Overview of previous and current lectures

* Locks create serial code
- Serial code gets no speedup from multiprocessors
Test-and-set spinlock has additional disadvantages

- Lots of traffic over memory bus
- Not fair on NUMA machines

Idea 1: Avoid spinlocks

- We saw lock-free algorithms last lecture
- Mentioned RCU last time, dive deeper today

Idea 2: Design better spinlocks
- Less memory traffic, better fairness

Idea 3: Hardware turns coarse- into fine-grained locks!
- While also reducing memory traffic for lock in common case
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Read-copy update [McKenney]

¢ Some data is read way more often than written
- Routing tables consulted for each forwarded packet
- Data maps in system with 100+ disks (updated on disk failure)
* Optimize for the common case of reading without lock
- Have global variable: _Atomic(routing_table *) rt;
- Use it with no lock
#define RELAXED(var) \
atomic_load_explicit(&(var), memory_order_relaxed)
VA T ¥
route = lookup(RELAXED(rt), destination);
¢ Update by making copy, swapping pointer
/* update mutex held here, serializing updates */
routing_table *newrt = copy_routing_table(rt);
update_routing_table(newrt) ;

atomic_store_explicit(&rt, newrt, memory_order_release);
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http://www.rdrop.com/users/paulmck/RCU/rclockjrnl_tpds_mathtype.pdf

Is RCU really safe?

* Consider the use of global rt with no fences:
lookup (RELAXED(rt), route);

* Could a CPU read new pointer but then old contents of xrt?

* Yes on alpha, No on all other existing architectures
* We are saved by dependency ordering in hardware

- Instruction B depends on A if B uses result of A
- Non-alpha CPUs won’t re-order dependent instructions
- If writer uses release fence, safe to load pointer then just use it

* This is the point of memory_order_consume

- Should be equivalent to acquire barrier on alpha
- But should compile to nothing (be free) on other machines
- But hard to get semantics right (temporarily deprecated in C++)
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http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0371r1.html

Preemptible kernels

* Recall kernel process context from lecture 1

- When CPU in kernel mode but executing on behalf of a process
(e.g., might be in system call or page fault handler)

- As opposed to interrupt handlers or context switch code
* A preemptible kernel can preempt process context code

- Take a CPU core away from kernel process context code between
any two instructions

- Give the same CPU core to kernel code for a different process
e Don’t confuse with:
- Interrupt handlers can always preempt process context code
- Preemptive threads (always have for multicore)
- Process context code running concurrently on other CPU cores
* Sometimes want or need to disable preemption
- Code that must not be migrated between CPUs (per-CPU structs)
- Before acquiring spinlock (could improve performance)
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https://www.scs.stanford.edu/22wi-cs212/notes/intro.pdf#page=35

Garbage collection

* When can you free memory of old routing table?
- When you are guaranteed no one is using it—how to determine?
* Definitions:
- temporary variable - short-used (e.g., local) variable
- permanent variable - long lived data (e.g., global rt pointer)
- quiescent state - when all a thread’s temporary variables dead
- quiescent period - time during which every thread has been in
quiescent state at least once
* Free old copy of updated data after quiescent period
- How to determine when quiescent period has gone by?
- E.g., keep count of syscalls/context switches on each CPU
* Restrictions:

- Can’t hold a pointer across context switch or user mode
(Never copy rt into another permanent variable)

- Must disable preemption while consuming RCU data structure
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e Atomic compare and swap: CAS (mem, old, new)
- InC11: atomic_compare_exchange_strong
- On x86: cmpxchg instruction provides this (with 1ock prefix)
- If ¥mem == old, then swap *mem<+new and return true, else false
e Atomic swap: XCHG (mem, new)
- Cl1 atomic_exchange, can implement with xchg on x86
- Atomically exchanges *mem<snew
e Atomic fetch and add: FADD (mem, val)
- Cll atomic_fetch_add, can implement with lock add on x86
- Atomically sets *mem += val and returns old value of *mem
e Atomic fetch and subtract: FSUB (mem, val)

* Note: atomics return previous value (like x++, not ++x)
¢ All behave like sequentially consistent fences
- Unlike _explicit versions, which take a memory_order argument
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http://en.cppreference.com/w/c/atomic/atomic_compare_exchange
http://en.cppreference.com/w/c/atomic/atomic_exchange
http://en.cppreference.com/w/c/atomic/atomic_fetch_add
http://en.cppreference.com/w/c/atomic/memory_order

MCS lock

* |dea 2: Build a better spinlock

* Lock designed by Mellor-Crummey and Scott
- Goal: reduce bus traffic on cc machines, improve fairness

* Each CPU has a gnode structure in local memory

typedef struct gnode {
_Atomic (struct gnode *) next;
atomic_bool locked;
} gnode;
- Local can mean local memory in NUMA machine
- Orjustits own cache line that gets cached in exclusive mode

* While waiting, spin on your local 1ocked flag

* Alockis agnode pointer: typedef _Atomic (qnode *) lock;
- Construct list of CPUs holding or waiting for lock
- lock itself points to tail of list list (or NULL when unlocked)
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http://www.cs.rice.edu/~johnmc/papers/tocs91.pdf

MCS Acquire

¢ If unlocked, L is NULL
¢ If locked, no waiters, L is owner’s qnode
 If waiters, =L is tail of waiter list:

acquire (lock *L, gnode *I) {
I->next = NULL;
gqnode *predecessor = I;
XCHG (*L, predecessor);
if (predecessor != NULL) {
I->locked = true;
predecessor->next = I;
while (I->locked)
}
}

*L

next - next N next
owner =\waiter =\walter—=NULL
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MCS Release with CAS

release (lock *L, gnode *I) {
if (!I->next)
if (CAS (L, I, NULL))
return;
while (!I->next)

I->next->locked = false;

}

o If I->next NULL and *L ==
- No one else is waiting for lock, OK to set *L. = NULL

*L,
1 next

*I —NULL
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MCS Release with CAS

release (lock *L, gnode *I) {
if (!I->next)
if (CAS (*L, I, NULL))
return;
while (!I->next)

I->next->locked = false;

}

o If I->next NULLand *L !'= I

- Another thread is in the middle of acquire
- Just wait for I->next to be non-NULL

predecessor in locker

*LL

l’ next Y
| ——=NULL [|locker—=NULL
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MCS Release with CAS

release (lock *L, gnode *I) {
if (!I->next)
if (CAS (*L, I, NULL))
return;
while (!I->next)

I->next->locked = false;

}

e If I->next is non-NULL
- I->next oldest waiter, wake up with I->next->locked = false

*L

next N next v next
*xT =waiter—=waiter—=NULL
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MCS Release w/o CAS

* What to do if no atomic CAS (consensus number oo), but do
have XCHG (consensus number 2)?

* Be optimistic—read *L with two XCHGs:
1. Atomically swap NULL into *L
- If old value of *L was I, no waiters and we are done

2. Atomically swap old L value back into *L
- If *L unchanged, same effect as CcAs

¢ Otherwise, we have to clean up the mess

- Some “userper” attempted to acquire lock between 1 and 2

- Because *L was NULL, the userper succeeded
(May be followed by zero or more waiters)

- Graft old list of waiters on to end of new last waiter
(Sacrifice small amount of fairness, but still safe)
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MCS Release w/o C&S code

release (lock *L, gnode *I) {
if (I->next)
I->next->locked = false;
else {
gnode *old_tail = NULL;
XCHG (*L, old_tail);
if (old_tail == I)
return;

/* old_tail '= I? CAS would have failed, so undo XCHG */
gnode *userper = old_tail;

XCHG (*L, userper);

while (I->next == NULL)

if (userper) /* someone changed *L between 2 XCHGs */
userper->next = I->next;

else
I->next->locked = false;
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Kernel support for sleeping locks

* Sleeping locks must interact with scheduler
- For processes or kernel threads, must go into kernel (expensive)
- Common case is you can acquire lock—how to optimize?

¢ Idea: never enter kernel for uncontested lock

struct lock {
atomic_flag busy;
_Atomic (thread *) waiters; /* wait-free stack/queue */
I
void acquire (lock *1k) {
while (atomic_flag_test_and_set (&lk->busy)) { /x 1 x/
atomic_push (&lk->waiters, self); /* 2 x/
sleep O);
}
}
void release (lock *1k) {
atomic_flag_clear (&1k->busy) ;
wakeup (atomic_pop (&lk->waiters));
}
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* Unfortunately, previous slide not safe

- What happens if release called between lines 1 and 2?
- wakeup called on NULL, so acquire blocks

futex abstraction solves the problem [Franke]
- Ask kernel to sleep only if memory location hasn’t changed

void futex (int *uaddr, FUTEX_WAIT, int val...);

- Gotosleep only if xuaddr == val
- Extra arguments allow timeouts, etc.

void futex (int *uaddr, FUTEX_WAKE, int val...);
- Wake up at most val threads sleeping on vaddr

uaddr is translated down to offset in VM object

- So works on memory mapped file at different virtual addresses in
different processes
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https://www.scs.stanford.edu/22wi-cs212/sched/readings/futexes.pdf

Futex example

struct lock {
atomic_flag busy;
3
void acquire (lock *1k) {
while (atomic_flag_test_and_set (&lk->busy))
futex(&lk->busy, FUTEX_WAIT, 1);
}

void release (lock *1k) {
atomic_flag clear (&lk->busy);
futex(&lk->busy, FUTEX_WAKE, 1);
}

* What’s suboptimal about this code?

* See [Drepper] for these examples and a good discussion
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http://www.akkadia.org/drepper/futex.pdf

Futex example

struct lock {
atomic_flag busy;
3
void acquire (lock *1k) {
while (atomic_flag_test_and_set (&lk->busy))
futex(&lk->busy, FUTEX_WAIT, 1);
}

void release (lock *1k) {
atomic_flag clear (&lk->busy);
futex(&lk->busy, FUTEX_WAKE, 1);
}

* What’s suboptimal about this code?
- release requires a system call (expensive) even with no contention

* See [Drepper] for these examples and a good discussion

17/44


http://www.akkadia.org/drepper/futex.pdf

Futex example, second attempt

static_assert (ATOMIC_INT_LOCK_FREE >= 2);

struct lock {
atomic_int busy;

I
void acquire (lock *1k) {
int c;
while ((c = FADD(&1lk->busy, 1))) /x 1 %/
futex((int*) &lk->busy, FUTEX_WAIT, c+1); /* 2 */
}

void release (lock *1k) {
if (FSUB(&lk—>busy, 1) 1= 1) {
1lk->busy = 0;
futex((int*) &lk->busy, FUTEX_WAKE, 1);
}
}

* Now what’s wrong with this code?
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Futex example, second attempt

static_assert (ATOMIC_INT_LOCK_FREE >= 2);

struct lock {
atomic_int busy;

I
void acquire (lock *1k) {
int c;
while ((c = FADD(&1lk->busy, 1))) /x 1 %/
futex((int*) &lk->busy, FUTEX_WAIT, c+1); /* 2 %/
}

void release (lock *1k) {
if (FSUB(&lk—>busy, 1) 1= 1) {
1lk->busy = 0;
futex((int*) &lk->busy, FUTEX_WAKE, 1);
}
}

* Now what’s wrong with this code?
- Two threads could interleave lines 1 and 2, never sleep

- Could even overflow the counter, violate mutual exclusion
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Futex example, third attempt

struct lock {
// O=unlocked, 1=locked no waiters, 2=locked+waiters
atomic_int state;
}s
void acquire (lock *1k) {
int ¢ = 1;
if (!CAS (&lk->state, 0, c)) {
XCHG (&1k->state, c = 2);
while (c != 0) {
futex ((int *) &lk->state, FUTEX_WAIT, 2);
XCHG (&1k->state, c = 2);
}
}
}
void release (lock *1k) {
if (FSUB (&lk->state, 1) !'= 1) { // FSUB returns old value
lk->state = 0;
futex ((int *) &lk->state, FUTEX_WAKE, 1);
}
}
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The deadlock problem

mutex_t ml, m2;

void pl (void *ignored) {
lock (ml1);
lock (m2);
/* critical section */
unlock (m2);
unlock (m1);

}

void p2 (void *ignored) {
lock (m2);
lock (m1);
/* critical section */
unlock (ml1);
unlock (m2);

}

* This program can cease to make progress - how?

¢ Canyou have deadlock w/o mutexes?
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More deadlocks

e Same problem with condition variables
- Suppose resource 1 managed by c;, resource 2 by ¢,
- Ahas 1, waits on c2, B has 2, waits on c1
* Or have combined mutex/condition variable deadlock:

- lock (a); lock (b); while (!ready) wait (b, c);
unlock (b); unlock (a);

- lock (a); lock (b); ready = true; signal (c);
unlock (b); unlock (a);

* One lesson: Dangerous to hold locks when crossing
abstraction barriers!

- lLe., lock (a) then call function that uses condition variable
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Deadlocks w/o computers

* Realissue is resources & how required

* E.g., bridge only allows traffic in one direction

- Each section of a bridge can be viewed as a resource.

- If a deadlock occurs, it can be resolved if one car backs up
(preempt resources and rollback).

- Several cars may have to be backed up if a deadlock occurs.
- Starvation is possible.
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Deadlock conditions

1. Limited access (mutual exclusion):
- Resource can only be shared with finite users

2. No preemption:
- Once resource granted, cannot be taken away

3. Multiple independent requests (hold and wait):

- Don’task all at once
(wait for next resource while holding current one)

4. Circularity in graph of requests
* All of 1-4 necessary for deadlock to occur

* Two approaches to dealing with deadlock:

- Pro-active: prevention
- Reactive: detection + corrective action
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Prevent by eliminating one condition

1. Limited access (mutual exclusion):
- Buy more resources, split into pieces, or virtualize to make
"infinite" copies
- Threads: threads have copy of registers = no lock
2. No preemption:

- Physical memory: virtualized with VM, can take physical page
away and give to another process!

3. Multiple independent requests (hold and wait):
- Wait on all resources at once (must know in advance)
4. Circularity in graph of requests

- Single lock for entire system: (problems?)
- Partial ordering of resources (next)
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Resource-allocation graph

View system as graph

- Processes and Resources are nodes
- Resource Requests and Assignments are edges

Process: Q

* Resource with 4 instances:

P; requesting R;: * oo
F%
P; holding instance of R;: ”3 5

Rj
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Example resource allocation graph

R, R,
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°
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R,
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Graph with deadlock

R, R,
L] L
\ \
\¢
@ (s}
L
R, .

R,
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Is this deadlock?
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Cycles and deadlock

e If graph has no cycles =—> no deadlock

e If graph contains a cycle
- Definitely deadlock if only one instance per resource
- Otherwise, maybe deadlock, maybe not

* Prevent deadlock with partial order on resources

- E.g., always acquire mutex m; before m,
- Usually design locking discipline for application this way
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unsafe

deadlock

safe

* Determine safe states based on possible resource allocation

* Conservatively prohibits non-deadlocked states
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Claim edges

R,

* Dotted line is claim edge
- Signifies process may request resource
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Example: unsafe state

R,

* Note cycle in graph
- P; might request R, before relinquishing R;
- Would cause deadlock
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Detecting deadlock

» Static approaches (hard)
* Dynamically, program grinds to a halt
- Threads package can diagnose by keeping track of locks held:

Resource-Allocation Graph ~ Corresponding wait-for graph
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Fixing & debugging deadlocks

Reboot system / restart application

Examine hung process with debugger

Threads package can deduce partial order

- For each lock acquired, order with other locks held
- If cycle occurs, abort with error
- Detects potential deadlocks even if they do not occur

Or use transactions...

- Another paradigm for handling concurrency
- Often provided by databases, but some OSes use them
- Vino OS used transactions to abort after failures [Seltzer
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http://www.eecs.harvard.edu/syrah/vino//osdi-96/paper.html
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e Atransaction T is a collection of actions with

- Atomicity - all or none of actions happen
- Consistency - T leaves data in valid state

Isolation - T’s actions all appear to happen before or after every
other transaction

Durability* - T’s effects will survive reboots
Often hear mnemonic ACID to refer to above

* Transactions typically executed concurrently
- Butisolation means must appear not to
- Must roll-back transactions that use others’ state
- Means you have to record all changes to undo them
* When deadlock detected just abort a transaction
- Breaks the dependency cycle

'Not applicable to topics in this lecture
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Transactional memory

* Some modern processors support transactional memory
» Transactional Synchronization Extensions (TSX) [intel1§16]

- xbegin abort_handler - begins a transaction

- xend - commit a transaction

- xabort $code - abort transaction with 8-bit code

- Note: nested transactions okay (also xtest tests if in transaction)

* During transaction, processor tracks accessed memory

- Keeps read-set and write-set of cache lines
- Nothing gets written back to memory during transaction
Transaction aborts (at xend or earlier) if any conflicts

Otherwise, all dirty cache lines are “written” atomically
(in practice switch to non-transactional M state of MESI)
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http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-1-manual.pdf#page=383

Using transactional memory

¢ Idea 3: Use to get “free” fine-grained locking on a hash table
- E.g., concurrent inserts that don’t touch same buckets are okay
- Should read spinlock to make sure not taken (but not write) [Kim]
- Hardware will detect there was no conflict

* Can also use to poll for one of many asynchronous events
- Start transaction
- Fill cache with values to which you want to see changes
- Loop until a write causes your transaction to abort

* Note: Transactions are never guaranteed to commit

- Might overflow cache, get false sharing, see weird processor issue

- Means abort path must always be able to perform transaction
(e.g., you do need a lock on your hash table)
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https://web.archive.org/web/20181223163032/https://software.intel.com/en-us/blogs/2013/07/25/fun-with-intel-transactional-synchronization-extensions

Hardware lock elision (HLE)

* ldea: make it so spinlocks rarely need to spin
- Begin a transaction when you acquire lock
- Other CPUs won't see lock acquired, can also enter critical section
- Okay not to have mutual exclusion when no memory conflicts!
- On conflict, abort and restart without transaction, thereby visibly
acquiring lock (and aborting other concurrent transactions)
¢ Intel support:
- Use xacquire prefix before xchgl (used for test and set)
- Use xrelease prefix before movl that releases lock
- Prefixes chosen to be noops on older CPUs (binary compatibility)

* Hash table example:

- Use xacquire xchgl in table-wide test-and-set spinlock
- Works correctly on older CPUs (with coarse-grained lock)
- Allows safe concurrent accesses on newer CPUs!
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Scalable interfaces

* Not all interfaces can scale
¢ How to tell which can and which can’t?

* Scalable Commutativity Rule: “Whenever interface operations
commute, they can be implemented in a way that scales”

[Clements]
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https://www.scs.stanford.edu/22wi-cs212/sched/readings/scalable-commutativity.pdf

Are fork(), execve() broadly commutative?

pid_t pid = fork();
if (!pid)
execlp("bash", "bash", NULL);
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Are fork(), execve() broadly commutative?

pid_t pid = fork();
if ('pid)
execlp("bash", "bash", NULL);

* No, fork() doesn’t commute with memory writes, many file
descriptor operations, and all address space operations

- E.g.,close(fd); fork(); Vvs. fork(); close(£fd);
e execve () often follows fork() and undoes most of fork()’s
sub operations

* posix_spawn(), which combines fork() and execve() into a
single operation, is broadly commutative

- But obviously more complex, less flexible
- Maybe Microsoft will have the last laugh?
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Is open() broadly commutative?

int fdi
int f£d2

open("foo", O_RDONLY);
open("bar", O_RDONLY);
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Is open() broadly commutative?

open("foo", O_RDONLY);
open("bar", O_RDONLY);

int fdi
int f£d2

¢ Actually open () does not broadly commute!

* Does not commute with any system call (including itself) that
creates a file descriptor

* Why? POSIX requires new descriptors to be assigned the
lowest available integer

¢ If we fixed this, open() would commute, as long as it is not
creating a file in the same directory as another operation
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