
Outline

1 Mandatory access control

2 Labels and lattices

3 LOMAC

4 SELinux

1 / 43

DAC vs. MAC

• Most people are familiar with discretionary access control
(DAC)

- Unix permission bits are an example
- E.g., might set file private so that only group friends can read it:
-rw-r––- 1 dm friends 1254 Feb 11 20:22 private

- Anyone with access to information can further propagate that
information at his/her discretion:
$ Mail sigint@enemy.gov < private

• Mandatory access control (MAC) can restrict propagation
- Security administrator may allow you to read but not disclose file
- Not to be confused with Message Authentication Codes and

Medium Access Control, also both “MAC”

2 / 43

MAC motivation

• Prevent users from disclosing sensitive information (whether
accidentally or maliciously)

- E.g., classified information requires such protection
• Prevent software from surreptitiously leaking data

- Seemingly innocuous software may steal secrets in the background
- Such a program is known as a trojan horse

• Case study: Symantec AntiVirus 10
- Contained a remote exploit (attacker could run arbitrary code)
- Inherently required access to all of a user’s files to scan them
- Can an OS protect private file contents under such circumstances?

3 / 43

Example: Anti-virus software

AV
Helper

AV
Scanner

User
TTY

Update
Daemon

/tmp User Data Virus DB Network

• Scanner – checks for virus signatures
• Update daemon – downloads new virus signatures
• How can OS enforce security without trusting AV software?

- Must not leak contents of your files to network
- Must not tamper with contents of your files

4 / 43

Example: Anti-virus software

AV
Helper

AV
Scanner

User
TTY

Update
Daemon

/tmp User Data Virus DB Network

• Scanner can write your private data to network
• Prevent scanner from invoking any system call that might send

a network messages?

4 / 43

Example: Anti-virus software

AV
Helper

AV
Scanner

User
TTY

Update
Daemon

/tmp User Data Virus DB Network

• Scanner can send private data to update daemon
• Update daemon sends data over network

- Can cleverly disguise secrets in order/timing of update requests
• Block IPC & shared memory system calls in scanner?

4 / 43

Example: Anti-virus software

AV
Helper

AV
Scanner

User
TTY

Update
Daemon

/tmp User Data Virus DB Network

• Scanner can write data to world-readable file in /tmp

• Update daemon later reads and discloses file
• Prevent update daemon from using /tmp?

4 / 43

Example: Anti-virus software

AV
Helper

AV
Scanner

User
TTY

Update
Daemon

/tmp User Data Virus DB Network

• Scanner can acquire read locks on virus database
- Encode secret user data by locking various ranges of file

• Update daemon decodes data by detecting locks
- Discloses private data over the network

• Have trusted software copy virus DB for scanner?
4 / 43

The list goes on

• Scanner can call setproctitle with user data
- Update daemon extracts data by running ps

• Scanner can bind particular TCP or UDP port numbers
- Sends no network traffic, but detectable by update daemon

• Scanner can relay data through another process
- Call ptrace to take over process, then write to network
- Use sendmail, httpd, or portmap to reveal data

• Disclose data by modulating free disk space
• Can we ever convince ourselves we’ve covered all possible

communication channels?
- Not without a more systematic approach to the problem

5 / 43

Outline

1 Mandatory access control

2 Labels and lattices

3 LOMAC

4 SELinux

6 / 43

Bell-La Padula model [BL]

• View the system as subjects accessing objects
- Access control: take requests as input and output decisions

• Four modes of access are possible:
- execute – no observation or alteration
- read – observation
- append – alteration
- write – both observation and modification

• An access matrix M encodes permissible access types
- As in last lecture, subjects are rows, objects are columns

• The current access set, b, is (subj,obj, attr) triples
- Encodes accesses in progress (e.g., open files)
- At a minimum, (S,O,A) ∈ b requires A permitted by cell MS,O

7 / 43

Security levels

• A security level or label is a pair (c, s) where:
- c = classification – E.g., 1 = unclassified, 2 = secret, 3 = topsecret
- s = category-set – E.g., Nuclear, Crypto, Russia, . . .

• (c1, s1) dominates (c2, s2) iff c1 ≥ c2 and s1 ⊇ s2
- L1 dominates L2 is sometimes written L1 ∝L2 or L1 ⊒ L2
- Labels then form a lattice (partial order with lub & glb)

• Inverse of dominates relation is can flow to, written ⊑
- L1 ⊑ L2 (“L1 can flow to L2”) means L2 dominates L1

• Subjects and objects are assigned security levels
- level(S), level(O) – security level of subject/object
- current-level(S) – subject may operate at lower level
- level(S) bounds current-level(S) (current-level(S) ⊑ level(S))
- Since level(S) is max, sometimes called S’s clearance

8 / 43

Security properties

Two access control properties with respect to labels:
• The simple security or ss-property (DAC):

- For any (S,O,A) ∈ b, if A includes observation, then level(S) must
dominate level(O), i.e., level(O) ⊑ level(S)

- E.g., an unclassified user cannot read a top-secret document

• The star security or ⋆-property (MAC):
- If any subject both observes O1 and modifies O2, then level(O2)

dominates level(O1), i.e., level(O1) ⊑ level(O2).
- E.g., no subject can read a top secret file, then write a secret file
- More precisely, given (S,O,A) ∈ b:

if A = r then level(O) ⊑ current-level(S) “no read up”
if A = a then current-level(S) ⊑ level(O) “no write down”
if A = w then current-level(S) = level(O)

9 / 43

Labels form a lattice [Denning]

⟨unclassified, ∅⟩

⟨secret, ∅⟩

⟨top-secret, ∅⟩

⟨top-secret, {Nuclear,Crypto}⟩

⟨secret, {Nuclear}⟩ ⟨secret, {Crypto}⟩

⟨top-secret, {Nuclear}⟩ ⟨top-secret, {Crypto}⟩

L1 L2
means L1 ⊑ L2

10 / 43

Labels form a lattice [Denning]

⟨unclassified, ∅⟩

⟨secret, ∅⟩

⟨top-secret, ∅⟩

⟨top-secret, {Nuclear,Crypto}⟩

⟨secret, {Nuclear}⟩ ⟨secret, {Crypto}⟩

⟨top-secret, {Nuclear}⟩ ⟨top-secret, {Crypto}⟩

L1 L2
means L1 ⊑ L2

10 / 43

Labels form a lattice [Denning]

⟨unclassified, ∅⟩

⟨secret, ∅⟩

⟨top-secret, ∅⟩

⟨top-secret, {Nuclear,Crypto}⟩

⟨secret, {Nuclear}⟩ ⟨secret, {Crypto}⟩

⟨top-secret, {Nuclear}⟩ ⟨top-secret, {Crypto}⟩

L1 L2
means L1 ⊑ L2

10 / 43

⊑ is transitive

User data
LU

Internet

Lnet

LbugLU ̸⊑ Lnet

LU ⊑ Lbug

Lbug ̸⊑ Lnet
Lbug ⊑ Lnet

LU ̸⊑ Lbug

• Transitivity makes it easier to reason about security
• Example: Label user data so it cannot flow to Internet

- Policy holds regardless of what other software does

11 / 43

⊑ is transitive

User data
LU

Internet

Lnet

LbugLU ̸⊑ Lnet

LU ⊑ Lbug

Lbug ̸⊑ Lnet
Lbug ⊑ Lnet

LU ̸⊑ Lbug

• Transitivity makes it easier to reason about security
• Example: Label user data so it cannot flow to Internet

- Policy holds regardless of what other software does
• Suppose untrustworthy software reads file

- Process labeled Lbug reads file, so must have LU ⊑ Lbug

11 / 43

⊑ is transitive

User data
LU

Internet

Lnet

LbugLU ̸⊑ Lnet

LU ⊑ Lbug

Lbug ̸⊑ Lnet
Lbug ⊑ Lnet

LU ̸⊑ Lbug

• Transitivity makes it easier to reason about security
• Example: Label user data so it cannot flow to Internet

- Policy holds regardless of what other software does
• Suppose untrustworthy software reads file

- Process labeled Lbug reads file, so must have LU ⊑ Lbug
- If LU ⊑ Lbug and LU ̸⊑ Lnet, it follows that Lbug ̸⊑ Lnet.

11 / 43

⊑ is transitive

User data
LU

Internet

Lnet

LbugLU ̸⊑ Lnet

LU ⊑ Lbug

Lbug ̸⊑ Lnet
Lbug ⊑ Lnet

LU ̸⊑ Lbug

• Transitivity makes it easier to reason about security
• Example: Label user data so it cannot flow to Internet

- Policy holds regardless of what other software does
• Conversely, a process that can write to the network cannot

read the file

11 / 43

Straw man MAC implementation

• Take an ordinary Unix system
• Put labels on all files and directories to track levels
• Each user U assigned a security clearance, level(U), on login
• Determine current security level dynamically

- When U logs in, start with lowest curent-level
- Increase current-level as higher-level files are observed

(sometimes called a floating label system)
- If U’s level does not dominate current-level, kill program
- Kill program that writes to file if current label can’t flow to file label

• Is this secure?

12 / 43

No: Covert channels

• System rife with covert storage channels
- Low current-level process executes another program
- New program reads sensitive file, gets high current-level
- High program exploits covert channels to pass data to low

• E.g., high program inherits read-only file descriptor
- Can pass 4-bytes of information to low program in file offset

• Other storage channels:
- Exit value, signals, file locks, terminal escape codes, . . .

• If we eliminate storage channels, is system secure?

13 / 43

No: Timing channels

• Example: CPU utilization
- To send a 0 bit, use 100% of CPU in busy-loop
- To send a 1 bit, sleep and relinquish CPU
- Repeat to transfer more bits

• Example: Resource exhaustion
- High program allocates all physical memory if bit is 1
- If low program slow from paging, knows less memory available

• More examples: Disk head position, processor cache/TLB
polution, . . .

14 / 43

Reducing covert channels

• Observation: Covert channels come from sharing
- If you have no shared resources, no covert channels
- Extreme example: Just use two computers (common in DoD)

• Problem: Sharing needed
- E.g., read unclassified data when preparing classified

• In general, can only hope to bound bandwidth of covert
channels

• One approach: Strict partitioning of resources
- Strictly partition and schedule resources between levels
- Occasionally reapportion resources based on usage [Browne]
- Do so infrequently to bound leaked information
- Approach still not so good if many security levels possible

15 / 43

Declassification

• Sometimes need to prepare unclassified report from classified
data

• Declassification happens outside of traditional access control
model

- Present file to security officer for downgrade
• Job of declassification often not trivial

- E.g., Microsoft word saves a lot of undo information
- This might be all the secret stuff you cut from document
- Another bad mistake: Redact PDF using black censor bars over or

under text, leaving text selectable (e.g., [Cluley])

16 / 43

Biba integrity model [Biba]

• Problem: How to protect integrity
- Suppose text editor gets trojaned, subtly modifies files
- Might mess up attack plans even without leaking anything

• Observation: Integrity is the converse of secrecy
- In secrecy, want to avoid writing to lower-secrecy files
- In integrity, want to avoid writing higher-integrity files

• Use integrity hierarchy parallel to secrecy one
- Now security level is a ⟨c, i, s⟩ triple, where i = integrity
- ⟨c1, i1, s1⟩ ⊑ ⟨c2, i2, s2⟩ iff c1 ≤ c2 and i1 ≥ i2 and s1 ⊆ s2
- Only trusted users can operate at higher integrity

(which is visually lower in the lattice—opposite of secrecy)
- If you read less authentic data, your current integrity level gets

lowered (putting you up higher in the lattice), and you can no
longer write higher-integrity files

17 / 43

Outline

1 Mandatory access control

2 Labels and lattices

3 LOMAC

4 SELinux

18 / 43

LOMAC [Fraser]

• MAC not widely accepted outside military
• LOMAC’s goal: make MAC more palatable

- Stands for Low water Mark Access Control
• Concentrates on Integrity

- More important goal for many settings
- E.g., don’t want viruses tampering with all your files
- Also don’t have to worry as much about covert channels

• Provides reasonable defaults (minimally obtrusive)
• Has actually had impact

- Originally available for Linux (2.2)
- Now ships with FreeBSD
- Windows introduced similar Mandatory Integrity Control (MIC)

19 / 43

LOMAC overview

• Subjects are jobs (essentially processes)
- Each subject labeled with an integrity number (e.g., 1, 2)
- Higher numbers mean more integrity

(so unfortunately 2 ⊑ 1 by earlier notation)
- Subjects can be reclassified on observation of low-integrity data

• Objects (files, pipes, etc.) also labeled w. integrity level
- Object integrity level is fixed and cannot change

• Security: Low-integrity subjects cannot write to high integrity
objects

• New objects have level of their creator

20 / 43

LOMAC defaults

[note: can-flow-to is downward;
opposite of earlier diagram]

eth0

eth1

untrusted

external net

remote

management

link

tty1

ttyS0

/bin, /etc, WWW

downloads, email

1

2

• Two levels: 1 and 2
• Level 2 (high-integrity) contains:

- FreeBSD/Linux files intact from distro, static web server config
- The console, trusted terminals, trusted network

• Level 1 (low-integrity) contains
- NICs connected to Internet, untrusted terminals, etc.

• Idea: Suppose worm compromises your web server
- Worm comes from network → level 1
- Won’t be able to muck with system files or web server config

21 / 43

The self-revocation problem

• Want to integrate with Unix unobtrusively
• Problem: Application expectations

- Kernel access checks usually done at file open time
- Legacy applications don’t pre-declare they will observe

low-integrity data
- An application can “taint” itself unexpectedly, revoking its own

permission to access an object it created

22 / 43

Self-revocation example

• User has high-integrity (level 2) shell
• Runs: ps | grep user

- Pipe created before ps reads low-integrity data
- ps becomes tainted, can no longer write to grep

ps greppipe

level 2 level 2 level 2

23 / 43

Self-revocation example

• User has high-integrity (level 2) shell
• Runs: ps | grep user

- Pipe created before ps reads low-integrity data
- ps becomes tainted, can no longer write to grep

ps grep

r

pipe

/proc/327

level 1

level 2 level 2 level 2

23 / 43

Self-revocation example

• User has high-integrity (level 2) shell
• Runs: ps | grep user

- Pipe created before ps reads low-integrity data
- ps becomes tainted, can no longer write to grep

ps greppipe

level 1 level 2 level 2

23 / 43

Self-revocation example

• User has high-integrity (level 2) shell
• Runs: ps | grep user

- Pipe created before ps reads low-integrity data
- ps becomes tainted, can no longer write to grep

ps w greppipe

level 1 level 2 level 2

X

23 / 43

Solution

• Don’t consider pipes to be real objects
• Join multiple processes together in a “job”

- Pipe ties processes together in job
- Any processes tied to job when they read or write to pipe
- So will lower integrity of both ps and grep

• Similar idea applies to shared memory and IPC

• Summary: LOMAC applies MAC to non-military systems
- But doesn’t allow military-style security policies

(i.e., with secrecy, various categories, etc.)

24 / 43

Outline

1 Mandatory access control

2 Labels and lattices

3 LOMAC

4 SELinux

25 / 43

The flask security architecture

• Problem: Military needs adequate secure systems
- How to create civilian demand for systems military can use?

• Idea: Separate policy from enforcement mechanism
- Most people will plug in simple DAC policies
- Military can take system off-the-shelf, plug in new policy

• Requires putting adequate hooks in the system
- Each object has manager that guards access to the object
- Conceptually, manager consults security server on each access

• Flask security architecture prototyped in fluke
- Now part of SElinux

Following figures from [Spencer]

26 / 43

Architecture

Security
Policy

Security Server

Policy
Enforcement

Object Manager

Client

Object Request

PolicyEnforcement

Query

Decision

• Kernel mediates access to objects at “interesting” points
• Kicks decision up to external (user-level) security server

27 / 43

Challenges

• Performance
- Adding hooks on every operation
- People who don’t need security don’t want slowdown

• Using generic enough data structures
- Object managers independent of policy still need to associate data

structures (e.g., labels) with objects
• Revocation

- May interact in a complicated way with any access caching
- Once revocation completes, new policy must be in effect
- Bad guy cannot be allowed to delay revocation completion

indefinitely

28 / 43

Basic flask concepts

• All objects are labeled with a security context
- Security context is an arbitrary string—opaque to object manager

in the kernel
• Labels abbreviated with security IDs (SIDs)

- 32-bit integer, interpretable only by security server
- Not valid across reboots (can’t store in file system)
- Fixed size makes it easier for object manager to handle

• Queries to server done in terms of SIDs
- Create (client SID, old obj SID, obj type)? → SID
- Allow (client SID, obj SID, perms)? → {yes, no}

29 / 43

Creating new object

Client (SID C)

New SID
(SID, SID, Obj Type)

PolicyEnforcement

Label Rules

Policy Logic

SID/Context
MapNew

Obj
Obj

S
ID

Obj

S
ID

(C)

Object Manager

Create Object Request

New SID Request

New SID

Security Server

Objects

30 / 43

Security server interface [Loscocco]

int security_compute_av(
security_id_t ssid, security_id_t tsid,
security_class_t tclass, access_vector_t requested,
access_vector_t *allowed, access_vector_t *decided,
__u32 *seqno);

• ssid, tsid – source and target SIDs
• tclass – type of target

- E.g., regular file, device, raw IP socket, TCP socket, . . .
• Server can decide more than it is asked for

- access_vector_t is a bitmask of permissions
- decided can contain more than requested
- Effectively implements decision prefetching

• seqno used for revocation (in a few slides)
31 / 43

Access vector cache (AVC)

• Want to minimize calls into security server
• AVC caches results of previous decisions

- Note: Relies on simple enumerated permissions
• Decisions therefore cannot depend on parameters:
% Andy can authorize expenses up to $999.99
% Bob can run processes at priority 10 or higher

• Decisions also limited to two SIDs
- Complicates file relabeling, which requires 3 checks:

Source Target Permission checked
Subject SID Old file SID Relabel-From
Subject SID New file SID Relabel-To
Old file SID New file SID Transition-From

32 / 43

AVC in a query

Client (SID C)

PolicyEnforcement

Access Rules

Policy Logic

SID/Context

Map

(SID, SID, Perms)
Access Check

AVC

Obj

S
ID

Obj

S
ID

(C)

Object Manager Security Server

Modify Object Request

Access Query

Access Ruling

Objects

33 / 43

AVC interface

int avc_has_perm_ref(
security_id_t ssid, security_id_t tsid,
security_class_t tclass, access_vector_t requested,
avc_entry_ref_t *aeref);

• avc_entry_ref_t points to cached decision
- Contains ssid, tsid, tclass, decision vec., & recently used info

• aeref argument is hint
- After first call, will be set to relevent AVC entry
- On subsequent calls speeds up lookup

• Example: New kernel check when binding a socket:
ret = avc_has_perm_ref(

current->sid, sk->sid, sk->sclass,
SOCKET__BIND, &sk->avcr);

- Now sk->avcr is likely to be speed up next socket op
34 / 43

Revocation support

• Decisions may be cached in AVC entries
• Decisions may implicitly be cached in migrated permissions

- E.g., Unix checks file write permission on open
- But may want to disallow future writes even on open file
- Write permission migrated into file descriptor
- May also migrate into page tables/TLB w. mmap
- Also may migrate into open sockets/pipes, or operations in

progress
• AVC contains hooks for callbacks

- After revoking in AVC, AVC makes callbacks to revoke migrated
permissions

- seqno can be used to ensure strict ordering of policy changes

35 / 43

Persistence

File System

Security Server

Map

SID/PSID

Inode

Vnode

SIDOSKit File

Secure File Server

Context SID

Filesystem

Label

PSID/Security

Context Map

Inode/PSID

Map

and Files

Directories

In
o
d
e

T
ab

le

• Must label persistent objects in file system
- Persistently map each file/directory to a security context
- Security contexts are variable length, so add level of indirection
- “Persistent SIDs” (PSIDs) – numbers local to each file system

36 / 43

Transitioning SIDs

• May need to relabel objects
- E.g., files in file system

• Processes may also want to transition their SIDs
- Depends on existing permission, but also on program
- SElinux allows programs to be defined as entrypoints
- Thus, can restrict with which programs users enter a new SID

(similar to the way setuid transitions uid on program entry)

37 / 43

SElinux contexts
• In practice, SElinux contexts have four parts:

user︷ ︸︸ ︷
system_u :

role︷ ︸︸ ︷
system_r :

type︷ ︸︸ ︷
sshd_t :

level︷︸︸︷
s0

• user is not Unix user ID, e.g.:
$ id
uid=1000(dm) gid=1000(dm) groups=1000(dm) 119(admin)
context=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c255
$ /bin/su
Password:
id
uid=0(root) gid=0(root) groups=0(root)
context=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c255
newrole -r system_r -t sysadm_t
Password:
id -Z
unconfined_u:system_r:sysadm_t:s0-s0:c0.c255

38 / 43

Users, roles, types

• SElinux user is assigned on login, based on rules
semanage login -l
Login Name SELinux User MLS/MCS Range
__default__ unconfined_u s0-s0:c0.c255
root root_u s0-s0:c0.c255

• A user is allowed to assume different roles w. newrole
• But roles are restricted by SElinux (not Unix) users
semanage user -l
SELinux User ... SELinux Roles
root staff_r sysadm_r system_r
unconfined_u system_r unconfined_r
user_u user_r

39 / 43

Types

• Each role allows only certain types
- Can check with seinfo -x --role=name

• Types allow non-hierarchical security policies
- Each subject is assigned a domain, each object a type
- Policy stated in terms of what each domain can to do each type

• Example: Suppose you wish to enforce that each invoice
undergoes the following processing:

- Receipt of the invoice recorded by a clerk
- Receipt of of the merchandise verified by purchase officer
- Payment of invoice approved by supervisor

• Can encode state of invoice by its type
- Set transition rules to enforce all steps of process

40 / 43

Example: Loading kernel modules

(1) allow sysadm_t insmod_exec_t:file x_file_perms;
(2) allow sysadm_t insmod_t:process transition;
(3) allow insmod_t insmod_exec_t:process { entrypoint execute };
(4) allow insmod_t sysadm_t:fd inherit_fd_perms;
(5) allow insmod_t self:capability sys_module;
(6) allow insmod_t sysadm_t:process sigchld;

1. Allow sysadm domain to run insmod
2. Allow sysadm domain to transition to insmod
3. Allow insmod program to be entrypoint for insmod domain
4. Let insmod inherit file descriptors from sysadm
5. Let insmod use CAP_SYS_MODULE (load a kernel module)
6. Let insmod signal sysadm with SIGCHLD when done

41 / 43

Policy specification

• Very complicated sets of rules
- E.g., on Fedora, sesearch --all | wc -l shows 73K rules
- Rules based mostly on types

• Allowed/restricted transitions very important
- E.g., init can run initscripts, can run httpd
- Nowadays systemd needs to be able to transition to arbitrary types
- httpd program has special httpd_exec_t type, allows process to

have httpd_t type.
- Might label public_html directories so httpd can access them, but

not access rest of home directory
• Can also use levels to enforce MLS

- E.g., “:s0-s0:c0.c255” means process is at sensitivity s0 with no
categories, but has all categories in clearance.

42 / 43

Policy construction

te-file

if-file

fc-file

check-
module mod-file semodule_

package

pp-filesemodulecil-filepolicy.29

cil-file

cil-file
• Very low quality tooling around policy construction

- Broken build systems, incompatible kernel policy formats, . . .
• Hard to check /sys/fs/selinux/policy matches expectations

- No single-pass decompilation, tools seem to hang on real policies
- Even rebuilding from source is hard (e.g., actual compilation

happens during RPM install, using tons of spec macros)
43 / 43

