
Outline

1 Cache coherence – the hardware view

2 Synchronization and memory consistency review

3 C11 Atomics

4 Avoiding locks

1 / 47

Important memory system properties

• Coherence – concerns accesses to a single memory location
- Must obey program order if access from only one CPU
- There is a total order on all updates
- There is bounded latency before everyone sees a write

• Consistency – concerns ordering across memory locations
- Even with coherence, different CPUs can see the same write

happen at different times
- Sequential consistency is what matches our intuition

(As if operations from all CPUs interleaved on one CPU)
- Many architectures offer weaker consistency
- Yet well-defined weaker consistency can still be sufficient to

implement thread API contract from concurrency lecture

2 / 47

Multicore cache coherence

• Performance requires caches
- Divided into chuncks of bytes called lines (e.g., 64 bytes)
- Caches create an opportunity for cores to disagree about memory

• Bus-based approaches
- “Snoopy” protocols, each CPU listens to memory bus
- Use write-through and invalidate when you see a write bits
- Bus-based schemes limit scalability

• Modern CPUs use networks (e.g., hypertransport,
infinity fabric, QPI, UPI)

- CPUs pass each other messages about cache lines

3 / 47

MESI coherence protocol

• Modified
- Exactly one cache has a valid copy
- That copy is dirty (needs to be written back to memory)
- Must invalidate all copies in other caches before entering this state

• Exclusive
- Same as Modified except the cache copy is clean

• Shared
- One or more caches and memory have a valid copy

• Invalid
- Doesn’t contain any data

• Owned (for enhanced “MOESI” protocol)
- Memory may contain stale value of data (like Modified state)
- But have to broadcast modifications (sort of like Shared state)
- Can have one owned + multiple shared copies of cache line

4 / 47

Core and Bus Actions

• Actions performed by CPU core
- Read
- Write
- Evict (modified? must write back)

• Transactions on bus (or interconnect)
- Read: without intent to modify, data can come from memory or

another cache
- Read-exclusive: with intent to modify, must invalidate all other

cache copies
- Writeback: contents put on bus and memory is updated

5 / 47

cc-NUMA

• Old machines used dance hall architectures
- Any CPU can “dance with” any memory equally

• An alternative: Non-Uniform Memory Access (NUMA)
- Each CPU has fast access to some “close” memory
- Slower to access memory that is farther away
- Use a directory to keep track of who is caching what

• Originally for esoteric machines with many CPUs
- But AMD and then intel integrated memory controller into CPU
- Faster to access memory controlled by the local socket

(or even local die in a multi-chip module)
• cc-NUMA = cache-coherent NUMA

- Rarely see non-cache-coherent NUMA (BBN Butterfly 1, Cray T3D)

6 / 47

Real World Coherence Costs

• See [David] for a great reference. Xeon results:
- 3 cycle L1, 11 cycle L2, 44 cycle LLC, 355 cycle local RAM

• If another core in same socket holds line in modified state:
- load: 109 cycles (LLC + 65)
- store: 115 cycles (LLC + 71)
- atomic CAS: 120 cycles (LLC + 76)

• If a core in a different socket holds line in modified state:
- NUMA load: 289 cycles
- NUMA store: 320 cycles
- NUMA atomic CAS: 324 cycles

• But only a partial picture
- Could be faster because of out-of-order execution
- Could be slower if interconnect contention or multiple hops

7 / 47

NUMA and spinlocks

• Test-and-set spinlock has several advantages
- Simple to implement and understand
- One memory location for arbitrarily many CPUs

• But also has disadvantages
- Lots of traffic over memory interconnect (especially w. > 1 spinner)
- Not necessarily fair (lacks bounded waiting)
- Even less fair on a NUMA machine

• Idea 1: Avoid spinlocks altogether (today)
• Idea 2: Reduce interconnect traffic with better spinlocks (next

lecture)
- Design lock that spins only on local memory
- Also gives better fairness

8 / 47

Outline

1 Cache coherence – the hardware view

2 Synchronization and memory consistency review

3 C11 Atomics

4 Avoiding locks

9 / 47

Amdahl’s law

T(n) = T(1)
(

B +
1
n(1− B)

)

• Expected speedup limited when only part of a task is sped up
- T(n): the time it takes n CPU cores to complete the task
- B: the fraction of the job that must be serial

• Even with massive multiprocessors, lim
n→∞

= B · T(1)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

tim
e

of CPUs

- Places an ultimate limit on parallel speedup
• Problem: synchronization increases serial section size

10 / 47

Locking basics

mutex_t m;

lock(&m);
cnt = cnt + 1; /* critical section */
unlock(&m);

• Only one thread can hold a mutex at a time
- Makes critical section atomic

• Recall thread API contract
- All access to global data must be protected by a mutex
- Global = two or more threads touch data and at least one writes

• Means must map each piece of global data to one mutex
- Never touch the data unless you locked that mutex

• But many ways to map data to mutexes

11 / 47

Locking granularity
• Consider two lookup implementations for global hash table:

struct list *hash_tbl[1021];

coarse-grained locking
mutex_t m;

...
mutex_lock(&m);
struct list_elem *pos = list_begin (hash_tbl[hash(key)]);
/* ... walk list and find entry ... */
mutex_unlock(&m);

fine-grained locking
mutex_t bucket_lock[1021];

...
int index = hash(key);
mutex_lock(&bucket_lock[index]);
struct list_elem *pos = list_begin (hash_tbl[index]);
/* ... walk list and find entry ... */
mutex_unlock(&bucket_lock[index]);

• Which implementation is better? 12 / 47

Locking granularity (continued)

• Fine-grained locking admits more parallelism
- E.g., imagine network server looking up values in hash table
- Parallel requests will usually map to different hash buckets
- So fine-grained locking should allow better speedup

• When might coarse-grained locking be better?

- Suppose you have global data that applies to whole hash table
struct hash_table {
size_t num_elements; /* num items in hash table */
size_t num_buckets; /* size of buckets array */
struct list *buckets; /* array of buckets */

};

- Read num_buckets each time you insert
- Check num_elements on insert, possibly expand buckets & rehash
- Single global mutex would protect these fields

• Can you avoid serializing lookups to growable hash table?

13 / 47

Locking granularity (continued)

• Fine-grained locking admits more parallelism
- E.g., imagine network server looking up values in hash table
- Parallel requests will usually map to different hash buckets
- So fine-grained locking should allow better speedup

• When might coarse-grained locking be better?
- Suppose you have global data that applies to whole hash table
struct hash_table {
size_t num_elements; /* num items in hash table */
size_t num_buckets; /* size of buckets array */
struct list *buckets; /* array of buckets */

};

- Read num_buckets each time you insert
- Check num_elements on insert, possibly expand buckets & rehash
- Single global mutex would protect these fields

• Can you avoid serializing lookups to growable hash table?
13 / 47

Readers-writers problem

• Recall a mutex allows access in only one thread
• But a data race occurs only if

- Multiple threads access the same data, and
- At least one of the accesses is a write

• How to allow multiple readers or one single writer?
- Need lock that can be shared amongst concurrent readers

• Can implement using other primitives (next slides)
- Keep integer i – # of readers or -1 if held by writer
- Protect i with mutex
- Sleep on condition variable when can’t get lock

14 / 47

Implementing shared locks

struct sharedlk {
int i; /* # shared lockers, or -1 if exclusively locked */
mutex_t m;
cond_t c;

};

void AcquireExclusive (sharedlk *sl) {
lock (&sl->m);
while (sl->i) { wait (&sl->m, &sl->c); }
sl->i = -1;
unlock (&sl->m);

}

void AcquireShared (sharedlk *sl) {
lock (&sl->m);
while (&sl->i < 0) { wait (&sl->m, &sl->c); }
sl->i++;
unlock (&sl->m);

}

15 / 47

Implementing shared locks (continued)

void ReleaseShared (sharedlk *sl) {
lock (&sl->m);
if (!--sl->i)
signal (&sl->c);

unlock (&sl->m);
}

void ReleaseExclusive (sharedlk *sl) {
lock (&sl->m);
sl->i = 0;
broadcast (&sl->c);
unlock (&sl->m);

}

• Any issues with this implementation?

- Prone to starvation of writer (no bounded waiting)
- How might you fix?

16 / 47

Implementing shared locks (continued)

void ReleaseShared (sharedlk *sl) {
lock (&sl->m);
if (!--sl->i)
signal (&sl->c);

unlock (&sl->m);
}

void ReleaseExclusive (sharedlk *sl) {
lock (&sl->m);
sl->i = 0;
broadcast (&sl->c);
unlock (&sl->m);

}

• Any issues with this implementation?
- Prone to starvation of writer (no bounded waiting)
- How might you fix?

16 / 47

Review: Test-and-set spinlock

struct var {
int lock;
int val;

};

void atomic_inc (var *v) {
while (test_and_set (&v->lock))
;

v->val++;
v->lock = 0;

}

void atomic_dec (var *v) {
while (test_and_set (&v->lock))
;

v->val--;
v->lock = 0;

}

• Is this code correct without sequential consistency?
17 / 47

Memory reordering danger

• Suppose no sequential consistency (& don’t compensate)
• Hardware could violate program order

Program order on CPU #1 View on CPU #2
v->lock = 1; v->lock = 1;
register = v->val;
v->val = register + 1;
v->lock = 0; v->lock = 0;

/* danger */;
v->val = register + 1;

• If atomic_inc called at /* danger */, bad val ensues!

18 / 47

Ordering requirements

void atomic_inc (var *v) {
while (test_and_set (&v->lock))
;

v->val++;
/* danger */
v->lock = 0;

}

• Must ensure all CPUs see the following:
1. v->lock = 1 ran before v->val was read and written
2. v->lock = 0 ran after v->val was written

• How does #1 get assured on x86?
- Recall test_and_set uses xchgl %eax,(%edx)

- xchgl instruction always “locked,” ensuring barrier

• How to ensure #2 on x86?

- Might need fence instruction after, e.g., non-temporal stores
- Definitely need compiler barrier

19 / 47

Ordering requirements

void atomic_inc (var *v) {
while (test_and_set (&v->lock))
;

v->val++;
/* danger */
v->lock = 0;

}

• Must ensure all CPUs see the following:
1. v->lock = 1 ran before v->val was read and written
2. v->lock = 0 ran after v->val was written

• How does #1 get assured on x86?
- Recall test_and_set uses xchgl %eax,(%edx)
- xchgl instruction always “locked,” ensuring barrier

• How to ensure #2 on x86?

- Might need fence instruction after, e.g., non-temporal stores
- Definitely need compiler barrier

19 / 47

Ordering requirements

void atomic_inc (var *v) {
while (test_and_set (&v->lock))
;

v->val++;
asm volatile ("sfence" ::: "memory");
v->lock = 0;

}

• Must ensure all CPUs see the following:
1. v->lock = 1 ran before v->val was read and written
2. v->lock = 0 ran after v->val was written

• How does #1 get assured on x86?
- Recall test_and_set uses xchgl %eax,(%edx)
- xchgl instruction always “locked,” ensuring barrier

• How to ensure #2 on x86?
- Might need fence instruction after, e.g., non-temporal stores
- Definitely need compiler barrier

19 / 47

Gcc extended asm syntax [gnu]

asm volatile (template-string : outputs : inputs : clobbers);

• Puts template-string in assembly language compiler output
- Expands %0, %1, . . . (a bit like printf conversion specifiers)
- Use “%%” for a literal % (e.g., “%%cr3” to specify %cr3 register)

• inputs/outputs specify parameters as "constraint" (value)
int outvar, invar = 3;
asm ("movl %1, %0" : "=r" (outvar) : "r" (invar));
/* now outvar == 3 */

• clobbers lists other state that get used/overwritten
- Special value "memory" prevents reordering with loads & stores
- Serves as compiler barrier, as important as hardware barrier

• volatile indicates side effects other than result
- Otherwise, gcc might optimize away if you don’t use result

20 / 47

Correct spinlock on alpha
• Recall implementation of test_and_set on alpha (with much

weaker memory consistency than x86):
_test_and_set:

ldq_l v0, 0(a0) # v0 = *lockp (LOCKED)
bne v0, 1f # if (v0) return
addq zero, 1, v0 # v0 = 1
stq_c v0, 0(a0) # *lockp = v0 (CONDITIONAL)
beq v0, _test_and_set # if (failed) try again
mb
addq zero, zero, v0 # return 0

1: ret zero, (ra), 1

• Memory barrier instruction mb (like mfence)
- All processors will see that everything before mb in program order

happened before everything after mb in program order
• Need barrier before releasing spinlock as well:

asm volatile ("mb" ::: "memory");
v->lock = 0;

21 / 47

Memory barriers/fences

• Fortunately, consistency need not overly complicate code
- If you do locking right, only need a few fences within locking code
- Code will be easily portable to new CPUs

• Most programmers should stick to mutexes
• But advanced techniques may require lower-level code

- Later this lecture will see some wait-free algorithms
- Also important for optimizing special-case locks

(E.g., linux kernel rw_semaphore, . . .)
• Algorithms often explained assuming sequential consistency

- Must know how to use memory fences to implement correctly
- E.g., see [Howells] for how Linux deals with memory consistency
- And another plug for Why Memory Barriers

• Next: How C11 allows portable low-level code
22 / 47

Outline

1 Cache coherence – the hardware view

2 Synchronization and memory consistency review

3 C11 Atomics

4 Avoiding locks

23 / 47

Atomics and portability

• Lots of variation in atomic instructions, consistency models,
compiler behavior

- Changing the compiler or optimization level can invalidate code
• Different CPUs today: Your (non-M1) laptop is x86, while your

cell phone uses ARM
- x86: Total Store Order Consistency Model, CISC
- arm: Relaxed Consistency Model, RISC

• Could make it impossible to write portable kernels and
applications
• Fortunately, the C11 standard has builtin support for atomics

- Enable in GCC with the -std=gnu11 flag (now the default)
• Also available in C++11, but won’t discuss today

24 / 47

Background: C memory model [C11]

• Within a thread, many evaluations are sequenced
- E.g., in “f1(); f2();”, evaluation of f1 is sequenced before f2

• Across threads, some operations synchronize with others
- E.g., releasing mutex m synchronizes with a subsequent acquire m

• Evaluation A happens before B, which we’ll write A→ B, when:
- A is sequenced before B (in the same thread),
- A synchronizes with B,
- A is dependency-ordered before B (ignore for now—means A has

release semantics and B consume semantics for same value), or
- There is another operation X such that A→ X → B.1

1Except chain of “→” cannot end: . . . , dependency-ordered, sequenced before
25 / 47

C11 Atomics: Big picture

• C11 says behavior of a data race is undefined
- A write conflicts with a read or write of same memory location
- Two conflicting operations race if not ordered by happens before
- Undefined can be anything (e.g., delete all your files, . . .)

• Spinlocks (and hence mutexes that internally use spinlocks)
synchronize across threads

- Synchronization adds happens before arrows, avoiding data races
• Yet hardware supports other means of synchronization
• C11 atomics provide direct access to synchronized lower-level

operations
- E.g., can get compiler to issue lock prefix in some cases

26 / 47

C11 Atomics: Basics

• Include new <stdatomic.h> header
• New _Atomic type qualifier: e.g., _Atomic int foo;

- Convenient aliases: atomic_bool, atomic_int, atomic_ulong, . . .
- Must initialize specially:
#include <stdatomic.h>
Atomic_ int global_int = ATOMIC_VAR_INIT(140);

...
Atomic_(int) *dyn = malloc(sizeof(*dyn));
atomic_init(dyn, 140);

• Compiler emits read-modify-write instructions for atomics
- E.g., +=, -=, |=, &=, ^=, ++, -- do what you would hope
- Act atomically and synchronize with one another

• Also functions including atomic_fetch_add,
atomic_compare_exchange_strong, . . .

27 / 47

Locking and atomic flags

• Implementations might use spinlocks internally for most
atomics

- Could interact badly with interrupt/signal handlers
- Can check if ATOMIC_INT_LOCK_FREE, etc., macros defined
- Fortunately modern CPUs don’t require this

• atomic_flag is a special type guaranteed lock-free
- Boolean value without support for loads and stores
- Initialize with: atomic_flag mylock = ATOMIC_FLAG_INIT;
- Only two kinds of operation possible:

▷ _Bool atomic_flag_test_and_set(volatile atomic_flag *obj);
▷ void atomic_flag_clear(volatile atomic_flag *obj);

- Above functions guarantee sequential consistency (atomic
operation serves as memory fence, too)

28 / 47

Exposing weaker consistency

enum memory_order { /*...*/ };

_Bool atomic_flag_test_and_set_explicit(
volatile atomic_flag *obj, memory_order order);

void atomic_flag_clear_explicit(
volatile atomic_flag *obj, memory_order order);

C atomic_load_explicit(
const volatile A *obj, memory_order order);

void atomic_store_explicit(
volatile A *obj, C desired, memory_order order);

bool atomic_compare_exchange_weak_explicit(
A *obj, C *expected, C desired,
memory_order succ, memory_order fail);

• Atomic functions have _explicit variants
- These guarantee coherence but not sequential consistency
- May allow compiler to generate faster code

29 / 47

Memory ordering

• Six possible memory_order values:
1. memory_order_relaxed: no memory ordering
2. memory_order_consume: super tricky, see [Preshing] for discussion
3. memory_order_acquire: for start of critical section
4. memory_order_release: for end of critical section
5. memory_order_acq_rel: combines previous two
6. memory_order_seq_cst: full sequential consistency

• Also have fence operation not tied to particular atomic:
void atomic_thread_fence(memory_order order);

• Suppose thread 1 releases and thread 2 acquires
- Thread 1’s preceding accesses can’t move past release store
- Thread 2’s subsequent accesses can’t move before acquire load
- Warning: other threads might see a completely different order

30 / 47

Types of memory fence2

Load-Load Load-Store

Store-Load Store-Store

Seq_cst fence

Acquire fence

Release fence

Acq_rel fence

• X-Y fence = operations of type X sequenced before the fence
happen before operations of type Y sequenced after the fence

2Credit to [Preshing] for explaining it this way
31 / 47

Example: Atomic counters

_Atomic(int) packet_count;

void
recv_packet(...)
{ ...
atomic_fetch_add_explicit(&packet_count, 1,

memory_order_relaxed);...
}

• Need to count packets accurately
• Don’t need to order other memory accesses across threads
• Relaxed memory order can avoid unnecessary overhead

- Depending on hardware, of course (not x86)

32 / 47

Example: Producer, consumer 1
struct message msg_buf;
_Atomic(_Bool) msg_ready;

void send(struct message *m) {
msg_buf = *m;
atomic_thread_fence(memory_order_release);
/* Prior loads+stores happen before subsequent stores */
atomic_store_explicit(&msg_ready, 1,

memory_order_relaxed);
}

struct message *recv(void) {
_Bool ready = atomic_load_explicit(&msg_ready,

memory_order_relaxed);
if (!ready)
return NULL;

atomic_thread_fence(memory_order_acquire);
/* Prior loads happen before subsequent loads+stores */
return &msg_buf;

}
33 / 47

Example: Producer, consumer 2

struct message msg_buf;
_Atomic(_Bool) msg_ready;

void send(struct message *m) {
msg_buf = *m;
atomic_store_explicit(&msg_ready, 1,

memory_order_release);
}

struct message *recv(void) {
_Bool ready = atomic_load_explicit(&msg_ready,

memory_order_acquire);
if (!ready)
return NULL;

return &msg_buf;
}

• This is potentially faster than previous example
- E.g., other stores after send can be moved before msg_buf

34 / 47

Example: Test-and-set spinlock

void
spin_lock(atomic_flag *lock)
{
while(atomic_flag_test_and_set_explicit(lock,

memory_order_acquire))
;

}

void
spin_unlock(atomic_flag *lock)
{
atomic_flag_clear_explicit(lock, memory_order_release);

}

35 / 47

Example: Better test-and-set spinlock

void
spin_lock(atomic_bool *lock)
{
while(atomic_exchange_explicit(lock, 1,

memory_order_acquire)) {
while(atomic_load_explicit(lock, memory_order_relaxed))
__builtin_ia32_pause(); /* x86-specific */

}
}

void
spin_unlock(atomic_bool *lock)
{
atomic_store_explicit(lock, 0, memory_order_release);

}

• See [Rigtorp] for a good discussion

36 / 47

Outline

1 Cache coherence – the hardware view

2 Synchronization and memory consistency review

3 C11 Atomics

4 Avoiding locks

37 / 47

Recall producer/consumer (lecture 3)

/* PRODUCER */
for (;;) {
item *nextProduced
= produce_item ();

mutex_lock (&mutex);
while (count == BUF_SIZE)
cond_wait (&nonfull,

&mutex);

buffer[in] = nextProduced;
in = (in + 1) % BUF_SIZE;
count++;
cond_signal (&nonempty);
mutex_unlock (&mutex);

}

/* CONSUMER */
for (;;) {
mutex_lock (&mutex);
while (count == 0)
cond_wait (&nonempty,

&mutex);

nextConsumed = buffer[out];
out = (out + 1) % BUF_SIZE;
count--;
cond_signal (&nonfull);
mutex_unlock (&mutex);

consume_item (nextConsumed);
}

38 / 47

Eliminating locks

• One use of locks is to coordinate multiple updates of single
piece of state
• How to remove locks here?

- Factor state so that each variable only has a single writer
• Producer/consumer example revisited

- Assume one producer, one consumer
- Why do we need count variable, written by both?

To detect buffer full/empty
- Have producer write in, consumer write out (both _Atomic)
- Use in/out to detect buffer state
- But note next example busy-waits, which is less good

39 / 47

Lock-free producer/consumer
atomic_int in, out;

void producer (void *ignored) {
for (;;) {

item *nextProduced = produce_item ();
while (((in + 1) % BUF_SIZE) == out) thread_yield ();
buffer[in] = nextProduced;
in = (in + 1) % BUF_SIZE;

}
}

void consumer (void *ignored) {
for (;;) {

while (in == out) thread_yield ();
nextConsumed = buffer[out];
out = (out + 1) % BUF_SIZE;
consume_item (nextConsumed);

}
}

[Note fences not needed because no relaxed atomics]
40 / 47

Version with relaxed atomics

void producer (void *ignored) {
for (;;) {
item *nextProduced = produce_item ();
int myin = atomic_load_explicit(&in, memory_order_relaxed);
for (;;) {
if ((myin + 1) % BUF_SIZE !=

atomic_load_explicit(&out, memory_order_acquire))
// Could you get away with relaxed here?^^^^^^^

break;
thread_yield ();

}
buffer[myin] = nextProduced;
atomic_store_explicit(&in, (myin+1) % BUF_SIZE,

memory_order_release);
}

}

void consumer (void *ignored) {
// Use memory_order_acquire to load in (for latest buffer[myin])
// Use memory_order_release to store out

} 41 / 47

Non-blocking synchronization

• Design algorithm to avoid critical sections
- Any threads can make progress if other threads are preempted
- Which wouldn’t be the case if preempted thread held a lock

• Requires that hardware provide the right kind of atomics
- Simple test-and-set is insufficient
- Atomic compare and swap is good: CAS (mem, old, new)

If *mem == old, then swap *mem←→new and return true, else false

• Can implement many common data structures
- Stacks, queues, even hash tables

• Can implement any algorithm on right hardware
- Need operation such as atomic compare and swap

(has property called consensus number =∞ [Herlihy])
- Entire kernels have been written without locks [Greenwald]

42 / 47

Example: non-blocking stack

struct item {
/* data */
_Atomic (struct item *) next;

};
typedef _Atomic (struct item *) stack_t;

void atomic_push (stack_t *stack, item *i) {
do {
i->next = *stack;

} while (!CAS (stack, i->next, i));
}

item *atomic_pop (stack_t *stack) {
item *i;
do {
i = *stack;

} while (!CAS (stack, i, i->next));
return i;

}

43 / 47

Wait-free stack issues

A B Cstack

C

A' C

B C

B garbage

Meanwhile, memory of object A
gets recycled for A' of same type

stack

stack

stack

stack

• “ABA” race in pop if other thread pops, re-pushes i
- Can be solved by counters or hazard pointers to delay re-use

44 / 47

“Benign” races

• Could also eliminate locks by having race conditions
• Maybe you think you care more about speed than correctness

++hits; /* each time someone accesses web site */

• Maybe you think you can get away with the race
if (!initialized) {
lock (m);
if (!initialized) {
initialize ();
atomic_thread_fence (memory_order_release); /* why? */
initialized = 1;

}
unlock (m);

}

• But don’t do this [Vyukov], [Boehm]! Not benign at all
- Get undefined behavior—akin to out-of-bounds array access in C11
- If needed for efficiency, use relaxed-memory-order atomics

45 / 47

Read-copy update [McKenney]

• Some data is read way more often than written
- Routing tables consulted for each forwarded packet
- Data maps in system with 100+ disks (updated on disk failure)

• Optimize for the common case of reading without lock
- E.g., global variable: routing_table *rt;
- Call lookup (rt, route); with no lock

• Update by making copy, swapping pointer
routing_table *newrt = copy_routing_table (rt);
update_routing_table (newrt);
atomic_thread_fence (memory_order_release);
rt = newrt;

• Is RCU really safe? Stay tuned next lecture. . .

46 / 47

Next class

• The exciting conclusion of RCU
- Spoiler: safe on all architectures except on alpha

• Building a better spinlock
• What interface should kernel provide for sleeping locks?
• Deadlock
• Scalable interface design

47 / 47

