Project 2: User Programs

1/21/2022

Today

e Qverview

* Project 2 Requirements
 Process Termination Messages
 Argument Passing
o System Calls

 Denying Writes to Executables

o Getting Started

Overview

 Enable user programs. In other words, facilitate processes on top of the OS
 Multiple processes

* [nteract with OS via system calls
* Protect the kernel from user programs

* [est your solution by running actual user programs

* See src/examples directory

Overview

 Reference Implementation:

threads/thread.c 13

threads/thread.h 26 +

userprog/exception.c 8

userprog/process.c 247 ++++++++++++++--
userprog/syscall.c 468 ++++++++++++++++++H -
userprog/syscall.h 1

6 files changed, 725 insertions(+), 38 deletions(-)

» See the spec for other files to understand: pagedir.h, gdt.h, tss.h

Fillesystem

* You will need to interface with the Pintos file system.

* Naive:
* No internal synchronization
* Fixed file sizes
* Files stored in contiguous segments

e File names <= 14 characters

pintos-mkdisk filesys.dsk --filesys-size=2
pintos -f -qg

¢ Create a SimUIated, partitiOned diSk: pintos -p ../../examples/echo -a echo -- -qg

pintos -q run 'echo x'

Virtual Memory

* Virtual memory divided into two regions
* User virtual memory: [0, PHYS_BASE)

» Kernel virtual memory: [PHYS_BASE, 4GB)

* User virtual memory is per-process

 (Check out the pointer to the page table within the
thread struct

o Kernel virtual memory is mapped to
contiguous physical memory starting from
address O

 Page faults

PHYS BASE +

0x08048000 +

user stack

\Y/
grows downward

grows upward

Avoiding page faults in kernel mode

» Kernel must validate pointers provided by a user program

 Why?...

Accessing user memory Iin kernel mode

» Kernel must validate pointers provided by a user program
 Why: null pointers, unmapped virtual address, a pointer to a kernel VA
e HOw:

* (Simpler) Validate a user-provided pointer before dereferencing

* Allow the page fault

80x86 Calling Convention

e f(1, 2, 3);
e +
Oxbffffeic 3
Oxbffffe78 2
Oxbffffe74 1
stack pointer --> Oxbffffe70 return address
e +

o Caller pushes arguments onto the stack, from right to left.

» Caller pushes the return address and jumps to the first line of the callee

Requirements

Process Termination Message

e printf ("%s: exit(%d)\n", thread_current()->name, exit_code);
 Don’t print when a kernel thread terminates

 Don’t print upon halt

Passing Arguments to a New Process

« Start by tracing through a call to process_execute();

 Main idea: process_execute(“grep foo bar”) should run grep with its two
arguments

* You need to prepare the stack for the program entry function, _start().

void
start (int argc, char *argv|[])

{

exit (main (argc, argv));

}

Passing Arguments to a New Process

Example: “/bin/1ls -1 foo bar”

PHYS_BASE = OxcO0O00000 Address Name Data Type
| oxbffffffc argv[3]] | “bar\o” char[4

Z:’;:gf;f:glced by the Oxbffffff8 argv 2 “foo\0” char 4
oxbffffffS argv|1])]...] “-1\0" char|[3
Oxbfffffed argv[O][...] “/bin/1s\®” char[8]
oxbfffffec word-align 0 uint8_t

argv[i] in reverse order Oxbfffffe8 argv[4] 0 char*

(argv[@] last) Oxbfffffe4d arqgv|[3] Oxbffffffc char*
Oxbfffffe® arqgv|[2] Oxbffffff8 char*
Oxbfffffdc argv|[1] OxbTfffTff5 char*
Oxbfffffd8 argv|[0] OxbTffffed char*

argv (the address of Oxbfffffd4 argv Oxbfffffd8 char**

argv[@]) and then argc oxbfffffde argc 4 int

fake “return address” Oxbfffffcc return addr 0 void(*) ()

hex_dump() will be your friend when implementing this!!

System Calls

* Implement system call dispatcher (i.e., syscall_handler())

intr_register_int (0x30, 3, INTR_ON, syscall_handler, "syscall");

 Read system call number and args
f->esp
* Implement 13 system call handlers

» Syscall numbers are defined in lib/syscall-nr.h

* For filesystem-related syscalls, be familiar with what the filesys does for you. (see filesys.h & file.h)

Synchronization
 Any number of user processes can make syscalls at once

 The provided file system is not thread-safe

Denying Writes to Executables

* A user process shouldn’t be able to modify in-use executables
* file_deny_write() will prevent writes to an open file

* Closing a file will re-enable writes

Getting Started

Where to start (see 3.2)

* [emporarily bypass argument passing

e “esp =PHYS_BASE - 12;

» Basic system call infrastructure

 Read the syscall numbers and surface arguments from the stack
 User memory access
e EXit()
* Implement write() to write to fd 1, the system console

 Modify process_wait() to infinite loop

Tips
 Read the spec 2x before starting
 Read the tests so you know how the syscalls are invoked

 Read through the design doc before starting

 Don’t write any code until you feel confident that you understand the
requirements

* Try the simplest thing first

