
1/21/2022

Project 2: User Programs



Today
• Overview


• Project 2 Requirements


• Process Termination Messages


• Argument Passing


• System Calls


• Denying Writes to Executables


• Getting Started



Overview
• Enable user programs. In other words, facilitate processes on top of the OS


• Multiple processes


• Interact with OS via system calls 

• Protect the kernel from user programs


• Test your solution by running actual user programs


• See src/examples directory



Overview
• Reference Implementation:


• See the spec for other files to understand: pagedir.h, gdt.h, tss.h



Filesystem
• You will need to interface with the Pintos file system.


• Naive:


• No internal synchronization


• Fixed file sizes


• Files stored in contiguous segments


• File names <= 14 characters


• Create a simulated, partitioned disk:



Virtual Memory
• Virtual memory divided into two regions


• User virtual memory: [0, PHYS_BASE)


• Kernel virtual memory: [PHYS_BASE, 4GB)


• User virtual memory is per-process


• Check out the pointer to the page table within the 
thread struct


• Kernel virtual memory is mapped to 
contiguous physical memory starting from 
address 0


• Page faults



Avoiding page faults in kernel mode
• Kernel must validate pointers provided by a user program


• Why?…



Accessing user memory in kernel mode
• Kernel must validate pointers provided by a user program


• Why: null pointers, unmapped virtual address, a pointer to a kernel VA


• How: 


• (Simpler) Validate a user-provided pointer before dereferencing


• Allow the page fault



80x86 Calling Convention
• f(1, 2, 3);


• Caller pushes arguments onto the stack, from right to left.


• Caller pushes the return address and jumps to the first line of the callee



Requirements



Process Termination Message
• printf ("%s: exit(%d)\n", thread_current()->name, exit_code);


• Don’t print when a kernel thread terminates


• Don’t print upon halt



Passing Arguments to a New Process
• Start by tracing through a call to process_execute();


• Main idea: process_execute(“grep foo bar”) should run grep with its two 
arguments


• You need to prepare the stack for the program entry function, _start().



Passing Arguments to a New Process

hex_dump() will be your friend when implementing this!!



System Calls
• Implement system call dispatcher (i.e., syscall_handler())


intr_register_int (0x30, 3, INTR_ON, syscall_handler, "syscall"); 

• Read system call number and args


f->esp 

• Implement 13 system call handlers


• Syscall numbers are defined in lib/syscall-nr.h


• For filesystem-related syscalls, be familiar with what the filesys does for you. (see filesys.h & file.h)


• Synchronization


• Any number of user processes can make syscalls at once


• The provided file system is not thread-safe

•



Denying Writes to Executables
• A user process shouldn’t be able to modify in-use executables


• file_deny_write() will prevent writes to an open file


• Closing a file will re-enable writes



Getting Started



Where to start (see 3.2)
• Temporarily bypass argument passing


• *esp = PHYS_BASE - 12;


• Basic system call infrastructure


• Read the syscall numbers and surface arguments from the stack


• User memory access


• Exit()


• Implement write() to write to fd 1, the system console


• Modify process_wait() to infinite loop



Tips
• Read the spec 2x before starting


• Read the tests so you know how the syscalls are invoked


• Read through the design doc before starting


• Don’t write any code until you feel confident that you understand the 
requirements


• Try the simplest thing first


