CPU;
@ Textbook scheduling
P .. Ps P, P CPU,
@ Priority scheduling
CPU,

© Advanced scheduling issues
* The scheduling problem:

- Have k jobs ready to run
- Have n > 1 CPUs that can run them

e Which jobs should we assign to which CPU(s)?

@ Virtual time case studies

1/45 2/45

When do we schedule CPU? Scheduling criteria
o\ad’mitted Séigf)g?clﬁr i terminated ° Why do we care?
- What goals should we have for a scheduling algorithm?

ready running

1/0 or event interrupt

1/0 or event wait
completion

¢ Scheduling decisions may take place when a process:
1. Switches from running to waiting state
2. Switches from running to ready state
3. Switches from new/waiting to ready
4. Exits

* Non-preemptive schedules use 1 & 4 only
* Preemptive schedulers run at all four points

3/45 4/45

Scheduling criteria Example: FCFS Scheduling

* Why do we care?

* Run jobs in order that they arrive
- Called “First-come first-served” (FCFS)
- E.g., Say P; needs 24 sec, while P, and P; need 3.

- What goals should we have for a scheduling algorithm?

Throughput - # of processes that complete per unit time

- Higher is better - Say Py, P; arrived immediately after P, get:
e Turnaround time - time for each process to complete P, P, li
- Lower is better

0 24 27 30

Response time - time from request to first response
- l.e., time between waiting—ready transition and ready— running ¢ Dirt simple to implement—how good is it?
(e.g., key press to echo, not launch to exit) « Throughput: 3 jobs / 30 sec = 0.1 jobs/sec
- Lower is better .
e Turnaround Time: Py : 24,P, : 27, P3 : 30
- Average TT: (24 + 27 + 30)/3 = 27
e Can we do better?

Above criteria are affected by secondary criteria

- CPU utilization - fraction of time CPU doing productive work
- Waiting time - time each process waits in ready queue

4/45 5/45

FCFS continued FCFS continued

* Suppose we scheduled P,, P;, then P;

- Would get:

-

Py

0 3 6

e Throughput: 3 jobs /30 sec =0.1 jobs/sec

e Turnaround time: P; : 30, P, : 3,

- Average TT: (30 +3+6)/3 =13

P326

- much less than 27

® Lesson: scheduling algorithm can reduce TT
- Minimizing waiting time can improve RT and TT
e Can a scheduling algorithm improve throughput?

View CPU and I/O devices the same Bursts of computation & 1/0

* CPU is one of several devices needed by users’ jobs
- CPU runs compute jobs, Disk drive runs disk jobs, etc.

- With network, part of job may run on remote CPU

* Scheduling 1-CPU system with n 1/0 devices like scheduling

asymmetric (n + 1)-CPU multiprocessor

- Result: all 1/0 devices + CPU busy = (n + 1)-fold throughput gain!
* Example: disk-bound grep + CPU-bound matrix multiply
- Overlap them just right? throughput will be almost doubled

30

wait for wait for wait for
TP | gisk disk disk H
iiply NI
multiply
1
wait for CPU

Histogram of CPU-burst times FCFS Convoy effect

frequency

60

@
o
et
e
I ey

40 \
20

0 8 16

24 32

burst duration (milliseconds)

¢ What does this mean for FCFS?

40

* Suppose we scheduled P,, P;, then P;

- Would get:

: :

0 3 6

e Throughput: 3 jobs /30 sec = 0.1 jobs/sec

e Turnaround time: P, : 30,P, : 3,P3: 6

- Average TT: (30 + 3 4+ 6)/3 = 13 - much less than 27
e Lesson: scheduling algorithm can reduce TT
- Minimizing waiting time can improve RT and TT
e Can a scheduling algorithm improve throughput?
- Yes, if jobs require both computation and 1/0

6/45

* Jobs contain I/O and computation

- Bursts of computation
- Then must wait for /0

* To maximize throughput, maximize
both CPU and I/0O device utilization
* How to do?

- Overlap computation from one job
with I/O from other jobs

- Means response time very important
for I/O-intensive jobs: /O device will
be idle until job gets small amount of
CPU to issue next /O request

7/45

load store
add store
read from file

wait for I/O

store increment
index
write to file

wait for I/O

load store
add store
read from file

wait for I/O

e CPU-bound jobs will hold CPU until exit or I/O

(but 1/0 rare for CPU-bound thread)

30

6/45

CPU burst

1/0 burst

CPU burst

1/0 burst

CPU burst

1/0 burst

8/45

- Long periods where no I/0 requests issued, and CPU held

- Result: poor I/0 device utilization

* Example: one CPU-bound job, many 1/O bound

- CPU-bound job runs (I/O devices idle)

- Eventually, CPU-bound job blocks

- 1/0-bound jobs run, but each quickly blocks on 1/0O

- CPU-bound job unblocks, runs again

- All1/0 requests complete, but CPU-bound job still hogs CPU
- 1/0 devices it idle since I/0-bound jobs can’t issue next requests

¢ Simple hack: run process whose 1/0 completed

- What is a potential problem?

9/45

10/45

FCFS Convoy effect SJF Scheduling

* CPU-bound jobs will hold CPU until exit or I/O
(but 1/0 rare for CPU-bound thread)

Long periods where no I/0 requests issued, and CPU held
Result: poor I/0 device utilization

* Example: one CPU-bound job, many 1/O bound

CPU-bound job runs (1/0 devices idle)

Eventually, CPU-bound job blocks

1/0-bound jobs run, but each quickly blocks on 1/0
CPU-bound job unblocks, runs again

All1/0 requests complete, but CPU-bound job still hogs CPU

1/0 devices sit idle since I/0-bound jobs can’t issue next requests

¢ Simple hack: run process whose 1/0 completed

What is a potential problem?
1/0-bound jobs can starve CPU-bound one

o Shortest-job first (SJF) attempts to minimize TT

Schedule the job whose next CPU burst is the shortest
Misnomer unless “job” = one CPU burst with no I/0

* Two schemes:

- Non-preemptive - once CPU given to the process it cannot be

- Preemptive - if a new process arrives with CPU burst length less

preempted until completes its CPU burst

than remaining time of current executing process, preempt
(Known as the Shortest-Remaining-Time-First or SRTF)

* What does SJF optimize?
- Gives minimum average waiting time for a given set of processes

SJF limitations SJF limitations

* Doesn’t always minimize average TT

Only minimizes waiting time
Example where turnaround time might be suboptimal?

¢ Can lead to unfairness or starvation

¢ In practice, can’t actually predict the future

* But can estimate CPU burst length based on past

Exponentially weighted average a good idea
t, actual length of process’s nth CPU burst
Tny1 €stimated length of proc’s (n + 1)t
Choose parameter a where0 < o <1

Let i =ath +(1—a)m

10/45

11/45

13/45

o Shortest-job first (SJF) attempts to minimize TT
- Schedule the job whose next CPU burst is the shortest
- Misnomer unless “job” = one CPU burst with no 1/0

* Two schemes:

- Non-preemptive - once CPU given to the process it cannot be
preempted until completes its CPU burst

- Preemptive - if a new process arrives with CPU burst length less
than remaining time of current executing process, preempt
(Known as the Shortest-Remaining-Time-First or SRTF)

* What does SJF optimize?

11/45

Process Arrival Time Burst Time

P 0 7
P, 2 4
Ps 4 1
Py 5 4

() I I I I .7 i; I I I 1:2 I I I 1(5
* Preemptive
l’l IDZ I>4 ’Jl
0 | 2 | 4 5 7 S 11 L 16

* Drawbacks?
12/45

* Doesn’t always minimize average TT
- Only minimizes waiting time
- Example where turnaround time might be suboptimal?
- Overall longer job has shorter bursts

¢ Can lead to unfairness or starvation

* In practice, can’t actually predict the future

¢ But can estimate CPU burst length based on past
- Exponentially weighted average a good idea
- t, actual length of process’s nt" CPU burst
- 7ny1 estimated length of proc’s (n + 1)t
- Choose parameter a where 0 < o < 1
- Letmu=ath+(1—a)m

13/45

Exp. weighted average example Round robin (RR) scheduling

12 — |P1‘P2iP1‘P2| P1 |
L~
w10] . . .
7 Solution to fairness and starvation
8 / - Preempt job after some time slice or quantum
- / - When preempted, move to back of FIFO queue
d - (Most systems do some flavor of this)
4
¢ Advantages:
2 - Fair allocation of CPU across jobs
- Low average waiting time when job lengths vary
time ——> - Good for responsiveness if small number of jobs
CPU burst () 6 4 6 4 13 13 13 ¢ Disadvantages?
"guess” (t) 10 8 6 6 5 9 1 12

* Varying sized jobs are good ...what about same-sized jobs?

e Assume 2 jobs of time=100 each:

P1| P2

P1

Py

P1

Py

P1

P>

0 1

e Even if context switches were free...
- What would average turnaround time be with RR?

2

3

4

5

- How does that compare to FCFS?

Context switch costs Context switch costs

* What is the cost of a context switch?

198 199 200

14/45 15/45

e Varying sized jobs are good ...what about same-sized jobs?

e Assume 2 jobs of time=100 each:

Pr| Py |P1|Py|P1|P;

Py | P2

198 199 200

0 1 2 3 4 5 6

¢ Even if context switches were free...

- What would average turnaround time be with RR? 199.5
- How does that compare to FCFS? 150

16/45 16/45

* What is the cost of a context switch?

e Brute CPU time cost in kernel

- Save and restore resisters, etc.
- Switch address spaces (expensive instructions)

¢ Indirect costs: cache, buffer cache, & TLB misses

P1 P>
EEEEEEE EEEEEEE
EEEEEEE EEEEEEE
EEEEEEN|— DNEEEEE
DEEEEEE IEEEEEE
EEEEEEm IEEEEEm

CPU cache CPU cache

17/45 17/45

* What is the cost of a context switch?

e Brute CPU time cost in kernel

- Save and restore resisters, etc.
- Switch address spaces (expensive instructions)

* Indirect costs: cache, buffer cache, & TLB misses

P1 P> P1

CPU cache CPU cache

Turnaround time vs. quantum Two-level scheduling

CPU cache

process | time
12.5 P, 6
12.0 A P, 3
. \ Py 1
£ 115 Py 7
§ 11.0 \
3 \'%
g 105
2
& 10.0
o
g 95
9.0

1 2 3 4 5 6 7
time quantum

L outine priority scheduling

Associate a numeric priority with each process

@ Textbook scheduling
@ Priority scheduling
© Advanced scheduling issues

@ Virtual time case studies

17/45

19/45

21/45

process time = 10 quantum context

switches

| e 0
0 10

| I i
0 6 10

ENENNEEENN 9
0 1 2 3 4 5 6 7 8 9 10

* How to pick quantum?

- Want much larger than context switch cost
- Majority of bursts should be less than quantum
- But not so large system reverts to FCFS

e Typical values: 1-100 msec

18/45

* Under memory constraints, may need to swap process to disk

e Switching to swapped out process very expensive

- Swapped out process has most memory pages on disk
- Will have to fault them all in while running

- One disk access costs ~10ms. On 1GHz machine, 10ms = 10 million
cycles!

¢ Solution: Context-switch-cost aware scheduling

- Runin-core subset for “a while”
- Then swap some between disk and memory

* How to pick subset? How to define “a while”?

- View as scheduling memory before scheduling CPU
- Swapping in process is cost of memory “context switch”
- So want “memory quantum” much larger than swapping cost

20/45

- E.g., smaller number means higher priority (Unix/BSD)
- Or smaller number means lower priority (Pintos)

Give CPU to the process with highest priority

- Can be done preemptively or non-preemptively

Note SJF is priority scheduling where priority is the predicted
next CPU burst time

Starvation - low priority processes may never execute
Solution?

22/45

Priority scheduling Multilevel feeedback queues (BSD)
0...3

— tail

* Associate a numeric priority with each process ol 4t P — > tail
- E.g., smaller number means higher priority (Unix/BSD) ," 8,11 S — I — I — I —— tail

- Or smaller number means lower priority (Pintos)

* Give CPU to the process with highest priority
- Can be done preemptively or non-preemptively

]
[
[
1
1
1
1
1

124...127 —Il—— I — tail

* Note SJF is priority scheduling where priority is the predicted
next CPU burst time 0 Every runnable process o.n one of 32. run queues
i L. = -- Kernel runs process on highest-priority non-empty queue
e Starvation - low priority processes may never execute - Round-robins among processes on same queue
* Solution? ® Process priorities dynamically computed
- Aging: increase a process’s priority as it waits - Processes moved between queues to reflect priority changes
- If a process gets higher priority than running process, run it

¢ ldea: Favor interactive jobs that use less CPU
23/45

22/45

Process priority Sleeping process increases priority

® p_nice - user-settable weighting factor

® p_estcpu - per-process estimated CPU usage
- Incremented whenever timer interrupt found process running
- Decayed every second while process runnable

® p_estcpu not updated while asleep
- Instead p_slptime keeps count of sleep time

* When process becomes runnable

2 - load 1ptime
- 2-load \P-*P
prestepn ¢ (7 oy poosiom + pice posiepn (s ayy) s

- Load is sampled average of length of run queue plus short-term

sleep queue over last minute - Approximates decay ignoring nice and past loads

* Previous description based on [McKusick]! (The Design and

* Run queue determined by p_usrpri/4
osteou Implementation of the 4.4BSD Operating System)
p_usrpri « 50 + (%) +2-p_nice
(value clipped if over 127) —
See library.stanford.edu for off-campus access
25/45

24/45

e With thread library, have two scheduling decisions:

* Same basic idea for second half of project 1 - Local Scheduling - User-level thread library decides which user
(green) thread to put onto an available native (i.e., kernel) thread

- But 64 priorities, not 128
- Higher numbers mean higher priority - Global Scheduling - Kernel decides which native thread to run next
- Okay to have only one run queue if you prefer

e Can expose to the user

(less efficient, but we won’t deduct points for it) - E.g., pthread_attr_setscope allows two choices
* Have to negate priority equation: - PTHREAD_SCOPE_SYSTEM - thread scheduled like a process
(effectively one native thread bound to user thread - Will return

ENOTSUP in user-level pthreads implementation)
- PTHREAD_SCOPE_PROCESS - thread scheduled within the current
process (may have multiple user threads multiplexed onto kernel

threads)

t
priority = 63 — (M) — 2 -nice

26/45 27/45

Thread dependencies Priority donation

* Say higher number = higher priority (like Pintos)

* Say H at high priority, L at low priority » Example 1: L (prio 2), M (prio 4), H (prio 8)
- Lacquires lock ¢. - L holds lock ¢
- Scenario 1 (¢ a spinlock): H tries to acquire ¢, fails, spins. L never - Mwaitson ¢, L’s priority raised to L; = max(M,L) = 4
getstorun. - Then H waits on ¢, L’s priority raised to max(H,L;) = 8
- Scenario 2 (¢ a mutex): H tries to acquire ¢, fails, blocks. M enters
system at medium priority. L never gets to run. * Example 2: Same L, M, H as above
- Both scenes are examples of priority inversion - L holds lock ¢, M holds lock ¢,

- Mwaits on ¢;, L’s priority now L; = 4 (as before)
- Then H waits on /5. M’s priority goes to M; = max(H,M) = 8,and L’s
priority raised to max(M;,L;) = 8

* Scheduling = deciding who should make progress

- Athread’s importance should increase with the importance of
those that depend on it

- Naive priority schemes violate this * Example 3: L (prio 2), My, ... Miggo (all prio 4)

- Lhas¢,and My, ..., Mg all block on ¢. L’s priority is
max(L, Ml, “es 7M1000) =4,

28/45 29/45

* Must decide on more than which processes to run
- Must decide on which CPU to run which process
* Moving between CPUs has costs
- More cache misses, depending on arch. more TLB misses too
o Affinity scheduling—try to keep process/thread on same CPU

@ Textbook scheduling

@ Priority scheduling

.

'
Py Py ! Py Py

P P2 o Py P2 [P
. . L]

©® Advanced scheduling issues [P Py P, . Py P, [P
1

2} _ Py ' Py Py _
'

cPU, CPU, CPU; ! cPU; CPU, CPU;
@ Virtual time case studies '

no affinity ' affinity

- But also prevent load imbalances

- Do cost-benefit analysis when deciding to migrate...
affinity can also be harmful, when tail latency is critical
30/45 31/45

Multiprocessor scheduling (cont) Real-time scheduling

* Want related processes/threads scheduled together
- Good if threads access same resources (e.g., cached files)

e Two categories:

- Even more important if threads communicate often, - Soft real time—miss deadline and audio playback will sound funny
otherwise must context switch to communicate - Hard real time—miss deadline and plane will crash
* Gang scheduling—schedule all CPUs synchronously e System must handle periodic and aperiodic events
- With synchronized quanta, easier to schedule related - E.g., processes A, B, C must be scheduled every 100, 200, 500 msec,
processes/threads together require 50, 30, 100 msec respectively
P4y , ; ,4 - Schedulable if Z % < 1(not counting switch time)
sz,l -Pu -Pm [Pos] e Variety of scheduling strategies
= B B B - E.g., first deadline first
L L2 & L (works if schedulable, otherwise fails spectacularly)
CPU,; CPU, CPU3 CPU,

32/45 33/45

* Many modern schedulers employ notion of virtual time

€ Textbook scheduling - ldea: Equalize virtual CPU time consumed by different processes
- Higher-priority processes consume virtual time more slowly

Forms the basis of the current linux scheduler, CFS
Case study: Borrowed Virtual Time (BVT) [Duda]

BVT runs process with lowest effective virtual time

- A; - actual virtual time consumed by process

- effective virtual time E; = A; — (warp; 7 W; : 0)

- Special warp factor allows borrowing against future CPU time
...hence name of algorithm

@ Priority scheduling

© Advanced scheduling issues

@ Virtual time case studies

34/45 35/45
Process weights Process weights
* Each process i’s faction of CPU determined by weight w; ¢ Each process i’s faction of CPU determined by weight w;
- ishould get w;/ > w; faction of CPU - ishould get w;/ >~ w; faction of CPU
J J
- So w; is real seconds per virtual second that process i has CPU - So w; is real seconds per virtual second that process i has CPU
* When i consumes t CPU time, track it: A; += t/w; * When i consumes t CPU time, track it: A; += t/w;
* Example: gcc (weight 2), bigsim (weight 1) * Example: gcc (weight 2), bigsim (weight 1)
- Assuming no |0, runs: gcc, gcc, bigsim, gcc, gee, bigsim, ... - Assuming no |0, runs: gcc, gec, bigsim, gec, gee, bigsim, ...
- Lots of context switches, not so good for performance - Lots of context switches, not so good for performance
¢ Add in context switch allowance, C ¢ Add in context switch allowance, C
- Only switch fromitojif £; < E; — C/w; - Only switch fromitojif £; < E; — C/w;
- Cis wall-clock time (>> context switch cost), so must divide by w; - Ciswall-clock time (>> context switch cost), so must divide by w;
- Ignore Cif j just became runable...why? - Ignore Cifj just became runable to avoid affecting response time
36/45 36/45
BVT example Sleep/wakeup
180 T T T
gcc —A— T
160 - bigsim —e— : * Must lower priority (increase A;) after wakeup
140 1 - Otherwise process with very low A; would starve everyone
2 120 ¢ 1 * Bound lag with Scheduler Virtual Time (SVT)
‘(_*‘; 100 ¢] - SVTis minimum 4; for all runnable threads j
£ 80 1 - When waking i from voluntary sleep, set A; < max(A;, SVT)
> 60 * Note voluntary/involuntary sleep distinction
40 ¢ - E.g., Don’t reset A; to SVT after page fault
20 ¢] - Faulting thread needs a chance to catch up
0 - 4 ,
0 3 6 9 12 15 18 21 24 27 But do set A; «+— max(A;, SVT) after socket read
real time * Note: Even with SVT A; can never decrease
e gcc has weight 2, bigsim weight1,C =2,n01/0 - After short sleep, might have A; > SVT, so max(A;, SVT) = A;
- bigsim consumes virtual time at twice the rate of gcc - i never gets more than its fair share of CPU in long run

- Processes run for C time after lines cross before context switch
37/45 38/45

gcc wakes up after 1/0 Real-time threads

400 gcc —a— ' e Also want to support time-critical tasks
350 | bigsim —e— | - E.g., mpeg player must run every 10 clock ticks
300 1 * Recall £; = A; — (warp; ? W; : 0)
250 - W;is warp factor - gives thread precedence
200 1 - Just give mpeg player i large W; factor
150 | h - Will get CPU whenever it is runable
100 | | - But long term CPU share won’t exceed w;/ %j w;

S0 ¢ * Note I/, only matters when warp; is true

0 - Can set warp; with a syscall, or have it set in signal handler
0 15 30

- Also gets cleared if i keeps using CPU for L; time

* gec’s A; gets reset to SVT on wakeup - L; limit gets reset every U; time

- Otherwise, would be at lower (blue) line and starve bigsim - L; = 0 means no limit - okay for small W; value
39/45 40/45
Running warped Warped thread hogging CPU
120 e —— . A 120 EEE——
100 | bigsim —e— 100 [bigsim —e—
go | MPeO =T go | MPeY TET]
60 | 60 —]
40 40 | # 8
20 20
0¢ 0 ¢
-20 -20
40+ _40{
-60 : : : : -60 ' : : :
0 5 10 15 20 25 0 5 10 15 20 25
* mpeg player runs with —50 warp value * mpeg goes into tight loop at time 5

- Always gets CPU when needed, never misses a frame o Exceeds L; at time 10, so warp, + false
1

41/45 42/45

BVT example: Search engine Case study: SMART

* Common queries 150 times faster than uncommon

- Have 10-thread pool of threads to handle requests
- Assign W; value sufficient to process fast query (say 50)

* Key idea: Separate importance from urgency

- Figure out which processes are important enough to run
- Run whichever of these is most urgent
¢ Say 1slow query, small trickle of fast queries
- Fast queries come in, warped by 50, execute immediately
- Slow query runs in background

e Importance = (priority, BVFT) value tuple

- priority - parameter set by user or administrator (higher is better)
> Takes absolute priority over BVFT

- Good for turnaround time - BVFT - Biased Virtual Finishing Time (lower is better)
* Say 1 slow query, but many fast queries > virtual time consumed + virtual length of next CPU burst
. . > l.e., virtual time at which quantum would end if process scheduled
- Atfirst, only fast queries run now

- But SVT is bounded by A; of slow query thread i

- Recall fast query thread j gets A; = max(A;, SVT) = A;; eventuall . .
SVT < 4 ar?d a Q’it later/{jg— w;]>Ai- 4. SVT) =4 Y Urgency = next deadline (sooner is more urgent)

- At that point thread i will run again, so no starvation

=~ Bias is like negative warp, see paper for details

43/45 44/45

SMART algorithm

¢ If most important ready task (ready task with best value tuple)
is conventional (not real-time), run it

¢ Consider all real-time tasks with better value tuples than the
best ready conventional task

* For each such real-time task, starting from the best
value-tuple

- Can you run it without missing deadlines of more important tasks?
- If so, add to schedulable set

* Run task with earliest deadline in schedulable set
* Send signal to tasks that won’t meet their deadlines

45/45

