View access control as a matrix

Objects
File 1 |File 2 |File 3 ... |Filen
User 1 |read |write |- - read

User 2 |write |write |write |- -

Subjects
: User 3 |- - - read |read

User read |write |read |write |read
m

* Subjects (processes/users) access objects (e.g., files)

* Each cell of matrix has allowed permissions
1/44

Two ways to slice the matrix

* Along columns:
- Kernel stores list of who can access object along with object
- Most systems you’ve used probably do this
- Examples: Unix file permissions, Access Control Lists (ACLs)
* Along rows:

- Capability systems do this
- More on these later...

2/44

@ Unix protection
@ Unix security holes
© Capability-based protection

@ Microarchitectural attacks

3/44

Example: Unix protection

* Each process has a User ID & one or more group IDs

* System stores with each file:

- User who owns the file and group fileis in
- Permissions for user, any one in file group, and other

e Shown by output of 1s -1 command:

user group other owner group
NN AN AN A
-rw- TW- r-- dm cs140 ... index.html

- Each group of three letters specifies a subset of
read, write, and execute permissions

- User permissions apply to processes with same user ID
- Else, group permissions apply to processes in same group
- Else, other permissions apply

4]44

* Directories have permission bits, too

- Need write permission on a directory to create or delete a file

- Execute permission means ability to use pathnames in the
directory, separate from read permission which allows listing

» Special user root (UID 0) has all privileges

- E.g., Read/write any file, change owners of files

- Required for administration (backup, creating new users, etc.)
* Example:

- drwxr-xr-x 56 root wheel 4096 Apr 4 10:08 /etc
- Directory writable only by root, readable by everyone
- Means non-root users cannot directly delete files in /etc

5/44

Non-file permissions in Unix

* Many devices show up in file system
- E.g., /dev/tty1 permissions just like for files

» Other access controls not represented in file system

* E.g., must usually be root to do the following:

- Bind any TCP or UDP port number less than 1024

- Change the current process’s user or group ID

Mount or unmount most file systems

Create device nodes (such as /dev/tty1) in the file system
Change the owner of afile

Set the time-of-day clock; halt or reboot machine

6/44

Example: Login runs as root

* Unix users typically stored in files in /etc
- Files passwd, group, and often shadow or master .passwd

* For each user, files contain:

Textual username (e.g., “dm”, or “root”)

Numeric user ID, and group ID(s)

One-way hash of user’s password: {salt, H(salt, passwd)}
Should have tunable difficulty d: {d, salt, Hy(salt, passwd)}
- Other information, such as user’s full name, login shell, etc.

® /usr/bin/login runs as root
- Reads username & password from terminal
Looks up username in /etc/passwd, etc.
Computes H(salt, typed password) & checks that it matches
If matches, sets group ID & user ID corresponding to username
Execute user’s shell with execve system call

7/44

* Some legitimate actions require more privs than UID

- E.g., how should users change their passwords?
- Stored in root-owned /etc/passwd & /etc/shadow files

* Solution: Setuid/setgid programs

Run with privileges of file’s owner or group

Each process has real and effective UID/GID

real is user who launched setuid program

- effective is owner/group of file, used in access checks

- Actual rules and interfaces somewhat complicated [Chen]

* Shown as “s” in file listings
- -rws--x--x 1 root root 52528 Oct 29 08:54 /bin/passwd
- Obviously need to own file to set the setuid bit
- Need to own file and be in group to set setgid bit

8/44

http://www.cs.berkeley.edu/~daw/papers/setuid-usenix02.pdf

Setuid (continued)

* Examples
- passwd - changes user’s password
- su-acquire new user ID (given correct password)
- sudo - run one command as root
- ping (historically) - uses raw IP sockets to send/receive ICMP

* Have to be very careful when writing setuid code

- Attackers can run setuid programs any time (no need to wait for
root to run a vulnerable job)

- Attacker controls many aspects of program’s environment

* Example attacks when running a setuid program
- Change PATH or IFS if setuid prog calls system(3)
- Set maximum file size to zero (if app rebuilds DB)

- Close fd 2 before running program—may accidentally send error
message into protected file

9/44

Linux capabilities

* Wireshark needs network access, not ability to delete all files
* Linux subdivides root’s privileges into ~ 40 capabilities, e.g.:
- cap_net_admin - configure network interfaces (IP address, etc.)
- cap_net_raw - Use raw sockets (bypassing UDP/TCP)
- cap_sys_boot - reboot; cap_sys_time - adjust system clock
* Usually root gets all, but behavior can be modified by
“securebits” (see prctl(2))
* Capabilities don’t survive execve unless bits are set in both
thread & inode (exception: ambient capabilities)

* “Effective” bit in inode acts like setuid for capability
$ 1s -al /usr/bin/dumpcap
-rwxr-xr-- 1 root wireshark 116808 Jan 30 06:23 /usr/bin/dumpcap
$ getcap /usr/bin/dumpcap
/usr/bin/dumpcap cap_dac_override,cap_net_admin,cap_net_raw=eip
[Oops, cap_dac_override = root! neeeded for USB capture]

* See also: getcap(8), setcap(8), capsh(1)

10/44

http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man2/prctl.2.html
http://man7.org/linux/man-pages/man8/getcap.8.html
http://man7.org/linux/man-pages/man8/setcap.8.html
http://man7.org/linux/man-pages/man1/capsh.1.html

Other permissions

* When can process A send a signal to process B with kill?

- Allow if sender and receiver have same effective UID

- But need ability to kill processes you launch even if suid
- So allow if real UIDs match, as well

- Can also send SIGCONT w/o UID match if in same session

* Debugger system call ptrace

Lets one process modify another’s memory

Setuid gives a program more privilege than invoking user
So don’t let a process ptrace a more privileged process
E.g., Require sender to match real & effective UID of target
Also disable/ignore setuid if ptraced target calls exec
Exception: root can ptrace anyone

11/44

@ Unix protection
@ Unix security holes
© Capability-based protection

@ Microarchitectural attacks

12/44

A security hole

Even without root or setuid, attackers can trick root owned
processes into doing things...

Example: Want to clear unused files in /tmp

Every night, automatically run this command as root:
find /tmp -atime +3 -exec rm -f -- {} \;

find identifies files not accessed in 3 days
- executes rm, replacing {3 with file name

°* rm -f -- path deletes file path
- Note “--” prevents path from being parsed as option

* What’s wrong here?

13/44

find/rm Attacker

mkdir (“/tmp/badetc”)
creat (“/tmp/badetc/passwd”)

readdir (“/tmp”) — “badetc”
Istat (“/tmp/badetc”) — DIRECTORY
readdir (“/tmp/badetc”) — “passwd”

unlink (“/tmp/badetc/passwd”)

14/44

find/rm Attacker

mkdir (“/tmp/badetc”)
creat (“/tmp/badetc/passwd”)

readdir (“/tmp”) — “badetc”
[stat (“/tmp/badetc”) — DIRECTORY
readdir (“/tmp/badetc”) — “passwd”
rename (“/tmp/badetc” — “/tmp/x”)

symlink (“/etc”, “/tmp/badetc”)
unlink (“/tmp/badetc/passwd”)

* Time-of-check-to-time-of-use [TOCTTOU] bug

- find checks that /tmp/badetc is not symlink
- But meaning of file name changes before it is used

14/ 44

https://www.scs.stanford.edu/22wi-cs212/sched/readings/tocttou.pdf

xterm command

¢ Provides a terminal window in X-windows

* Used to run with setuid root privileges
- Requires kernel pseudo-terminal (pty) device
- Required root privs to change ownership of pty to user
- Also writes protected utmp/wtmp files to record users

* Had feature to log terminal session to file

fd = open (logfile, O_CREAT|O_WRONLY|O_TRUNC, 0666);
/*x .. %/

* What’s wrong here?

15/44

xterm command

¢ Provides a terminal window in X-windows

* Used to run with setuid root privileges
- Requires kernel pseudo-terminal (pty) device
- Required root privs to change ownership of pty to user
- Also writes protected utmp/wtmp files to record users
Had feature to log terminal session to file

if (access (logfile, W_0K) < 0)
return ERROR;

fd = open (logfile, O_CREAT|O_WRONLY|O_TRUNC, 0666);
/¥ ... %/
* xtermis root, but shouldn’t log to file user can’t write

access call avoids dangerous security hole
- Does permission check with real, not effective UID

15/44

xterm command

¢ Provides a terminal window in X-windows

* Used to run with setuid root privileges
- Requires kernel pseudo-terminal (pty) device
- Required root privs to change ownership of pty to user
- Also writes protected utmp/wtmp files to record users
Had feature to log terminal session to file

if (access (logfile, W_0K) < 0)
return ERROR;

fd = open (logfile, O_CREAT|O_WRONLY|O_TRUNC, 0666);
/¥ ... %/
* xtermis root, but shouldn’t log to file user can’t write

access call avoids dangerous security hole
- Does permission check with real, not effective UID
- Wrong: Another TOCTTOU bug

15/44

xterm Attacker
creat (“/tmp/log”)

access (“/tmp/log”) — OK
unlink (“/tmp/1og”)

symlink (“/tmp/log” — “/etc/passud”)
open (“/tmp/log”)

» Attacker changes /tmp/log between check and use

- xterm unwittingly overwrites /etc/passwd
- Another TOCTTOU bug

* OpenBSD man page: “CAVEATS: access() is a potential security
hole and should never be used.”

16/44

Preventing TOCCTOU

* Use new APIs that are relative to an opened directory fd
openat, renameat, unlinkat, symlinkat, faccessat

fchown, fchownat, fchmod, fchmodat, fstat, fstatat

0_NOFOLLOW flag to open avoids symbolic links in last component
But can still have TOCTTOU problems with hardlinks

* Lock resources, though most systems only lock files (and locks
are typically advisory)

* Wrap groups of operations in OS transactions

- Microsoft supports for transactions on Windows Vista and newer
CreateTransaction, CommitTransaction, RollbackTransaction

- Afew research projects for POSIX [Valor] [TxOS]

17/44

https://msdn.microsoft.com/en-us/library/windows/desktop/bb986748%28v=vs.85%29.aspx
http://www.fsl.cs.sunysb.edu/docs/valor/valor_fast2009.pdf
http://www.sigops.org/sosp/sosp09/papers/porter-sosp09.pdf

SSH configuration files

e SSH 1.2.12 client ran as root for several reasons:

- Needed to bind TCP port under 1024 (privileged operation)
- Needed to read client private key (for host authentication)

* Also needed to read & write files owned by user

- Read configuration file ~/.ssh/config
- Record server keysin ~/.ssh/known_hosts

» Software structured to avoid TOCTTOU bugs:

First bind socket & read root-owned secret key file
Second drop all privileges—set real, & effective UIDs to user
Only then access user files

Idea: avoid using any user-controlled arguments/files until you
have no more privileges than the user

What might still have gone wrong?

18/44

Trick question: ptrace bug

Actually do have more privileges than user!
- Bound privileged port and read host private key
* Dropping privs allows user to “debug” SSH

- Depends on 0S, but at the time several had ptrace
implementations that made SSH vulnerable

Once in debugger
- Could use privileged port to connect anywhere
- Could read secret host key from memory
- Could overwrite local user name to get privs of other user

The fix: restructure into 3 processes!
- Perhaps overkill, but really wanted to avoid problems

Today some linux distros restrict ptrace with Yama

19/44

https://www.kernel.org/doc/Documentation/security/Yama.txt

A Linux security hole

* Some programs acquire then release privileges
- E.g., su user is setuid root, becomes user if password correct

e Consider the following:
- Aand B unprivileged processes owned by attacker
A ptraces B (works even with Yama, as B could be child of A)
A executes “su user” to its own identity
With effective UID (EUID) 0, su asks for password & waits

While A’s EUID is 0, B execs su root
(B’s exec honors setuid—not disabled—since A’s EUID is 0)

- Atypes password, gets shell, and is attached to su root
- Can manipulate su root’s memory to get root shell

20/44

Previous examples show two limitations of Unix

Many OS security policies subjective not objective

- When can you signal/debug process? Re-bind network port?

- Rules for non-file operations somewhat incoherent

- Even some file rules weird (creating hard links to files)
Correct code is much harder to write than incorrect

- Delete file without traversing symbolic link

- Read SSH configuration file (requires 3 processes??)

- Write mailbox owned by user in dir owned by root/mail
Don’t just blame the application writers

- Must also blame the interfaces they program to

21/44

@ Unix protection
@ Unix security holes
© Capability-based protection

@ Microarchitectural attacks

22/44

Another security problem [Hardy]

¢ Setting: A multi-user time sharing system
- This time it’s not Unix

* Wanted Fortran compiler to keep statistics

- Modified compiler /sysx/fort to record stats in /sysx/stat

- Gave compiler “home files license”—allows writing to anything in
/sysx (kind of like Unix setuid)

* What’s wrong here?

23/44

https://www.scs.stanford.edu/22wi-cs212/sched/readings/confused.pdf

A confused deputy

* Attacker could overwrite any files in /sysx
- System billing records kept in /sysx/bill got wiped
- Probably command like fort -o /sysx/bill file.f
* Is this a bug in the compiler fort?
- Original implementors did not anticipate extra rights
- Can’t blame them for unchecked output file
e Compiler is a “confused deputy”

Inherits privileges from invoking user (e.g., read file.f)

Also inherits privileges from home files license

Which source of authority is it serving on any given system call?
OS doesn’t know if it just sees open ("/sysx/bill", ...)

24/44

Recall access control matrix

Objects
File 1 |File 2 |File 3 ... |Filen
User 1 |read |write |- - read

User 2 |write |write |write |- -

Subjects
) User 3 |- - - read |read

User |read |write |read |write |read

25/44

Capabilities

 Slicing matrix along rows yields capabilities
- E.g., For each process, store a list of objects it can access
- Process explicitly invokes particular capabilities

e Can help avoid confused deputy problem

- E.g., Must give compiler an argument that both specifies the
output file and conveys the capability to write the file
(think about passing a file descriptor, not a file name)

- So compiler uses no ambient authority to write file

* Three general approaches to capabilities:

- Hardware enforced (Tagged architectures like M-machine)
- Kernel-enforced (Hydra, KeyKOS)
- Self-authenticating capabilities (like Amoeba)

* Good history in [Levy]

26/44

https://www.scs.stanford.edu/22wi-cs212/sched/readings/m-machine.pdf
https://www.scs.stanford.edu/22wi-cs212/sched/readings/hydra.pdf
http://www.cis.upenn.edu/~KeyKOS/NanoKernel/NanoKernel.html
http://www.cs.vu.nl/pub/amoeba/Intro.pdf
http://www.cs.washington.edu/homes/levy/capabook/

Hydra [Wulf]

Machine & programing environment built at CMU in ’70s

0S enforced object modularity with capabilities
- Could only call object methods with a capability

Augmentation let methods manipulate objects

- Amethod executes with the capability list of the object, not the
caller

Template methods take capabilities from caller
- So method can access objects specified by caller

27/44

https://www.scs.stanford.edu/22wi-cs212/sched/readings/hydra.pdf

KeyKOS [Bomberger]

e Capability system developed in the early 1980s
- Inspired many later systems: EROS, Coyotos

* Goal: Extreme security, reliability, and availability

¢ Structured as a “nanokernel”
- Kernel proper only 20,000 lines of C, 100KB footprint
- Avoids many problems with traditional kernels
- Traditional OS interfaces implemented outside the kernel
(including binary compatibility with existing OSes)
* Basicidea: No privileges other than capabilities
- Means kernel provides purely objective security mechanism
- As objective as pointers to objects in 00 languages
- In fact, partition system into many processes akin to objects

28 /44

http://www.cis.upenn.edu/~KeyKOS/NanoKernel/NanoKernel.html
https://www.cs.ucsb.edu/~chris/teaching/cs290/doc/eros-sosp99.pdf
http://www.coyotos.org/

Unique features of KeyKOS

* Single-level store

- Everything is persistent: memory, processes, ...
- System periodically checkpoints its entire state

- After power outage, everything comes back up as it was
(may just lose the last few characters you typed)

* “Stateless” kernel design only caches information
- All kernel state reconstructible from persistent data
o Simplifies kernel and makes it more robust

- Kernel never runs out of space in memory allocation
- No message queues, etc. in kernel
- Run out of memory? Just checkpoint system

29/44

KeyKOS capabilities

* Refered to as “keys” for short

* Types of keys:

- devices - Low-level hardware access

pages - Persistent page of memory (can be mapped)
nodes - Container for 16 capabilities

segments - Pages & segments glued together with nodes
meters - right to consume CPU time

domains - a thread context

* Anyone possessing a key can grant it to others
- But creating a key is a privileged operation
- E.g., requires “prime meter” to divide it into submeters

30/44

Capability details

Each domain has a number of key “slots”:

16 general-purpose key slots

address slot - contains segment with process VM
meter slot - contains key for CPU time

keeper slot - contains key for exceptions

Segments also have an associated keeper
- Process that gets invoked on invalid reference

Meter keeper (allows creative scheduling policies)

Calls generate return key for calling domain
- (Not required—other forms of message don’t do this)

31/44

KeyNIX: UNIX on KeyKOS

* “One kernel per process” architecture

- Hard to crash kernel

- Even harder to crash system
* A process’s kernel is its keeper

- Unmodified Unix binary makes Unix syscall

- Invalid KeyKOS syscall, transfers control to Unix keeper
* Of course, kernels need to share state

- Use shared segment for process and file tables

32/44

KeyNIX overview

Device System File System
omain
Device Device Device
Driver Driver Driver
Domain Domain Domain
omain
Device
Table Inode Inode Fil
Domain Domain Domain -

Process
and Segment
Open File Keeper
e QuellS Address Space
Domain Segment
Sleep
Timer
segment Domain

33/44

Keynix I/O

* Every file is a different process
- Elegant, and fault isolated
- Small files can live in a node, not a segment
- Makes the namei () function very expensive
* Pipes require queues
- This turned out to be complicated and inefficient
- Interaction with signals complicated
» Other OS features perform very well, though
- E.g., fork is six times faster than Mach 2.5

34/44

Self-authenticating capabilities

* Every access must be accompanied by a capability

- For each object, OS stores random check value
- Capability is: {Object, Rights, MAC(check, Rights)}
(MAC = cryptographic Message Authentication Code)

OS gives processes capabilities

- Process creating resource gets full access rights
- Can ask OS to generate capability with restricted rights

Makes sharing very easy in distributed systems

To revoke rights, must change check value
- Need some way for everyone else to reacquire capabilities

Hard to control propagation

35/44

e Adistributed OS, based on capabilities of form:
- server port, object ID, rights, check

Any server can listen on any machine

- Server port is hash of secret
- Kernel won’t let you listen if you don’t know secret

Many types of object have capabilities
- Files, directories, processes, devices, servers (E.g., X windows)

Separate file and directory servers

- Canimplement your own file server, or store other object types in
directories, which is cool

Checkiis like a secret password for the object

- Server records check value for capabilities with all rights
- Restricted capability’s check is hash of old check, rights

36/44

Limitations of capabilities

* IPC performance a losing battle with CPU makers

- CPUs optimized for “common” code, not context switches
- Capability systems usually involve many IPCs

e Capability model never fully took off as kernel API

Requires changes throughout application software

Call capabilities “file descriptors” or “Java pointers” and people
will use them

But discipline of pure capability system challenging so far

People sometimes quip that capabilities are an OS concept of the
future and always will be

* But real systems do use capabilities

- Firefox security based on language-level object capabilities
- FreeBSD now ships with Capsicum, making capabilities available

37/44

Capsicum [Watson]

e Capability APl in FreeBSD 9
* cap_enter enters a process into capability mode
- Canno longer use absolute pathnames, “. .”, etc.
e cap_new turns file descriptors into restricted capabilities

- ~60 individual permissions can be restricted per capability
- E.g., disallow fchmod (which works on read-only fds)

* Used by various base system binaries
* Supported by a growing number of applications

* Patches exist to use Capsicum for Chrome’s sandboxing

38/44

https://www.usenix.org/legacy/event/sec10/tech/full_papers/Watson.pdf

@ Unix protection
@ Unix security holes
© Capability-based protection

@ Microarchitectural attacks

39/44

Cache timing attacks

const char *table;

int
victim (int secret_byte)

{

}

* Accessing memory based on secret data can leak the data
e Approach 1: Flush/Evict + Reload
- Share table with victim process (shared lib or deduplication)
- Flush table from cache (c1f1lush instruction, or overflow cache)
- After victim, time reads of table, fast line tells you secret_byte
e Approach 2: Prime + Probe
- No shared memory, but attacker primes cache with its own buffer
- Victim’s table access evicts one of attacker’s cache lines
- Slow cache line (+ cache mapping) reveals secret data

return table[secret_bytex64];

40/44

Speculative execution key to performance

unsigned char *arrayl, *array2;
int arrayl_size, array2_size;

int lookup (int input)
{
if (input < arrayl_size)

return array2[arrayl[input] * 4096];
return -1;

}
* CPU predicts branches to mask memory latency
- E.g., predict input < array_size even if arrayl_size not cached
- Wait to get array1_size from memory before retiring instructions
- Squash incorrectly predicted instructions by reverting registers
- But can’t revert cache state, only registers
e Example: intel Haswell
- Specutatively executes up to 192 micro-ops
- Indexes branch target buffer by bottom 31 bits of branch address

41/44

Spectre attack [Kocher]

unsigned char *arrayl, *array2;
int arrayl_size, array2_size;

int lookup (int input)

if (input < arrayl_size)
return array?2[arrayl[input] * 4096];
return -1;
}
* Say attacker supplies input, wants to read array1 [input]

- input can exceed bounds, reference any byte in address space

* Ensure arrayl cached, but array1_size and array2 uncached
* Flush+reload attack on array2 now reveals array1 [input]

- CPU will likely predict branch taken (don’t usually overflow)

- Speculatively load from array2 before seeing array1_size

- Reloaded cache line reveals array1 [input]

42/44

https://spectreattack.com/spectre.pdf

Many more variants of Spectre

Attack on JavaScript JIT
- Malicious JavaScript reads secrets outside of JavaScript sandbox

eBPF compiles packet filters in kernel (e.g., for tcpdump)
- Can generate code to reveal arbitrary kernel memory
¢ Can even use victim code that’s not supposed to be executed

- Mistrain branch predictor on indirect branch

- Speculatively execute arbitrary “spectre gadget” in victim process

- Same cache impact even if gadget execution entirely squashed

- Has been used to leak host memory from inside virtual machine
Use other speculation channels

- E.g., CPU predicts that previous store does not conflict with a load

43/44

Mitigation

* Replace array bounds checks with index masking (used by
Chrome)

- return array2[arrayl[input&Oxffff] * 4096]
- Limits distance of bounds violation

* Place JavaScript sandbox in separate address space
* XOR pointers with type-dependent poison values (in JITs)
- Branch mispredictions on type checks XOR wrong values

* Make CPUs a bit better about leaking state through side
channels

¢ Insert “gratuitous” memory barriers to prevent speculation on
sensitive data

* Unfortunately general solution still an open problem

4444

	Unix protection
	Unix security holes
	Capability-based protection
	Microarchitectural attacks

