CPU scheduling

CPU;

Pe . - P, P CPU,

L 3

CPU,

* The scheduling problem:

- Have k jobs ready to run
- Haven > 1 CPUs that can run them

* Which jobs should we assign to which CPU(s)?

1/45

@ Textbook scheduling
@ Priority scheduling
© Advanced scheduling issues

@ Vvirtual time case studies

2/45

When do we schedule CPU?
€

interrupt

1/0 or even&
completion @
* Scheduling decisions may take place when a process:
1. Switches from running to waiting state
2. Switches from running to ready state

3. Switches from new/waiting to ready
4. Exits

1/0 or event wait

* Non-preemptive schedules use 1 &4 only

* Preemptive schedulers run at all four points
3/45

Scheduling criteria

* Why do we care?
- What goals should we have for a scheduling algorithm?

4/45

Scheduling criteria

* Why do we care?
- What goals should we have for a scheduling algorithm?

Throughput - # of processes that complete per unit time
- Higher is better

Turnaround time - time for each process to complete
- Lower is better

Response time - time from request to first response

- l.e., time between waiting—ready transition and ready—running
(e.g., key press to echo, not launch to exit)

- Lower is better

Above criteria are affected by secondary criteria

- CPU utilization - fraction of time CPU doing productive work
- Waiting time - time each process waits in ready queue

4/45

Example: FCFS Scheduling

* Runjobsin order that they arrive
- Called “First-come first-served” (FCFS)
- E.g., Say P; needs 24 sec, while P, and P3 need 3.
- Say P,, P3 arrived immediately after Py, get:

Py Py, | P3

0 24 27 30

Dirt simple to implement—how good is it?

Throughput: 3 jobs /30 sec = 0.1 jobs/sec
Turnaround Time: Py : 24,P, : 27,P53 : 30
- Average TT: (24 +27 +30)/3 = 27

Can we do better?

5/45

FCFS continued

* Suppose we scheduled P,, Ps, then P;
- Would get:

P, | P3 P1

0 3 6 30

Throughput: 3 jobs /30 sec = 0.1 jobs/sec
Turnaround time: P; : 30,P, : 3,P3: 6
- Average TT: (30 + 3 + 6)/3 = 13 - much less than 27

Lesson: scheduling algorithm can reduce TT
- Minimizing waiting time can improve RTand TT

Can a scheduling algorithm improve throughput?

6/45

FCFS continued

* Suppose we scheduled P,, Ps, then P;
- Would get:

P, | P3 P1

0 3 6 30

Throughput: 3 jobs /30 sec = 0.1 jobs/sec
Turnaround time: P; : 30,P, : 3,P3: 6
- Average TT: (30 + 3 + 6)/3 = 13 - much less than 27

Lesson: scheduling algorithm can reduce TT
- Minimizing waiting time can improve RTand TT

Can a scheduling algorithm improve throughput?
- Yes, if jobs require both computation and 1/0

6/45

View CPU and I/O devices the same

e CPU is one of several devices needed by users’ jobs
- CPU runs compute jobs, Disk drive runs disk jobs, etc.
- With network, part of job may run on remote CPU

* Scheduling 1-CPU system with n 1/0O devices like scheduling
asymmetric (n + 1)-CPU multiprocessor

- Result: all 1/0 devices + CPU busy = (n + 1)-fold throughput gain!
* Example: disk-bound grep + CPU-bound matrix multiply
- Overlap them just right? throughput will be almost doubled

wait for wait for wait for
ETeP | " disk disk disk
matrix
multiply

1 /
\ wait for CPU

7/45

Bursts of computation & 1/0

¢ Jobs contain I/O and computation

- Bursts of computation
- Then must wait for I/O

* To maximize throughput, maximize
both CPU and 1/0 device utilization

¢ How to do?

- Overlap computation from one job
with 1/O from other jobs

- Means response time very important
for 1/O-intensive jobs: 1/0 device will
be idle until job gets small amount of
CPU toissue next I/0 request

load store
add store
read from file

wait for I/O

store increment
index
write to file

wait for I/O

load store
add store
read from file

wait for I/O

CPU burst

1/0 burst

CPU burst

1/O burst

CPU burst

1/0 burst

8/45

Histogram of CPU-burst times

A

160

140 \
120 \

>

& 100

[9)

3

=3

g

o
[=]
—
]

e
o

=

0 8 16 24 32 40
burst duration (milliseconds)

e What does this mean for FCFS?

9/45

FCFS Convoy effect

* CPU-bound jobs will hold CPU until exit or I/0
(but 1/0O rare for CPU-bound thread)
- Long periods where no 1/0 requests issued, and CPU held
- Result: poor 1/0 device utilization

* Example: one CPU-bound job, many I/O bound

- CPU-bound job runs (I/O devices idle)

Eventually, CPU-bound job blocks

I/0-bound jobs run, but each quickly blocks on I/O

CPU-bound job unblocks, runs again

All 1/0O requests complete, but CPU-bound job still hogs CPU

1/0 devices sit idle since I/0-bound jobs can’t issue next requests

¢ Simple hack: run process whose I/0 completed
- What is a potential problem?

10/45

FCFS Convoy effect

* CPU-bound jobs will hold CPU until exit or I/0
(but 1/0O rare for CPU-bound thread)
- Long periods where no 1/0 requests issued, and CPU held
- Result: poor 1/0 device utilization

* Example: one CPU-bound job, many I/O bound

- CPU-bound job runs (I/O devices idle)

Eventually, CPU-bound job blocks

I/0-bound jobs run, but each quickly blocks on I/O

CPU-bound job unblocks, runs again

All 1/0O requests complete, but CPU-bound job still hogs CPU

1/0 devices sit idle since I/0-bound jobs can’t issue next requests

¢ Simple hack: run process whose I/0 completed

- What is a potential problem?
I/0-bound jobs can starve CPU-bound one

10/45

SJF Scheduling

» Shortest-job first (SJF) attempts to minimize TT

- Schedule the job whose next CPU burst is the shortest
- Misnomer unless “job” = one CPU burst with no I/O

* Two schemes:

- Non-preemptive - once CPU given to the process it cannot be
preempted until completes its CPU burst

- Preemptive - if a new process arrives with CPU burst length less
than remaining time of current executing process, preempt
(Known as the Shortest-Remaining-Time-First or SRTF)

* What does SJF optimize?

11/45

SJF Scheduling

» Shortest-job first (SJF) attempts to minimize TT

- Schedule the job whose next CPU burst is the shortest
- Misnomer unless “job” = one CPU burst with no I/O

* Two schemes:

- Non-preemptive - once CPU given to the process it cannot be
preempted until completes its CPU burst

- Preemptive - if a new process arrives with CPU burst length less
than remaining time of current executing process, preempt
(Known as the Shortest-Remaining-Time-First or SRTF)

* What does SJF optimize?
- Gives minimum average waiting time for a given set of processes

11/45

Process Arrival Time BurstTime
P 0 7
P, 2 4
P 4 1
Py 5 4

P, | P, . P, P, P,
I I I I I I I I I I

0 2 4 5 7 11 16

e Drawbacks?
12/45

SJF limitations

* Doesn’t always minimize average TT
- Only minimizes waiting time
- Example where turnaround time might be suboptimal?

* Can lead to unfairness or starvation
* In practice, can’t actually predict the future

* But can estimate CPU burst length based on past

Exponentially weighted average a good idea
t, actual length of process’s n CPU burst

- 7ny1 estimated length of proc’s (n + 1)
Choose parameter a where0 < a <1

- Letmppi=aty + (11— a)my

13/45

SJF limitations

* Doesn’t always minimize average TT
- Only minimizes waiting time
- Example where turnaround time might be suboptimal?
- Overall longer job has shorter bursts

* Can lead to unfairness or starvation
* In practice, can’t actually predict the future

* But can estimate CPU burst length based on past

Exponentially weighted average a good idea
t, actual length of process’s n CPU burst

- 7ny1 estimated length of proc’s (n + 1)
Choose parameter a where0 < a <1

- Letmppi=aty + (11— a)my

13/45

Exp. weighted average example

CPU burst (t) 6 4 6 4 13 13 13
"guess" (t) 10 8 6 6 5 9 11 12

14 /45

Round robin (RR) scheduling

P1|P> P1|P> Py

* Solution to fairness and starvation
- Preempt job after some time slice or quantum
- When preempted, move to back of FIFO queue
- (Most systems do some flavor of this)

* Advantages:

- Fair allocation of CPU across jobs
- Low average waiting time when job lengths vary
- Good for responsiveness if small number of jobs

* Disadvantages?

15/45

* Varying sized jobs are good ...what about same-sized jobs?
* Assume 2 jobs of time=100 each:

Py | Py | PPy |PL P o [P P

0 1 2 3 4 5 6 198 199 200

e Even if context switches were free...

- What would average turnaround time be with RR?
- How does that compare to FCFS?

16/45

* Varying sized jobs are good ...what about same-sized jobs?
* Assume 2 jobs of time=100 each:

Py | Py | PPy |PL P o [P P

0 1 2 3 4 5 6 198 199 200

e Even if context switches were free...

- What would average turnaround time be with RR? 199.5
- How does that compare to FCFS? 150

16/45

Context switch costs

° What is the cost of a context switch?

17/45

Context switch costs

e What is the cost of a context switch?

¢ Brute CPU time cost in kernel

- Save and restore resisters, etc.
- Switch address spaces (expensive instructions)

¢ Indirect costs: cache, buffer cache, & TLB misses

Py P,
EEEEEEE EEEEEEE
EEEEEEE EEEEEEE
EEEEEEE — — (EEEEEEE
EEEEEEE EEEEEEE
EEEEEEE EEEEEEE

CPU cache CPU cache

17/45

Context switch costs

e What is the cost of a context switch?

¢ Brute CPU time cost in kernel

- Save and restore resisters, etc.

- Switch address spaces (expensive instructions)

¢ Indirect costs: cache, buffer cache, & TLB misses

P,

CPU cache

Py

CPU cache

CPU cache

17/45

process time = 10 quantum context
switches
12 0
0 10
6 1
0 6 10
1 9

o 1 2 3 4 5 6 7 8 9 10

* How to pick quantum?

- Want much larger than context switch cost
- Majority of bursts should be less than quantum
- But not so large system reverts to FCFS

e Typical values: 1-100 msec

18/45

und time vs. quantum

process | time

£ 115
2 110; \ \
s \4
g 105
3
2 10.0
<
S 95
9.0

1 2 3 4 5 6 7
time quantum
19/45

Two-level scheduling

¢ Under memory constraints, may need to swap process to disk

* Switching to swapped out process very expensive
- Swapped out process has most memory pages on disk
- Will have to fault them all in while running
- One disk access costs ~10ms. On 1GHz machine, 10ms = 10 million
cycles!
* Solution: Context-switch-cost aware scheduling

- Runin-core subset for “a while”
- Then swap some between disk and memory
* How to pick subset? How to define “a while”?

- View as scheduling memory before scheduling CPU
- Swapping in process is cost of memory “context switch”
- So want “memory quantum” much larger than swapping cost

20/45

@ Textbook scheduling
@© Priority scheduling
© Advanced scheduling issues

@ Vvirtual time case studies

21/45

Priority scheduling

* Associate a numeric priority with each process

- E.g., smaller number means higher priority (Unix/BSD)
- Or smaller number means lower priority (Pintos)

Give CPU to the process with highest priority
- Can be done preemptively or non-preemptively

Note SJF is priority scheduling where priority is the predicted
next CPU burst time

Starvation - low priority processes may never execute

Solution?

22/45

https://www.scs.stanford.edu/22wi-cs212/pintos/pintos_2.html#SEC26

Priority scheduling

* Associate a numeric priority with each process

- E.g., smaller number means higher priority (Unix/BSD)
- Or smaller number means lower priority (Pintos)

Give CPU to the process with highest priority
- Can be done preemptively or non-preemptively

Note SJF is priority scheduling where priority is the predicted
next CPU burst time

Starvation - low priority processes may never execute

Solution?
- Aging: increase a process’s priority as it waits

22/45

https://www.scs.stanford.edu/22wi-cs212/pintos/pintos_2.html#SEC26

Multilevel feeedback queues (BSD)

0..3 }— tail

Lol 47 P—> — — tail

’ 8..11 —Ill—lll—lll—l—s— tail

~

124...127 —I— T — 11— tail

‘\ * Every runnable process on one of 32 run queues
AR Kernel runs process on highest-priority non-empty queue
- Round-robins among processes on same queue
* Process priorities dynamically computed
- Processes moved between queues to reflect priority changes
- If a process gets higher priority than running process, run it
* ldea: Favor interactive jobs that use less CPU

1
1
1
1
1
1
1
1
A}

23/45

Process priority

* p_nice - user-settable weighting factor

* p_estcpu - per-process estimated CPU usage

- Incremented whenever timer interrupt found process running
- Decayed every second while process runnable

2 - load

m) p_estcpu + p_nice

p_estcpu (
- Load is sampled average of length of run queue plus short-term
sleep queue over last minute

* Run queue determined by p_usrpri/4

p_estcpu

p_usrpri < 50 + (2

) + 2 -p_nice

(value clipped if over 127)

24/45

Sleeping process increases priority

* p_estcpu nhot updated while asleep
- Instead p_s1ptime keeps count of sleep time

* When process becomes runnable

2. load p_slptime
p_estcpu < (m) X p_estcpu

- Approximates decay ignoring nice and past loads

* Previous description based on [McKusick]! (The Design and
Implementation of the 4.4BSD Operating System)

See library.stanford.edu for off-campus access

25/45

https://learning.oreilly.com/library/view/The+Design+and+Implementation+of+the+4.4BSD+Operating+System/9780768685275/chapter04.html#ch4lev1sec4
http://www-sul.stanford.edu/apcproxy/

L Pintesnotes

* Same basic idea for second half of project 1
- But 64 priorities, not 128
- Higher numbers mean higher priority
- Okay to have only one run queue if you prefer
(less efficient, but we won’t deduct points for it)
* Have to negate priority equation:

recent_cpu

priority = 63 — < 7

)—Z-nice

26/45

https://www.scs.stanford.edu/22wi-cs212/pintos/pintos_7.html#SEC131

Thread scheduling

* With thread library, have two scheduling decisions:
- Local Scheduling - User-level thread library decides which user
(green) thread to put onto an available native (i.e., kernel) thread
- Global Scheduling - Kernel decides which native thread to run next

e Can expose to the user

- E.g., pthread_attr_setscope allows two choices

- PTHREAD_SCOPE_SYSTEM - thread scheduled like a process
(effectively one native thread bound to user thread - Will return
ENOTSUP in user-level pthreads implementation)

- PTHREAD_SCOPE_PROCESS - thread scheduled within the current
process (may have multiple user threads multiplexed onto kernel
threads)

27/45

Thread dependencies

* Say H at high priority, L at low priority
- Lacquires lock 4.

Scenario 1 (¢ a spinlock): H tries to acquire ¢, fails, spins. L never
gets to run.

Scenario 2 (¢ a mutex): H tries to acquire 4, fails, blocks. M enters
system at medium priority. L never gets to run.

Both scenes are examples of priority inversion

* Scheduling = deciding who should make progress

- Athread’s importance should increase with the importance of
those that depend onit

- Naive priority schemes violate this

28/45

Priority donation

* Say higher number = higher priority (like Pintos)
* Example 1: L (prio 2), M (prio 4), H (prio 8)
- L holds lock ¢
- Mwaitson ¢, L’s priority raised to L; = max(M,L) = 4
- Then Hwaits on ¢, L’s priority raised to max(H,L;) = 8
e Example 2: Same L, M, H as above

- L holds lock ¢1, M holds lock ¢,
- M waits on ¢4, L’s priority now L; = 4 (as before)
- Then H waits on ¢,. M’s priority goes to M; = max(H, M) = 8, and L’s
priority raised to max(M;,L;) = 8
* Example 3: L (prio 2), My, ... Moo (all prio 4)
- Lhas¢,and My, ... Mg all block on 2. L’s priority is
max(L, Ml, N 7M1000) =4,

29/45

@ Textbook scheduling
@ Priority scheduling
©® Advanced scheduling issues

@ Vvirtual time case studies

30/45

Multiprocessor scheduling issues

* Must decide on more than which processes to run
- Must decide on which CPU to run which process
* Moving between CPUs has costs
- More cache misses, depending on arch. more TLB misses too
e Affinity scheduling—try to keep process/thread on same CPU

1

P, P3 Py ' Py P, P3

Py P P3 ' Py Py P3
1

P3 P Py f Py Py P3
1

Py P3 Py ' Py Py P3
1

CPU; CPU, CPU3 : CPU; CPU, CPU3
1
|]
no affinity : affinity

- Butalso prevent load imbalances

- Do cost-benefit analysis when deciding to migrate...
affinity can also be harmful, when tail latency is critical
31/45

Multiprocessor scheduling (cont)

* Want related processes/threads scheduled together

- Good if threads access same resources (e.g., cached files)
- Even more important if threads communicate often,
otherwise must context switch to communicate
* Gang scheduling—schedule all CPUs synchronously

- With synchronized quanta, easier to schedule related
processes/threads together

Pa1 Pa Pyg
P1 P2 Py3
P11 P12 P13 P14

CPU; CPU, CPU; CPU,

32/45

Real-time scheduling

* Two categories:
- Soft real time—miss deadline and audio playback will sound funny
- Hard real time—miss deadline and plane will crash

* System must handle periodic and aperiodic events

- E.g., processes A, B, C must be scheduled every 100, 200, 500 msec,
require 50, 30, 100 msec respectively

- Schedulableif 3 -2

< 1 (not counting switch time)

e Variety of scheduling strategies

- E.g., first deadline first
(works if schedulable, otherwise fails spectacularly)

33/45

@ Textbook scheduling
@ Priority scheduling
© Advanced scheduling issues

@ Virtual time case studies

34/45

Scheduling with virtual time

Many modern schedulers employ notion of virtual time

- ldea: Equalize virtual CPU time consumed by different processes
- Higher-priority processes consume virtual time more slowly

Forms the basis of the current linux scheduler, CFS
Case study: Borrowed Virtual Time (BVT) [Duda]

BVT runs process with lowest effective virtual time
- A; - actual virtual time consumed by process i
- effective virtual time E; = A; — (warp; ? W; : 0)

- Special warp factor allows borrowing against future CPU time
...hence name of algorithm

35/45

https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/Documentation/scheduler/sched-design-CFS.rst
https://www.scs.stanford.edu/22wi-cs212/sched/readings/bvt.pdf

Process weights

* Each process i’s faction of CPU determined by weight w;
- ishould get w;/ >~ w; faction of CPU
)

- So w; is real seconds per virtual second that process i has CPU
* Wheniconsumes t CPU time, track it: A; += t/w;
* Example: gcc (weight 2), bigsim (weight 1)
- Assuming no 10, runs: gcc, gcc, bigsim, gcc, gec, bigsim, ...
- Lots of context switches, not so good for performance
¢ Add in context switch allowance, C
- Only switch fromitoifE; < E; — C/w;
- Ciswall-clock time (>> context switch cost), so must divide by w;
- Ignore Cif j just became runable...why?

36/45

Process weights

* Each process i’s faction of CPU determined by weight w;
- ishould get w;/ >~ w; faction of CPU
)

- So w; is real seconds per virtual second that process i has CPU
* Wheniconsumes t CPU time, track it: A; += t/w;
* Example: gcc (weight 2), bigsim (weight 1)
- Assuming no 10, runs: gcc, gcc, bigsim, gcc, gec, bigsim, ...
- Lots of context switches, not so good for performance
¢ Add in context switch allowance, C
- Only switch fromitoifE; < E; — C/w;
- Ciswall-clock time (>> context switch cost), so must divide by w;
- Ignore Cif j just became runable to avoid affecting response time

36/45

BVT example

180 - - -
gcc —a—
160 [bigsim —e—

140
120
100 ¢
80 r
60 r
40 1
20 1

0

virtual time

0 3 6 9 12 15 18 21 24 27
real time
* gcc has weight 2, bigsim weight 1,C = 2,n0 1/0
- bigsim consumes virtual time at twice the rate of gcc

- Processes run for C time after lines cross before context switch
37/45

Sleep/wakeup

* Must lower priority (increase A;) after wakeup
- Otherwise process with very low A; would starve everyone

* Bound lag with Scheduler Virtual Time (SVT)

- SVTis minimum A; for all runnable threads j

- When waking i from voluntary sleep, set A; +— max(A;, SVT)
* Note voluntary/involuntary sleep distinction

- E.g., Don’t reset A; to SVT after page fault

- Faulting thread needs a chance to catch up

- But do set A; < max(A;, SVT) after socket read
* Note: Even with SVT A; can never decrease

- After short sleep, might have A; > SVT, so max(A;, SVT) = A;
- i never gets more than its fair share of CPU in long run

38/45

gcc wakes up after 1/0

400
350
300
250
200
150
100 ¢
50

0

0 15 30
* gcc’s A; gets reset to SVT on wakeup
- Otherwise, would be at lower (blue) line and starve bigsim

39/45

Real-time threads

* Also want to support time-critical tasks

- E.g., mpeg player must run every 10 clock ticks
* Recall £; = A; — (warp; ? W; : 0)

- W;is warp factor - gives thread precedence
Just give mpeg player i large W; factor

Will get CPU whenever it is runable
But long term CPU share won’t exceed w;/ 3~ w;
J

* Note IV; only matters when warp; is true

Can set warp; with a syscall, or have it set in signal handler
Also gets cleared if i keeps using CPU for L; time

L; limit gets reset every U; time

- L; = 0 means no limit - okay for small W; value

40/45

120 : .
gcc —a—

100 | bigsim —e—

got ™MPe9 —E—

60 r

0 5 10 15 20 25
* mpeg player runs with —50 warp value
- Always gets CPU when needed, never misses a frame

41/45

Warped thread hogging CPU

120 . :
gcc —a— S
100 | bigsim —e— 1
go | Mpeg —EB— ;
60 r o) e |
40 | “74‘3/
20
0

-20
-40
-60 : ' ' '

0 5 10 15 20 25

* mpeg goes into tight loop at time 5
* Exceeds L; at time 10, so warp; < false

42/45

BVT example: Search engine

e Common queries 150 times faster than uncommon
- Have 10-thread pool of threads to handle requests
- Assign W; value sufficient to process fast query (say 50)
» Say 1 slow query, small trickle of fast queries

- Fast queries come in, warped by 50, execute immediately
- Slow query runs in background
- Good for turnaround time

* Say 1slow query, but many fast queries

- At first, only fast queries run
- But SVT is bounded by A; of slow query thread i

- Recall fast query thread j gets A; = max(A;, SVT) = A;; eventually
SVT < A;and a bit later A; — W; > A;.

- At that point thread i will run again, so no starvation

43/45

Case study: SMART

* Key idea: Separate importance from urgency

- Figure out which processes are important enough to run
- Run whichever of these is most urgent

* Importance = (priority, BVFT) value tuple

- priority - parameter set by user or administrator (higher is better)
> Takes absolute priority over BVFT

- BVFT - Biased Virtual Finishing Time (lower is better)
> virtual time consumed + virtual length of next CPU burst

> le., virtual time at which quantum would end if process scheduled
now

> Bias is like negative warp, see paper for details

* Urgency = next deadline (sooner is more urgent)

44/ 45

https://www.scs.stanford.edu/22wi-cs212/sched/readings/smart.pdf

SMART algorithm

* If most important ready task (ready task with best value tuple)
is conventional (not real-time), run it

* Consider all real-time tasks with better value tuples than the
best ready conventional task

* For each such real-time task, starting from the best
value-tuple

- Canyou run it without missing deadlines of more important tasks?
- If so, add to schedulable set

* Run task with earliest deadline in schedulable set
* Send signal to tasks that won’t meet their deadlines

45/45

	Textbook scheduling
	Priority scheduling
	Advanced scheduling issues
	Virtual time case studies

