
CPU scheduling

CPU1

CPU2

...

CPUn

P1P2P3. . .Pk

• The scheduling problem:
- Have k jobs ready to run
- Have n ≥ 1 CPUs that can run them

• Which jobs should we assign to which CPU(s)?

1 / 45

Outline

1 Textbook scheduling

2 Priority scheduling

3 Advanced scheduling issues

4 Virtual time case studies

2 / 45

When do we schedule CPU?

new

ready running

terminated

waiting

admitted

interrupt

scheduler
dispatch exit

I/O or event
completion

I/O or event wait

• Scheduling decisions may take place when a process:
1. Switches from running to waiting state
2. Switches from running to ready state
3. Switches from new/waiting to ready
4. Exits

• Non-preemptive schedules use 1 & 4 only
• Preemptive schedulers run at all four points

3 / 45

Scheduling criteria

• Why do we care?
- What goals should we have for a scheduling algorithm?

• Throughput – # of processes that complete per unit time
- Higher is better

• Turnaround time – time for each process to complete
- Lower is better

• Response time – time from request to first response
- I.e., time between waiting→ready transition and ready→running

(e.g., key press to echo, not launch to exit)
- Lower is better

• Above criteria are affected by secondary criteria
- CPU utilization – fraction of time CPU doing productive work
- Waiting time – time each process waits in ready queue

4 / 45

Scheduling criteria

• Why do we care?
- What goals should we have for a scheduling algorithm?

• Throughput – # of processes that complete per unit time
- Higher is better

• Turnaround time – time for each process to complete
- Lower is better

• Response time – time from request to first response
- I.e., time between waiting→ready transition and ready→running

(e.g., key press to echo, not launch to exit)
- Lower is better

• Above criteria are affected by secondary criteria
- CPU utilization – fraction of time CPU doing productive work
- Waiting time – time each process waits in ready queue

4 / 45

Example: FCFS Scheduling

• Run jobs in order that they arrive
- Called “First-come first-served” (FCFS)
- E.g., Say P1 needs 24 sec, while P2 and P3 need 3.
- Say P2, P3 arrived immediately after P1, get:

P1 P2 P3

0 24 27 30

• Dirt simple to implement—how good is it?
• Throughput: 3 jobs / 30 sec = 0.1 jobs/sec
• Turnaround Time: P1 : 24, P2 : 27, P3 : 30

- Average TT: (24 + 27 + 30)/3 = 27
• Can we do better?

5 / 45

FCFS continued

• Suppose we scheduled P2, P3, then P1
- Would get:

P1P2 P3

0 3 6 30

• Throughput: 3 jobs / 30 sec = 0.1 jobs/sec
• Turnaround time: P1 : 30, P2 : 3, P3 : 6

- Average TT: (30 + 3 + 6)/3 = 13 – much less than 27
• Lesson: scheduling algorithm can reduce TT

- Minimizing waiting time can improve RT and TT
• Can a scheduling algorithm improve throughput?

- Yes, if jobs require both computation and I/O

6 / 45

FCFS continued

• Suppose we scheduled P2, P3, then P1
- Would get:

P1P2 P3

0 3 6 30

• Throughput: 3 jobs / 30 sec = 0.1 jobs/sec
• Turnaround time: P1 : 30, P2 : 3, P3 : 6

- Average TT: (30 + 3 + 6)/3 = 13 – much less than 27
• Lesson: scheduling algorithm can reduce TT

- Minimizing waiting time can improve RT and TT
• Can a scheduling algorithm improve throughput?

- Yes, if jobs require both computation and I/O

6 / 45

View CPU and I/O devices the same

• CPU is one of several devices needed by users’ jobs
- CPU runs compute jobs, Disk drive runs disk jobs, etc.
- With network, part of job may run on remote CPU

• Scheduling 1-CPU system with n I/O devices like scheduling
asymmetric (n + 1)-CPU multiprocessor

- Result: all I/O devices + CPU busy =⇒ (n + 1)-fold throughput gain!
• Example: disk-bound grep + CPU-bound matrix multiply

- Overlap them just right? throughput will be almost doubled
wait for

disk
wait for

disk
wait for

diskgrep

matrix
multiply

wait for CPU

7 / 45

Bursts of computation & I/O

• Jobs contain I/O and computation
- Bursts of computation
- Then must wait for I/O

• To maximize throughput, maximize
both CPU and I/O device utilization
• How to do?

- Overlap computation from one job
with I/O from other jobs

- Means response time very important
for I/O-intensive jobs: I/O device will
be idle until job gets small amount of
CPU to issue next I/O request

8 / 45

Histogram of CPU-burst times

• What does this mean for FCFS?
9 / 45

FCFS Convoy effect

• CPU-bound jobs will hold CPU until exit or I/O
(but I/O rare for CPU-bound thread)

- Long periods where no I/O requests issued, and CPU held
- Result: poor I/O device utilization

• Example: one CPU-bound job, many I/O bound
- CPU-bound job runs (I/O devices idle)
- Eventually, CPU-bound job blocks
- I/O-bound jobs run, but each quickly blocks on I/O
- CPU-bound job unblocks, runs again
- All I/O requests complete, but CPU-bound job still hogs CPU
- I/O devices sit idle since I/O-bound jobs can’t issue next requests

• Simple hack: run process whose I/O completed
- What is a potential problem?

I/O-bound jobs can starve CPU-bound one

10 / 45

FCFS Convoy effect

• CPU-bound jobs will hold CPU until exit or I/O
(but I/O rare for CPU-bound thread)

- Long periods where no I/O requests issued, and CPU held
- Result: poor I/O device utilization

• Example: one CPU-bound job, many I/O bound
- CPU-bound job runs (I/O devices idle)
- Eventually, CPU-bound job blocks
- I/O-bound jobs run, but each quickly blocks on I/O
- CPU-bound job unblocks, runs again
- All I/O requests complete, but CPU-bound job still hogs CPU
- I/O devices sit idle since I/O-bound jobs can’t issue next requests

• Simple hack: run process whose I/O completed
- What is a potential problem?

I/O-bound jobs can starve CPU-bound one
10 / 45

SJF Scheduling

• Shortest-job first (SJF) attempts to minimize TT
- Schedule the job whose next CPU burst is the shortest
- Misnomer unless “job” = one CPU burst with no I/O

• Two schemes:
- Non-preemptive – once CPU given to the process it cannot be

preempted until completes its CPU burst
- Preemptive – if a new process arrives with CPU burst length less

than remaining time of current executing process, preempt
(Known as the Shortest-Remaining-Time-First or SRTF)

• What does SJF optimize?

- Gives minimum average waiting time for a given set of processes

11 / 45

SJF Scheduling

• Shortest-job first (SJF) attempts to minimize TT
- Schedule the job whose next CPU burst is the shortest
- Misnomer unless “job” = one CPU burst with no I/O

• Two schemes:
- Non-preemptive – once CPU given to the process it cannot be

preempted until completes its CPU burst
- Preemptive – if a new process arrives with CPU burst length less

than remaining time of current executing process, preempt
(Known as the Shortest-Remaining-Time-First or SRTF)

• What does SJF optimize?
- Gives minimum average waiting time for a given set of processes

11 / 45

Examples

Process Arrival Time Burst Time
P1 0 7
P2 2 4
P3 4 1
P4 5 4

• Non-preemptive
P1 P3 P2 P4

0 7 8 12 16
• Preemptive

P1 P2 P3 P2 P4 P1

0 2 4 5 7 11 16
• Drawbacks?

12 / 45

SJF limitations

• Doesn’t always minimize average TT
- Only minimizes waiting time
- Example where turnaround time might be suboptimal?

- Overall longer job has shorter bursts

• Can lead to unfairness or starvation
• In practice, can’t actually predict the future
• But can estimate CPU burst length based on past

- Exponentially weighted average a good idea
- tn actual length of process’s nth CPU burst
- τn+1 estimated length of proc’s (n + 1)st

- Choose parameter α where 0 < α ≤ 1
- Let τn+1 = αtn + (1− α)τn

13 / 45

SJF limitations

• Doesn’t always minimize average TT
- Only minimizes waiting time
- Example where turnaround time might be suboptimal?
- Overall longer job has shorter bursts

• Can lead to unfairness or starvation
• In practice, can’t actually predict the future
• But can estimate CPU burst length based on past

- Exponentially weighted average a good idea
- tn actual length of process’s nth CPU burst
- τn+1 estimated length of proc’s (n + 1)st

- Choose parameter α where 0 < α ≤ 1
- Let τn+1 = αtn + (1− α)τn

13 / 45

Exp. weighted average example

14 / 45

Round robin (RR) scheduling

P1 P2 P3 P1 P2 P1

• Solution to fairness and starvation
- Preempt job after some time slice or quantum
- When preempted, move to back of FIFO queue
- (Most systems do some flavor of this)

• Advantages:
- Fair allocation of CPU across jobs
- Low average waiting time when job lengths vary
- Good for responsiveness if small number of jobs

• Disadvantages?

15 / 45

RR disadvantages

• Varying sized jobs are good . . . what about same-sized jobs?
• Assume 2 jobs of time=100 each:

0 1

P1 P2

2 3

P1 P2

4 5

P1 P2

6 198 199 200

P1 P2· · ·

• Even if context switches were free. . .
- What would average turnaround time be with RR?

199.5

- How does that compare to FCFS?

150

16 / 45

RR disadvantages

• Varying sized jobs are good .. . what about same-sized jobs?
• Assume 2 jobs of time=100 each:

0 1

P1 P2

2 3

P1 P2

4 5

P1 P2

6 198 199 200

P1 P2· · ·

• Even if context switches were free. . .
- What would average turnaround time be with RR? 199.5
- How does that compare to FCFS? 150

16 / 45

Context switch costs

• What is the cost of a context switch?

• Brute CPU time cost in kernel
- Save and restore resisters, etc.
- Switch address spaces (expensive instructions)

• Indirect costs: cache, buffer cache, & TLB misses

CPU cache

P1

CPU cache

P2

17 / 45

Context switch costs

• What is the cost of a context switch?
• Brute CPU time cost in kernel

- Save and restore resisters, etc.
- Switch address spaces (expensive instructions)

• Indirect costs: cache, buffer cache, & TLB misses

CPU cache

P1

CPU cache

P2

17 / 45

Context switch costs

• What is the cost of a context switch?
• Brute CPU time cost in kernel

- Save and restore resisters, etc.
- Switch address spaces (expensive instructions)

• Indirect costs: cache, buffer cache, & TLB misses

CPU cache

P1

CPU cache

P2

CPU cache

P1

17 / 45

Time quantum

• How to pick quantum?
- Want much larger than context switch cost
- Majority of bursts should be less than quantum
- But not so large system reverts to FCFS

• Typical values: 1–100 msec
18 / 45

Turnaround time vs. quantum

19 / 45

Two-level scheduling

• Under memory constraints, may need to swap process to disk
• Switching to swapped out process very expensive

- Swapped out process has most memory pages on disk
- Will have to fault them all in while running
- One disk access costs∼10ms. On 1GHz machine, 10ms = 10 million

cycles!
• Solution: Context-switch-cost aware scheduling

- Run in-core subset for “a while”
- Then swap some between disk and memory

• How to pick subset? How to define “a while”?
- View as scheduling memory before scheduling CPU
- Swapping in process is cost of memory “context switch”
- So want “memory quantum” much larger than swapping cost

20 / 45

Outline

1 Textbook scheduling

2 Priority scheduling

3 Advanced scheduling issues

4 Virtual time case studies

21 / 45

Priority scheduling

• Associate a numeric priority with each process
- E.g., smaller number means higher priority (Unix/BSD)
- Or smaller number means lower priority (Pintos)

• Give CPU to the process with highest priority
- Can be done preemptively or non-preemptively

• Note SJF is priority scheduling where priority is the predicted
next CPU burst time
• Starvation – low priority processes may never execute
• Solution?

- Aging: increase a process’s priority as it waits

22 / 45

Priority scheduling

• Associate a numeric priority with each process
- E.g., smaller number means higher priority (Unix/BSD)
- Or smaller number means lower priority (Pintos)

• Give CPU to the process with highest priority
- Can be done preemptively or non-preemptively

• Note SJF is priority scheduling where priority is the predicted
next CPU burst time
• Starvation – low priority processes may never execute
• Solution?

- Aging: increase a process’s priority as it waits

22 / 45

Multilevel feeedback queues (BSD)

0 . . .3

4 . . .7

8 . . .11

...

124 . . .127

tail

tail

tail

tail

• Every runnable process on one of 32 run queues
- Kernel runs process on highest-priority non-empty queue
- Round-robins among processes on same queue

• Process priorities dynamically computed
- Processes moved between queues to reflect priority changes
- If a process gets higher priority than running process, run it

• Idea: Favor interactive jobs that use less CPU
23 / 45

Process priority

• p_nice – user-settable weighting factor
• p_estcpu – per-process estimated CPU usage

- Incremented whenever timer interrupt found process running
- Decayed every second while process runnable

p_estcpu←
(2 · load

2 · load + 1

)
p_estcpu+ p_nice

- Load is sampled average of length of run queue plus short-term
sleep queue over last minute

• Run queue determined by p_usrpri/4

p_usrpri← 50 +
(p_estcpu

4
)
+ 2 · p_nice

(value clipped if over 127)
24 / 45

Sleeping process increases priority

• p_estcpu not updated while asleep
- Instead p_slptime keeps count of sleep time

• When process becomes runnable

p_estcpu←
(2 · load

2 · load + 1

)p_slptime
× p_estcpu

- Approximates decay ignoring nice and past loads
• Previous description based on [McKusick]1 (The Design and

Implementation of the 4.4BSD Operating System)

1See library.stanford.edu for off-campus access
25 / 45

Pintos notes

• Same basic idea for second half of project 1
- But 64 priorities, not 128
- Higher numbers mean higher priority
- Okay to have only one run queue if you prefer

(less efficient, but we won’t deduct points for it)
• Have to negate priority equation:

priority = 63−
(recent_cpu

4
)
− 2 · nice

26 / 45

Thread scheduling

• With thread library, have two scheduling decisions:
- Local Scheduling – User-level thread library decides which user

(green) thread to put onto an available native (i.e., kernel) thread
- Global Scheduling – Kernel decides which native thread to run next

• Can expose to the user
- E.g., pthread_attr_setscope allows two choices
- PTHREAD_SCOPE_SYSTEM – thread scheduled like a process

(effectively one native thread bound to user thread – Will return
ENOTSUP in user-level pthreads implementation)

- PTHREAD_SCOPE_PROCESS – thread scheduled within the current
process (may have multiple user threads multiplexed onto kernel
threads)

27 / 45

Thread dependencies

• Say H at high priority, L at low priority
- L acquires lock ℓ.
- Scenario 1 (ℓ a spinlock): H tries to acquire ℓ, fails, spins. L never

gets to run.
- Scenario 2 (ℓ a mutex): H tries to acquire ℓ, fails, blocks. M enters

system at medium priority. L never gets to run.
- Both scenes are examples of priority inversion

• Scheduling = deciding who should make progress
- A thread’s importance should increase with the importance of

those that depend on it
- Naïve priority schemes violate this

28 / 45

Priority donation

• Say higher number = higher priority (like Pintos)
• Example 1: L (prio 2), M (prio 4), H (prio 8)

- L holds lock ℓ

- M waits on ℓ, L’s priority raised to L1 = max(M, L) = 4
- Then H waits on ℓ, L’s priority raised to max(H, L1) = 8

• Example 2: Same L,M,H as above
- L holds lock ℓ1, M holds lock ℓ2
- M waits on ℓ1, L’s priority now L1 = 4 (as before)
- Then H waits on ℓ2. M’s priority goes to M1 = max(H,M) = 8, and L’s

priority raised to max(M1, L1) = 8
• Example 3: L (prio 2), M1, . . .M1000 (all prio 4)

- L has ℓ, and M1, . . . ,M1000 all block on ℓ. L’s priority is
max(L,M1, . . . ,M1000) = 4.

29 / 45

Outline

1 Textbook scheduling

2 Priority scheduling

3 Advanced scheduling issues

4 Virtual time case studies

30 / 45

Multiprocessor scheduling issues
• Must decide on more than which processes to run

- Must decide on which CPU to run which process
• Moving between CPUs has costs

- More cache misses, depending on arch. more TLB misses too
• Affinity scheduling—try to keep process/thread on same CPU

CPU1

P2

P3

P1

P2

CPU2

P3

P1

P2

P3

CPU3

P1

P2

P3

P1

no affinity

CPU1

P1

P1

P1

P1

CPU2

P2

P2

P2

P2

CPU3

P3

P3

P3

P3

affinity
- But also prevent load imbalances
- Do cost-benefit analysis when deciding to migrate. . .

affinity can also be harmful, when tail latency is critical
31 / 45

Multiprocessor scheduling (cont)

• Want related processes/threads scheduled together
- Good if threads access same resources (e.g., cached files)
- Even more important if threads communicate often,

otherwise must context switch to communicate
• Gang scheduling—schedule all CPUs synchronously

- With synchronized quanta, easier to schedule related
processes/threads together

CPU1

P1,1

P2,1

P3,1

P4,1

CPU2

P1,2

P2,2

P3,2

P4,2

CPU3

P1,3

P2,3

P3,3

P4,3

CPU4

P1,4

P2,4

P3,4

P4,4

32 / 45

Real-time scheduling

• Two categories:
- Soft real time—miss deadline and audio playback will sound funny
- Hard real time—miss deadline and plane will crash

• System must handle periodic and aperiodic events
- E.g., processes A, B, C must be scheduled every 100, 200, 500 msec,

require 50, 30, 100 msec respectively

- Schedulable if
∑ CPU

period ≤ 1 (not counting switch time)

• Variety of scheduling strategies
- E.g., first deadline first

(works if schedulable, otherwise fails spectacularly)

33 / 45

Outline

1 Textbook scheduling

2 Priority scheduling

3 Advanced scheduling issues

4 Virtual time case studies

34 / 45

Scheduling with virtual time

• Many modern schedulers employ notion of virtual time
- Idea: Equalize virtual CPU time consumed by different processes
- Higher-priority processes consume virtual time more slowly

• Forms the basis of the current linux scheduler, CFS
• Case study: Borrowed Virtual Time (BVT) [Duda]
• BVT runs process with lowest effective virtual time

- Ai – actual virtual time consumed by process i
- effective virtual time Ei = Ai − (warpi ? Wi : 0)
- Special warp factor allows borrowing against future CPU time

. . .hence name of algorithm

35 / 45

Process weights

• Each process i’s faction of CPU determined by weight wi
- i should get wi/

∑
j

wj faction of CPU

- So wi is real seconds per virtual second that process i has CPU
• When i consumes t CPU time, track it: Ai += t/wi

• Example: gcc (weight 2), bigsim (weight 1)
- Assuming no IO, runs: gcc, gcc, bigsim, gcc, gcc, bigsim, . . .
- Lots of context switches, not so good for performance

• Add in context switch allowance, C
- Only switch from i to j if Ej ≤ Ei − C/wi
- C is wall-clock time (>> context switch cost), so must divide by wi
- Ignore C if j just became runable. . .why?

36 / 45

Process weights

• Each process i’s faction of CPU determined by weight wi
- i should get wi/

∑
j

wj faction of CPU

- So wi is real seconds per virtual second that process i has CPU
• When i consumes t CPU time, track it: Ai += t/wi

• Example: gcc (weight 2), bigsim (weight 1)
- Assuming no IO, runs: gcc, gcc, bigsim, gcc, gcc, bigsim, . . .
- Lots of context switches, not so good for performance

• Add in context switch allowance, C
- Only switch from i to j if Ej ≤ Ei − C/wi
- C is wall-clock time (>> context switch cost), so must divide by wi
- Ignore C if j just became runable to avoid affecting response time

36 / 45

BVT example

0

20

40

real time

v
ir
tu

a
l
ti
m

e

60

80

100

120

140

160

180

0 3 6 9 12 15 18 21 24 27

bigsim
gcc

• gcc has weight 2, bigsim weight 1, C = 2, no I/O
- bigsim consumes virtual time at twice the rate of gcc
- Processes run for C time after lines cross before context switch

37 / 45

Sleep/wakeup

• Must lower priority (increase Ai) after wakeup
- Otherwise process with very low Ai would starve everyone

• Bound lag with Scheduler Virtual Time (SVT)
- SVT is minimum Aj for all runnable threads j
- When waking i from voluntary sleep, set Ai ← max(Ai,SVT)

• Note voluntary/involuntary sleep distinction
- E.g., Don’t reset Aj to SVT after page fault
- Faulting thread needs a chance to catch up
- But do set Ai ← max(Ai,SVT) after socket read

• Note: Even with SVT Ai can never decrease
- After short sleep, might have Ai > SVT, so max(Ai,SVT) = Ai
- i never gets more than its fair share of CPU in long run

38 / 45

gcc wakes up after I/O

0

50

100

150

200

250

300

350

400

0 15 30

gcc
bigsim

• gcc’s Ai gets reset to SVT on wakeup
- Otherwise, would be at lower (blue) line and starve bigsim

39 / 45

Real-time threads

• Also want to support time-critical tasks
- E.g., mpeg player must run every 10 clock ticks

• Recall Ei = Ai − (warpi ? Wi : 0)
- Wi is warp factor – gives thread precedence
- Just give mpeg player i large Wi factor
- Will get CPU whenever it is runable
- But long term CPU share won’t exceed wi/

∑
j

wj

• Note Wi only matters when warpi is true
- Can set warpi with a syscall, or have it set in signal handler
- Also gets cleared if i keeps using CPU for Li time
- Li limit gets reset every Ui time
- Li = 0 means no limit – okay for small Wi value

40 / 45

Running warped

−60

−40

−20

0

20

40

60

80

100

120

0 5 10 15 20 25

mpeg
bigsim

gcc

• mpeg player runs with−50 warp value
- Always gets CPU when needed, never misses a frame

41 / 45

Warped thread hogging CPU

−60

−40

−20

0

20

40

60

80

100

120

0 5 10 15 20 25

gcc
bigsim
mpeg

• mpeg goes into tight loop at time 5
• Exceeds Li at time 10, so warpi ← false

42 / 45

BVT example: Search engine

• Common queries 150 times faster than uncommon
- Have 10-thread pool of threads to handle requests
- Assign Wi value sufficient to process fast query (say 50)

• Say 1 slow query, small trickle of fast queries
- Fast queries come in, warped by 50, execute immediately
- Slow query runs in background
- Good for turnaround time

• Say 1 slow query, but many fast queries
- At first, only fast queries run
- But SVT is bounded by Ai of slow query thread i
- Recall fast query thread j gets Aj = max(Aj,SVT) = Aj; eventually

SVT < Aj and a bit later Aj −Wj > Ai.
- At that point thread i will run again, so no starvation

43 / 45

Case study: SMART

• Key idea: Separate importance from urgency
- Figure out which processes are important enough to run
- Run whichever of these is most urgent

• Importance = ⟨priority,BVFT⟩ value tuple
- priority – parameter set by user or administrator (higher is better)

▷ Takes absolute priority over BVFT
- BVFT – Biased Virtual Finishing Time (lower is better)

▷ virtual time consumed + virtual length of next CPU burst
▷ I.e., virtual time at which quantum would end if process scheduled

now
▷ Bias is like negative warp, see paper for details

• Urgency = next deadline (sooner is more urgent)

44 / 45

SMART algorithm

• If most important ready task (ready task with best value tuple)
is conventional (not real-time), run it
• Consider all real-time tasks with better value tuples than the

best ready conventional task
• For each such real-time task, starting from the best

value-tuple
- Can you run it without missing deadlines of more important tasks?
- If so, add to schedulable set

• Run task with earliest deadline in schedulable set
• Send signal to tasks that won’t meet their deadlines

45 / 45

