
CS 112/212 Project 1: Threads
January 7, 2022

Today’s Topics

● Project Overview
● Project 1 Requirements

○ Alarm Clock
○ Priority Scheduler
○ Advanced Scheduler

● Getting Started

Project Overview

Reference Implementation:

devices/timer.c | 42 +++++-
 threads/fixed-point.h | 120 ++++++++++++++++++
 threads/synch.c | 88 ++++++++++++-
 threads/thread.c | 196 ++++++++++++++++++++++++++----
 threads/thread.h | 23 +++
 5 files changed, 440 insertions(+), 29 deletions(-)

● Most changes in threads and device directories
● Also look in lib/kernel for useful data structures: list, hash, bitmap

Synchronization

Serializing access to shared resource

● Disabling interrupts:
○ Turns off thread preemption; only one thread can run
○ Undesirable unless absolutely necessary

● Synchronization primitives: (threads/synch.h)
○ Semaphores
○ Locks
○ Condition Variables

Thread Basics

Waiting Running Dying

Ready

New

Exit

Admitted

IO or wait

Interrupted

Scheduled

Eve
nt C

omplet
ion

Project 1 Requirements
(Chapter 2.2)

https://www.scs.stanford.edu/22wi-cs212/pintos/pintos_2.html#SEC23

Alarm Clock

● Reimplement timer_sleep() to avoid busy waiting
● void timer_sleep(int64_t ticks)

○ Suspends execution of the calling thread until time as advanced by at
least ticks timer ticks

○ Existing implementation uses “busy waiting”
● Details in Section 2.2.2

https://www.scs.stanford.edu/22wi-cs212/pintos/pintos_2.html#SEC25

Priority Scheduling

● Replace round-robin scheduler with a priority-based scheduler
○ Always run a thread with the highest priority among all ready threads

■ Round-robin threads of the same highest priority
■ Yield immediately when a higher priority thread is ready
■ May starve other threads

○ Most code will be in thread.h/c
● Implement “Priority Donation” (solves “Priority Inversion”)
● Details in Section 2.2.3

https://www.scs.stanford.edu/22wi-cs212/pintos/pintos_2.html#SEC26

Priority Inversion

● Priority Inversion: A low priority thread holds a resource needed by a higher
priority thread

● H is blocked while waiting on L, and M has a higher priority than L
● H can’t run because L can’t release its lock because M is running
● Solution: priority donation

Priority Donation

● Priority Donation: A higher priority thread “donates” its priority to the lower
priority thread it is blocked on

● H “donates” its priority to L so that L runs with high effective priority
● When L releases the lock, L’s priority returns to its old value
● H then runs immediately

Priority Donation

Things to consider:

● To how many threads can a donor donate its priority?
● From how many threads may a donee receive priority?
● What happens when a priority recipient donates to another thread?

Advanced Scheduler

● Implement a multilevel feedback queue scheduler similar to the 4.4 BSD
Scheduler

● Multilevel feedback queue scheduler tries to be fair with CPU time
○ No priority donation
○ Give highest priority to thread that has used the least CPU time recently
○ Prioritizes interactive and I/O-bound threads
○ De-prioritizes CPU-bound threads

● The scheduling algorithm must be configurable at startup time
● Details in Section 2.2.4 and Appendix B

https://www.scs.stanford.edu/22wi-cs212/pintos/pintos_2.html#SEC27
https://www.scs.stanford.edu/22wi-cs212/pintos/pintos_7.html#SEC131

Advanced Scheduler

priority = PRI_MAX - recent_cpu/4 - nice*2

● Details in Appendix B.2

https://www.scs.stanford.edu/22wi-cs212/pintos/pintos_7.html#SEC133

Advanced Scheduler: nice

● nice allows threads to declare how generous they want to be with their own
CPU time

● Integer value between -20 and 20
○ nice > 0: lower effective priority, gives away CPU time
○ nice < 0: higher effective priority, takes away CPU time from other

threads
● Details in Appendix B.1

https://www.scs.stanford.edu/22wi-cs212/pintos/pintos_7.html#SEC132

Advanced Scheduler: recent_cpu

● recent_cpu: amount of CPU time a thread has “recently” received
● Exponentially weighted moving average
● Incremented every clock tick when a thread is running
● Recomputed for all threads every second:

recent_cpu = (2*load_avg)/(2*load_avg + 1) * recent_cpu + nice

● Details in Appendix B.3

https://www.scs.stanford.edu/22wi-cs212/pintos/pintos_7.html#SEC134

Advanced Scheduler: load_avg

● load_avg: Average number of ready threads in the last minute
● Single value system-wide
● Initialized to zero
● Recomputed every second:

load_avg = (59/60)*load_avg + (1/60)*ready_threads

● Details in Appendix B.4

https://www.scs.stanford.edu/22wi-cs212/pintos/pintos_7.html#SEC135

Getting Started

● Start early!
● Read the documentation and the source code
● Setup/use version control (git)

○ Remember to keep your repositories private
● Design your solution, data structure, and synchronization scheme before you

start coding
● Work together: meet/commit/merge often
● Grading: 50% project tests, 50% code and write-up

Git Commands

● git clone
● git add
● git commit
● git branch
● git merge
● git stash
● git pull
● git push
● git rebase

Git Recommendations

Some guidelines & ideas:

● Write helpful commit messages. They exist only for you and your team!
● Host your code on Github or Bitbucket as a “master” copy. Use a private

repository!
● Create per-assignment branches. Work on topic branches; merge into

assignment branches and delete once the topic is “done”.
● Stay synchronized with your team: fetch and push often.
● Commit often. Use git bisect to find regression bugs.

Read or skim Pro Git for fuller advice.

https://git-scm.com/book/en/v2

