Unix

Many OS security policies subjective not objective

- When can you signal/debug process? Re-bind network port?

- Rules for non-file operations somewhat incoherent

- Even some file rules weird (creating hard links to files)
Correct code is much harder to write than incorrect

- Delete file without traversing symbolic link

- Read SSH configuration file (requires 3 processes??)

- Write mailbox owned by user in dir owned by root/mail
Don’t just blame the application writers

- Must also blame the interfaces they program to

21/44

@ Unix protection

- This time it’s not Unix

@ Unix security holes

o Setting: A multi-user time sharing system

* Wanted Fortran compiler to keep statistics

- Modified compiler /sysx/fort to record stats in /sysx/stat

© Capability-based protection

/sysx (kind of like Unix setuid)

@ Microarchitectural attacks

22/44

A confused deputy Recall access control matrix

° What’s wrong here?

o Attacker could overwrite any files in /sysx Objects
- System billing records kept in /sysx/bill got wiped - - - -
- Probably command like fort -o /sysx/bill file.f File 1 |File 2 |File 3 Fle
e Is this a bug in the compiler fort? User 1 [read |write |- - read
- Original implementors did not anticipate extra rights User 2 i i i
- Can’t blame them for unchecked output file Ser< wnte write write - .
. . Subjects
o Compiler is a “confused deputy”) User 3 |- - - read |read
- Inherits privileges from invoking user (e.g., read file.f)
- Also inherits privileges from home files license
- Which source of authority is it serving on any given system call? User |read |write |read |write |read
- OSdoesn’t know if it just sees open ("/sysx/bill", ...) m

24/44

Capabilities Hydra [Wulf]

Slicing matrix along rows yields capabilities

- E.g., For each process, store a list of objects it can access
- Process explicitly invokes particular capabilities

Can help avoid confused deputy problem

- E.g., Must give compiler an argument that both specifies the
output file and conveys the capability to write the file
(think about passing a file descriptor, not a file name)

- So compiler uses no ambient authority to write file

caller
e Three general approaches to capabilities:
- Hardware enforced (Tagged architectures like M-machine)
- Kernel-enforced (Hydra, KeyKOS)
- Self-authenticating capabilities (like Amoeba)

Good history in [Levy]

26/44

0S enforced object modularity with capabilities
- Could only call object methods with a capability
Augmentation let methods manipulate objects
- A method executes with the capability list of the object, not the

Template methods take capabilities from caller
- So method can access objects specified by caller

Machine & programing environment built at CMU in ’70s

- Gave compiler “home files license”—allows writing to anything in

23/44

25/44

27/44

KeyKOS [Bomberger] Unique features of KeyKOS

* Capability system developed in the early 1980s
- Inspired many later systems: EROS, Coyotos

e Single-level store

- Everything is persistent: memory, processes, ...

* Goal: Extreme security, reliability, and availability - System periodically checkpoints its entire state

e Structured as a “nanokernel” - After power outage, everything comes back up as it was
- Kernel proper only 20,000 lines of C, 100KB footprint (may just lose the last few characters you typed)
- Avoids many problems with traditional kernels o “Stateless” kernel design only caches information
- Traditional OS interfaces implemented outside the kernel - All kernel state reconstructible from persistent data

including binary compatibility with existing OSes
(& Y P y &) ¢ Simplifies kernel and makes it more robust

- Kernel never runs out of space in memory allocation
- No message queues, etc. in kernel
- Run out of memory? Just checkpoint system

* Basicidea: No privileges other than capabilities

- Means kernel provides purely objective security mechanism
- As objective as pointers to objects in 00 languages
- Infact, partition system into many processes akin to objects

28/44 29/44
KeyKOS capabilities Capability details

» Refered to as “keys” for short

Each domain has a number of key “slots”:

* Types of keys: - 16 general-purpose key slots
- devices - Low-level hardware access - address slot - contains segment with process VM
- pages - Persistent page of memory (can be mapped) - meter slot - contains key for CPU time
- nodes - Container for 16 capabilities - keeper slot - contains key for exceptions

- segments - Pages & segments glued together with nodes
- meters - right to consume CPU time
- domains - a thread context

Segments also have an associated keeper
- Process that gets invoked on invalid reference

. . Meter keeper (allows creative scheduling policies)
* Anyone possessing a key can grant it to others

- But creating a key is a privileged operation
- E.g., requires “prime meter” to divide it into submeters

Calls generate return key for calling domain
- (Not required—other forms of message don’t do this)

30/44 31/44

KeyNIX: UNIX on KeyKOS KeyNIX overview
Domain
Domain
Domain

Device System File System

Btree
Domain

Inode
Domain

Device
Driver
Domain

Device
Driver
Domain

Device
Driver
Domain

* “One kernel per process” architecture

- Hard to crash kernel
- Even harder to crash system

Device
Table
Domain

e Aprocess’s kernel is its keeper
- Unmodified Unix binary makes Unix syscall

- Invalid KeyKOS syscall, transfers control to Unix keeper Process >/—\/
y Yy 5 p and. T Sﬁgg)i?t
» Of course, kernels need to share state Oﬁggl';"e Keeper
X Queue
- Use shared segment for process and file tables Adg;zsni gﬁfce

Sleep
Timer
Domain

32/44 33/44

e Every access must be accompanied by a capability

* Everyfileis a different process - For each object, OS stores random check value
- Elegant, and fault isolated - Capability is: {Object, Rights, MAc(check, Rights)}
- Small files can live in a node, not a segment (MAC = cryptographic Message Authentication Code)
- Makes the namei () function very expensive e 0OS gives processes capabi[ities
* Pipesrequire queues - Process creating resource gets full access rights
- This turned out to be complicated and inefficient - Can ask OS to generate capability with restricted rights
- Interaction with signals complicated * Makes sharing very easy in distributed systems
¢ Other OS features perform very well, though * To revoke rights, must change check value
- E.g., forkis six times faster than Mach 2.5 - Need some way for everyone else to reacquire capabilities

¢ Hard to control propagation
34/44 35/44

* Adistributed 0OS, based on capabilities of form:
- server port, object ID, rights, check

¢ IPC performance a losing battle with CPU makers

- CPUs optimized for “common” code, not context switches
* Any server can listen on any machine - Capability systems usually involve many IPCs
- Server port is hash of secret

¢ Capability model never fully took off as kernel API
- Kernel won't let you listen if you don’t know secret

- Requires changes throughout application software

* Many types of object have capabilities - Call capabilities “file descriptors” or “Java pointers” and people
- Files, directories, processes, devices, servers (E.g., X windows) will use them

- But discipline of pure capability system challenging so far

- People sometimes quip that capabilities are an OS concept of the
future and always will be

Separate file and directory servers

- Canimplement your own file server, or store other object types in
directories, which is cool .
* But real systems do use capabilities

- Firefox security based on language-level object capabilities
- FreeBSD now ships with Capsicum, making capabilities available

Check is like a secret password for the object

- Server records check value for capabilities with all rights
- Restricted capability’s check is hash of old check, rights

36/44 37/44

* Capability APl in FreeBSD 9
® cap_enter enters a process into capability mode
- Can no longer use absolute pathnames, “. .”, etc.

@ Unix protection

* cap_new turns file descriptors into restricted capabilities @ Unixsecurity holes

- ~60 individual permissions can be restricted per capability
- E.g., disallow fchmod (which works on read-only fds) © Capability-based protection

* Used by various base system binaries
e Supported by a growing number of applications @ Microarchitectural attacks
* Patches exist to use Capsicum for Chrome’s sandboxing

38/44 39/44

Cache timing attacks Speculative execution key to performance

const char *table; unsigned char *arrayl, *array2;
int arrayl_size, array2_size;

int
victim (int secret_byte) int lookup (int input)
{
return table[secret_byte*64]; if (input < arrayl_size)
} return array2[arrayl[input] * 4096];
. return -1;
* Accessing memory based on secret data can leak the data }

e Approach 1: Flush/Evict + Reload
- Share table with victim process (shared lib or deduplication)
- Flush table from cache (c1f1lush instruction, or overflow cache)
- After victim, time reads of table, fast line tells you secret_byte
e Approach 2: Prime + Probe
- No shared memory, but attacker primes cache with its own buffer
- Victim’s table access evicts one of attacker’s cache lines
- Slow cache line (+ cache mapping) reveals secret data

e CPU predicts branches to mask memory latency
- E.g., predict input < array_size even if array1_size not cached
- Wait to get array1_size from memory before retiring instructions
- Squash incorrectly predicted instructions by reverting registers
- But can’t revert cache state, only registers

* Example: intel Haswell
- Specutatively executes up to 192 micro-ops
- Indexes branch target buffer by bottom 31 bits of branch address

40/44 41/44

Spectre attack [Kocher] Many more variants of Spectre

unsigned char *arrayl, *array2;

int arrayl_size, array2_size; « Attack on JavaScript JIT
int lookup (int input) - Malicious JavaScript reads secrets outside of JavaScript sandbox
if (imput < arrayl_size) ¢ eBPF compiles packet filters in kernel (e.g., for tcpdump)
return array2[arrayl[input] * 4096]; - Can generate code to reveal arbitrary kernel memory
y return -1; « Can even use victim code that’s not supposed to be executed

- Mistrain branch predictor on indirect branch
- Speculatively execute arbitrary “spectre gadget” in victim process
- Same cache impact even if gadget execution entirely squashed

e Say attacker supplies input, wants to read array1 [input]
- input can exceed bounds, reference any byte in address space

* Ensure arrayl cached, but arrayl_size and array2 uncached - Has been used to leak host memory from inside virtual machine
* Flush+reload attack on array2 now reveals array1 [input] o Use other speculation channels
- CPU will likely predict branch taken (don’t usually overflow) - E.g., CPU predicts that previous store does not conflict with a load

- Speculatively load from array2 before seeing arrayl_size
- Reloaded cache line reveals array1 [input]

42 /44 43 /44
Mitigation

* Replace array bounds checks with index masking (used by
Chrome)

- return array2[arrayl[input&Oxffff] * 4096]
- Limits distance of bounds violation

* Place JavaScript sandbox in separate address space

* XOR pointers with type-dependent poison values (in JITs)
- Branch mispredictions on type checks XOR wrong values

* Make CPUs a bit better about leaking state through side
channels

¢ Insert “gratuitous” memory barriers to prevent speculation on
sensitive data

e Unfortunately general solution still an open problem

4444

