@ Cache coherence - the hardware view
@ Synchronization and memory consistency review
© C11 Atomics

@ Avoiding locks

1/47

Multicore cache coherence MESI coherence protocol

* Performance requires caches

- Divided into chuncks of bytes called lines (e.g., 64 bytes)

- Caches create an opportunity for cores to disagree about memory
* Bus-based approaches

- “Snoopy” protocols, each CPU listens to memory bus
- Use write-through and invalidate when you see a write bits
- Bus-based schemes limit scalability

* Modern CPUs use networks (e.g., hypertransport,
infinity fabric, QPI, UPI)

- CPUs pass each other messages about cache lines

3/47

Important memory system properties

e Coherence - concerns accesses to a single memory location

- Must obey program order if access from only one CPU
- There is a total order on all updates
- There is bounded latency before everyone sees a write

e Consistency - concerns ordering across memory locations

- Even with coherence, different CPUs can see the same write
happen at different times

- Sequential consistency is what matches our intuition
(As if operations from all CPUs interleaved on one CPU)

- Many architectures offer weaker consistency

- Yet well-defined weaker consistency can still be sufficient to
implement thread API contract from concurrency lecture

2/41

* Modified
- Exactly one cache has a valid copy
- That copy is dirty (needs to be written back to memory)
- Must invalidate all copies in other caches before entering this state
e Exclusive
- Same as Modified except the cache copy is clean
Shared
- One or more caches and memory have a valid copy

Invalid
- Doesn’t contain any data
Owned (for enhanced “MOESI” protocol)
- Memory may contain stale value of data (like Modified state)
- But have to broadcast modifications (sort of like Shared state)
- Can have one owned + multiple shared copies of cache line

4/47

¢ Actions performed by CPU core
- Read
- Write
- Evict (modified? must write back)

* Transactions on bus (or interconnect)

- Read: without intent to modify, data can come from memory or
another cache

- Read-exclusive: with intent to modify, must invalidate all other
cache copies

- Writeback: contents put on bus and memory is updated

5/47

¢ Old machines used dance hall architectures
- Any CPU can “dance with” any memory equally
¢ An alternative: Non-Uniform Memory Access (NUMA)
- Each CPU has fast access to some “close” memory
- Slower to access memory that is farther away
- Use a directory to keep track of who is caching what
e Originally for esoteric machines with many CPUs
- But AMD and then intel integrated memory controller into CPU

- Faster to access memory controlled by the local socket
(or even local die in a multi-chip module)

¢ cc-NUMA = cache-coherent NUMA
- Rarely see non-cache-coherent NUMA (BBN Butterfly 1, Cray T3D)

6/47

Real World Coherence Costs NUMA and spinlocks

* See [David] for a great reference. Xeon results:
- 3cycleLl, 11 cycle L2, 44 cycle LLC, 355 cycle local RAM

e If another core in same socket holds line in modified state:
- load: 109 cycles (LLC + 65)
- store: 115 cycles (LLC + 71)
- atomic CAS: 120 cycles (LLC + 76)
» If a core in a different socket holds line in modified state:
- NUMA load: 289 cycles
- NUMA store: 320 cycles
- NUMA atomic CAS: 324 cycles
* Butonly a partial picture
- Could be faster because of out-of-order execution
- Could be slower if interconnect contention or multiple hops

7/47

@ Cache coherence - the hardware view
@ Synchronization and memory consistency review
© C11 Atomics

@ Avoiding locks

9/47

mutex_t m;

lock(&m) ;
cnt = cnt + 1; /* critical section */
unlock (&m) ;
* Only one thread can hold a mutex at a time
- Makes critical section atomic
¢ Recall thread API contract

- All access to global data must be protected by a mutex
- Global =two or more threads touch data and at least one writes

* Means must map each piece of global data to one mutex
- Never touch the data unless you locked that mutex

* But many ways to map data to mutexes

11/47

e Test-and-set spinlock has several advantages
- Simple to implement and understand
- One memory location for arbitrarily many CPUs
¢ But also has disadvantages
- Lots of traffic over memory interconnect (especially w. > 1 spinner)
- Not necessarily fair (lacks bounded waiting)
- Even less fair on a NUMA machine

¢ Idea 1: Avoid spinlocks altogether (today)

¢ Idea 2: Reduce interconnect traffic with better spinlocks (next
lecture)
- Design lock that spins only on local memory
- Also gives better fairness

8/41

T(n) = T(1) (B + %(1 - B))

* Expected speedup limited when only part of a task is sped up
- T(n): the time it takes n CPU cores to complete the task
- B: the fraction of the job that must be serial

¢ Even with massive multiprocessors, Jim = B-T(1)
(e8]

\\\‘“—‘—‘_A —

123 456 7 8 9 1011 12 13 14 15 16
of CPUs

time

- Places an ultimate limit on parallel speedup

* Problem: synchronization increases serial section size
10/47

¢ Consider two lookup implementations for global hash table:
struct list *hash_tbl[1021];

coarse-grained locking
mutex_t m;

mutex_lock (&m) ;

struct list_elem *pos = list_begin (hash_tbl [hash(key)]);
/* ... walk list and find entry ... */

mutex_unlock(&m) ;

fine-grained locking
mutex_t bucket_lock[1021];

int index = hash(key);
mutex_lock(&bucket_lock[index]) ;

struct list_elem *pos = list_begin (hash_tbl[index]) ;
/* ... walk list and find entry ... */

mutex_unlock (&bucket_lock[index]) ;

° Which implementation is better? Va7

Locking granularity (continued) Locking granularity (continued)

Readers-writers problem Implementing shared locks

Implementing shared locks (continued) Implementing shared locks (continued)

v

}

v

}

* Fine-grained locking admits more parallelism

- E.g.,imagine network server looking up values in hash table
- Parallel requests will usually map to different hash buckets

- So fine-grained locking should allow better speedup
* When might coarse-grained locking be better?

Recall amutex allows access in only one thread
But a data race occurs only if

- Multiple threads access the same data, and
- At least one of the accesses is a write

How to allow multiple readers or one single writer?
- Need lock that can be shared amongst concurrent readers

e Can implement using other primitives (next slides)

- Keep integer i - # of readers or -1 if held by writer
- Protect i with mutex
- Sleep on condition variable when can’t get lock

0id ReleaseShared (sharedlk #*sl) {
lock (&sl->m);
if (1--sl->i)
signal (&sl->c);
unlock (&sl->m);

0id ReleaseExclusive (sharedlk *sl) {
lock (&sl->m);

sl->i = 0;

broadcast (&sl->c);

unlock (&sl->m);

* Any issues with this implementation?

¢ Fine-grained locking admits more parallelism
- E.g.,imagine network server looking up values in hash table
- Parallel requests will usually map to different hash buckets
- Sofine-grained locking should allow better speedup

* When might coarse-grained locking be better?
- Suppose you have global data that applies to whole hash table

struct hash_table {
size_t num_elements;
size_t num_buckets;
struct list *buckets;

>

/* num items in hash table */
/* size of buckets array */
/* array of buckets */

- Read num_buckets each time you insert
- Check num_elements on insert, possibly expand buckets & rehash
- Single global mutex would protect these fields

e Can you avoid serializing lookups to growable hash table?

13/47 13/47

struct sharedlk {
int i; /* # shared lockers, or -1 if exclusively locked */
mutex_t m;
cond_t c;

}s

void AcquireExclusive (sharedlk *sl) {
lock (&sl->m);
while (sl->i) { wait (&sl->m, &sl->c); }
sl->i = -1;
unlock (&sl->m);

}

void AcquireShared (sharedlk *sl) {
lock (&sl->m);
while (&sl->i < 0) { wait (&sl->m, &sl->c); }
sl->i++;
unlock (&sl->m);
}

14/47 15/47

void ReleaseShared (sharedlk *sl) {
lock (&sl->m);
if ('--s1->i)
signal (&sl->c);
unlock (&sl->m);
}

void ReleaseExclusive (sharedlk *sl) {
lock (&sl->m);
sl->i = 0;
broadcast (&sl->c);
unlock (&sl->m);
}

* Any issues with this implementation?
- Prone to starvation of writer (no bounded waiting)
- How might you fix?

16/47 16/47

Review: Test-and-set spinlock Memory reordering danger

struct var {
int lock;
int val;

};

* Suppose no sequential consistency (& don’t compensate)
e Hardware could violate program order

View on CPU #2
v->lock = 1;

void atomic_inc (var *v) {

while (test_and_set (&v->lock)) Program order on CPU #1

; v->lock = 1;
v->val++; register = v->val;
v->lock = 0;

}

v->val = register + 1;
v->lock = 0; v->lock = 0;
/* danger */;

v->val = register + 1;

void atomic_dec (var *v) {
while (test_and_set (&v->lock))

v->val--;
v->lock = 0;
}

e Is this code correct without sequential consistency?

e If atomic_inc called at /* danger */, bad val ensues!

17/47 18/47

Ordering requirements

Ordering requirements

void atomic_inc (var *v) {
while (test_and_set (&v->lock))

v->val++;
/* danger */
v->lock = 0;
}
* Must ensure all CPUs see the following:
1. v->lock = 1ran before v->val was read and written
2. v->lock = Oran after v->val was written
* How does #1 get assured on x86?
- Recall test_and_set uses xchgl %eax, (%edx)

void atomic_inc (var *v) {
while (test_and_set (&v->lock))

v->val++;
/* danger */
v->lock = 0;

}

© Must ensure all CPUs see the following:

1. v->lock = 1ran before v->val was read and written
2. v->lock = 0ran after v->val was written

* How does #1 get assured on x86?

- Recall test_and_set uses xchgl %eax, (%edx)
- xchgl instruction always “locked,” ensuring barrier

* How to ensure #2 on x86? * How to ensure #2 on x86?

19/47 19/47

Gcc extended asm syntax [gnu]

asm volatile (template-string : outputs : inputs : clobbers) ; |

Ordering requirements

void atomic_inc (var *v) {
while (test_and_set (&v->lock))

v_;va1++; e Puts template-string in assembly language compiler output
asm volatile ("sfence" ::: '"memory"); - Expands %0, %1, ... (a bit like printf conversion specifiers)
) v->lock = 0; - Use “%%” for a literal % (e.g., “%%cr3” to specify %cr3 register)

« Must ensure all CPUs see the following: e inputs/outputs specify parameters as "constraint" (value)

1. v->lock = 1ran before v->val was read and written
2. v->lock = Oran after v->val was written
* How does #1 get assured on x86?
- Recall test_and_set uses xchgl %eax, (%edx)
- xchgl instruction always “locked,” ensuring barrier
* How to ensure #2 on x86?
- Might need fence instruction after, e.g., non-temporal stores
- Definitely need compiler barrier

int outvar, invar = 3;
asm ("movl %1, %0" : "=r" (outvar)
/* now outvar == 3 */

: "r" (invar));

e clobbers lists other state that get used/overwritten
- Special value "memory" prevents reordering with loads & stores
- Serves as compiler barrier, as important as hardware barrier

® volatile indicates side effects other than result
- Otherwise, gcc might optimize away if you don’t use result

19/47 20/47

Correct spinlock on alpha Memory barriers/fences

¢ Recall implementation of test_and_set on alpha (with much
weaker memory consistency than x86):

_test_and_set:

¢ Fortunately, consistency need not overly complicate code
- If you do locking right, only need a few fences within locking code

1dg_1 v0, 0(a0) # vO = *lockp (LOCKED) - Code will be easily portable to new CPUs
bne v0o, 1f # if (v0) return .
addq zero, 1, vO % 70 = 1 * Most programmers should stick to mutexes

stq_c v0, 0(a0) # *lockp = vO (CONDITIONAL) e But advanced techniques may require lower-level code
#

beq v0, _test_and_set # if (failed) try again - Later this lecture will see some wait-free algorithms

mb
addq zero, zero, vO # return 0 - Also important for optimizing special-case locks
1: ret zero, (ra), 1 (E.g., linux kernel rw_semaphore, ...)

* Memory barrier instruction mb (like mfence) Algorithms often explained assuming sequential consistency
- All processors will see tha_t everything before mb in program order - Must know how to use memory fences to implement correctly
happened before everything after mb in program order - E.g., see [Howells] for how Linux deals with memory consistency

* Need barrier before releasing spinlock as well: - And another plug for Why Memory Barriers
1 t 1 1 n b!l o n n ;
flflggka:lo? ('m memory") ¢ Next: How C11 allows portable low-level code
21/47 22/47

¢ Lots of variation in atomic instructions, consistency models,
compiler behavior

@ Cache coherence - the hardware view - Changing the compiler or optimization level can invalidate code

» Different CPUs today: Your (non-M1) laptop is x86, while your
cell phone uses ARM

- x86: Total Store Order Consistency Model, CISC
- arm: Relaxed Consistency Model, RISC

@ Synchronization and memory consistency review

© ci1Atomics e Could make it impossible to write portable kernels and

applications
@ Avoiding locks * Fortunately, the C11 standard has builtin support for atomics
- Enable in GCC with the -std=gnu11 flag (now the default)

Also available in C++11, but won’t discuss today

23/47 24/47

Background: C memory model [C11] C11 Atomics: Big picture

C11 says behavior of a data race is undefined

e Within a thread, many evaluations are sequenced
- Eg,in“610; £20;” evaluation of £1 is sequenced before £2 - Awrite conflicts with a read or write of same memory location

- Two conflicting operations race if not ordered by happens before

- Undefined can be anything (e.g., delete all your files, ...)

. . . Spinlocks (and hence mutexes that internally use spinlocks)
¢ Evaluation A happens before B, which we’ll write A — B, when: synchronize across threads

- Als sequenced before B (in the same thread), - Synchronization adds happens before arrows, avoiding data races
- Asynchronizes with B,

- Ais dependency-ordered before B (ignore for now—means A has
release semantics and B consume semantics for same value), or C11 atomics provide direct access to synchronized lower-level

- There is another operation X such thatA — X — B.1 operations
- E.g., can get compiler to issue lock prefix in some cases

* Across threads, some operations synchronize with others
- E.g., releasing mutex m synchronizes with a subsequent acquire m

Yet hardware supports other means of synchronization

Except chain of “—” cannot end: ..., dependency-ordered, sequenced before
25/47 26/47

C11 Atomics: Basics Locking and atomic flags

¢ Include new <stdatomic.h> header
* New _Atomic type qualifier: e.g., _Atomic int foo;
- Convenient aliases: atomic_bool, atomic_int, atomic_ulong, ...
- Must initialize specially:
#include <stdatomic.h>
Atomic_ int global_int = ATOMIC_VAR_INIT(140);

Atomic_(int) *dyn = malloc(sizeof (xdyn));
atomic_init(dyn, 140);

* Compiler emits read-modify-write instructions for atomics
- E.g., +=, -=, |=, &=, "=, ++, -- do what you would hope
- Act atomically and synchronize with one another

e Also functions including atomic_fetch_add,
atomic_compare_exchange_strong,...

27/47

Exposing weaker consistency Memory ordering

enum memory_order { /*...*/ };

_Bool atomic_flag_test_and_set_explicit(

volatile atomic_flag *obj, memory_order order) ;
void atomic_flag_clear_explicit(

volatile atomic_flag *obj, memory_order order) ;

C atomic_load_explicit(

const volatile A *obj, memory_order order) ;
void atomic_store_explicit(

volatile A *obj, C desired, memory_order order);

bool atomic_compare_exchange_weak_explicit(
A xobj, C *expected, C desired,
memory_order succ, memory_order fail);

o Atomic functions have _explicit variants
- These guarantee coherence but not sequential consistency

- May allow compiler to generate faster code
29/47

Types of memory fence? Example: Atomic counters

Acquire fence
Acq_rel fence ‘

[Load-Load Load-Store]
I Store-Store

—

Store-Load

Release fence
Seq_cst fence

* X-Y fence = operations of type X sequenced before the fence
happen before operations of type Y sequenced after the fence

2Credit to [Preshing] for explaining it this way
31/47

¢ Implementations might use spinlocks internally for most
atomics
- Could interact badly with interrupt/signal handlers
- Can check if ATOMIC_INT_LOCK_FREE, etc., macros defined
- Fortunately modern CPUs don’t require this
® atomic_flagis a special type guaranteed lock-free
- Boolean value without support for loads and stores
- Initialize with: atomic_flag mylock = ATOMIC_FLAG_INIT;
- Only two kinds of operation possible:
> _Bool atomic_flag_test_and_set(volatile atomic_flag *obj);
> void atomic_flag_clear(volatile atomic_flag *obj);

- Above functions guarantee sequential consistency (atomic
operation serves as memory fence, too)

28/47

e Six possible memory_order values:
1. memory_order_relaxed: Nno memory ordering
. memory_order_consume: super tricky, see [Preshing] for discussion
. memory_order_acquire: for start of critical section
. memory_order_release: for end of critical section
. memory_order_acq_rel: combines previous two
6. memory_order_seq_cst: full sequential consistency

au b~ WN

* Also have fence operation not tied to particular atomic:
void atomic_thread_fence(memory_order order);

e Suppose thread 1 releases and thread 2 acquires

- Thread 1’s preceding accesses can’t move past release store
- Thread 2’s subsequent accesses can’t move before acquire load
- Warning: other threads might see a completely different order

30/47

_Atomic(int) packet_count;
void

recv_packet(...)

atomic_fetch_add_explicit (&packet_count , 1,
memory_order_relaxed) ;

}

* Need to count packets accurately

¢ Don’t need to order other memory accesses across threads
* Relaxed memory order can avoid unnecessary overhead
- Depending on hardware, of course (not x86)

32/47

Example: Producer, consumer 1 Example: Producer, consumer 2

struct message msg_buf;
_Atomic(_Bool) msg_ready;

void send(struct message *m) {
msg_buf = *m;
atomic_thread_fence(memory_order_release) ;
/* Prior loads+stores happen before subsequent stores */
atomic_store_explicit(&msg_ready, 1,
memory_order_relaxed) ;
}

struct message *recv(void) {
_Bool ready = atomic_load_explicit(&msg_ready,
memory_order_relaxed);
if (!ready)
return NULL;
atomic_thread_fence(memory_order_acquire);
/* Prior loads happen before subsequent loads+stores */
return &msg_buf;

33/47

Example: Test-and-set spinlock

void
spin_lock(atomic_flag *lock)
{

while(atomic_flag_test_and_set_explicit(lock,
memory_order_acquire))

}

void
spin_unlock(atomic_flag *lock)

atomic_flag_clear_explicit(lock, memory_order_release);

}

struct message msg_buf;
_Atomic(_Bool) msg_ready;

void send(struct message *m) {
msg_buf = *m;
atomic_store_explicit (&msg_ready, 1,
memory_order_release);
}

struct message *recv(void) {
_Bool ready = atomic_load_explicit(&msg_ready,
memory_order_acquire) ;
if (lready)
return NULL;
return &msg_buf;

}

e This is potentially faster than previous example
- E.g., other stores after send can be moved before msg_buf

34/47

Example: Better test-and-set spinlock

void
spin_lock(atomic_bool *lock)

while(atomic_exchange_explicit(lock, 1,
memory_order_acquire)) {
while(atomic_load_explicit(lock, memory_order_relaxed))
__builtin_ia32_pause(); /* x86-specific */
}

}

void
spin_unlock(atomic_bool *lock)

atomic_store_explicit(lock, 0, memory_order_release);

}

e See [Rigtorp] for a good discussion

35/47

/* PRODUCER */
for (5;) {
item *nextProduced
= produce_item ();

@ Cache coherence - the hardware view

@ Synchronization and memory consistency review mutex_lock (&mutex);
while (count == BUF_SIZE)
cond_wait (&nonfull,

© cC11Atomics fmutex) ;
buffer[in] = nextProduced;
in = (in + 1) % BUF_SIZE;
count++;

cond_signal (&nonempty) ;
mutex_unlock (&mutex);

@ Avoiding locks

37/47

36/47

/* CONSUMER */
for (;;) {
mutex_lock (&mutex);
while (count == 0)
cond_wait (&nonempty,
&mutex) ;

nextConsumed = buffer[out];
out = (out + 1) % BUF_SIZE;
count--;

cond_signal (&nonfull);
mutex_unlock (&mutex);

consume_item (nextConsumed);

38/47

Eliminating locks Lock-free producer/consumer

* One use of locks is to coordinate multiple updates of single
piece of state
* How to remove locks here?
- Factor state so that each variable only has a single writer

* Producer/consumer example revisited

- Assume one producer, one consumer

- Why do we need count variable, written by both?
To detect buffer full/empty

- Have producer write in, consumer write out (both _Atomic)
- Use in/out to detect buffer state
- But note next example busy-waits, which is less good

39/47

Version with relaxed atomics

void producer (void *ignored) {
for (5;) {
item *nextProduced = produce_item ();
int myin = atomic_load_explicit(&in, memory_order_relaxed);
for (5;) {
if ((myin + 1) % BUF_SIZE !=
atomic_load_explicit(&out, memory_order_acquire))
// Could you get away with relaxed here?~~"""""
break;
thread_yield Q);
}
buffer [myin] = nextProduced;
atomic_store_explicit(&in, (myin+1) 7% BUF_SIZE,
memory_order_release) ;
}
¥

void consumer (void *ignored) {

// Use memory_order_acquire to load in (for latest buffer[myin])

// Use memory_order_release to store out

}

41/47

Example: non-blocking stack Wait-free stack issues

struct item {
/* data */
_Atomic (struct item *) next;
};
typedef _Atomic (struct item *) stack_t;

void atomic_push (stack_t *stack, item *i) {
do {
i->next = *stack;
} while (!CAS (stack, i->next, i));
}

item *atomic_pop (stack_t *stack) {
item *i;
do {
i = xstack;
} while (!CAS (stack, i, i->next));
return i;

}

43/47

atomic_int in, out;

void producer (void *ignored) {
for (;5;) {
item *nextProduced = produce_item ();
while (((in + 1) % BUF_SIZE) == out) thread_yield ();
buffer[in] = nextProduced;
in = (in + 1) % BUF_SIZE;

}

void consumer (void *ignored) {
for ;) {
while (in == out) thread_yield ();
nextConsumed = buffer[out];
out = (out + 1) % BUF_SIZE;
consume_item (nextConsumed) ;

}

[Note fences not needed because no relaxed atomics] oy

Non-blocking synchronization

Design algorithm to avoid critical sections
- Any threads can make progress if other threads are preempted
- Which wouldn’t be the case if preempted thread held a lock
Requires that hardware provide the right kind of atomics
- Simple test-and-set is insufficient

- Atomic compare and swap is good: CAS (mem, old, new)
If ¥mem == o1d, then swap *mem«—new and return true, else false

Can implement many common data structures
- Stacks, queues, even hash tables

Can implement any algorithm on right hardware

- Need operation such as atomic compare and swap
(has property called consensus number = oo [Herlihy])

- Entire kernels have been written without locks [Greenwald]

42 /47

e —T
i = *stack;
stack: B)E}

reg < i->next
stack)[C > NULL

’CAS (stack, i, i->next)

stack garbage

* “ABA” race in pop if other thread pops, re-pushesii
- Can be solved by counters or hazard pointers to delay re-use

> NULL

Meanwhile, memory of object A
gets recycled for A' of same type

> NULL

44/47

e Could also eliminate locks by having race conditions
* Maybe you think you care more about speed than correctness

++hits; /* each time someone accesses web site */
* Maybe you think you can get away with the race

if (!initialized) {

lock (m);

if (linitialized) {
initialize ();
atomic_thread_fence (memory_order_release); /* why? */
initialized = 1;

}

unlock (m);

}

e Butdon’tdo this [Vyukov], [Boehm]! Not benign at all
- Get undefined behavior—akin to out-of-bounds array access in C11
- If needed for efficiency, use relaxed-memory-order atomics

45/47

The exciting conclusion of RCU
- Spoiler: safe on all architectures except on alpha

Building a better spinlock

What interface should kernel provide for sleeping locks?
Deadlock
Scalable interface design

47/47

* Some data is read way more often than written
- Routing tables consulted for each forwarded packet
- Data maps in system with 100+ disks (updated on disk failure)
e Optimize for the common case of reading without lock
- E.g., global variable: routing_table *rt;
- Calllookup (rt, route); with nolock
e Update by making copy, swapping pointer
routing_table *newrt = copy_routing_table (rt);
update_routing_table (newrt);

atomic_thread_fence (memory_order_release);
rt = newrt;

¢ Is RCU really safe? Stay tuned next lecture...

46 /47

