L Adminstrivia) outine

Project 4 due Friday

Final exam review section Friday

Extra office hours next week

We will use the same four options for final exam as midterm
- Option A: Show up at Gates B03, 12:15pm-3pm Thursday March 17
- Please let us know by email by Friday if using another option

1/45

Confining code with legacy OSes Using chroot

* Often want to confine code on legacy OSes
* Analogy: Firewalls

Attacker
Hopelessly —
Insecure «——— Attacker
Server

- Your machine runs hopelessly insecure software
- Can’tfix it—no source or too complicated
- Can reason about network traffic

* Can we similarly block untrusted code within a machine
- Have OS limit what the code can interact with

3/45

Escaping chroot Escaping chroot

* Re-chroot to a lower directory, then chroot ../. ./...
- Each process has one root directory in process structure
- Implementation special-cases / (always) & . . in root directory
- chroot does not alway change current directory
- So chrooting to a lower directory puts you above your new root
(Can re-chroot to real system root)

* What else can you do as root in a chrooted process?

5/45

@ Confining code with legacy OSes
@ Virtual machines

© Implementing virtual machines

@ Binary translation

© Hardware-assisted virtualization

@ Memory management optimizations

2/45

® chroot (char *dir) “changes root directory”
- Kernel stores root directory of each process
- File name “/” now refers to dir
- Accessing “..” indir now returns dir

Need root privileges to call chroot
- But subsequently can drop privileges

Ideally “Chrooted process” wouldn’t affect parts of the system
outside of dir

- Even process still running as root shouldn’t escape chroot

In reality, many ways to cause damage outside dir

4/45

* Re-chroot to a lower directory, then chroot ../../...
- Each process has one root directory in process structure
- Implementation special-cases / (always) & . . in root directory
- chroot does not alway change current directory

- So chrooting to a lower directory puts you above your new root
(Can re-chroot to real system root)

¢ Create devices that let you access raw disk

Send signals to or ptrace non-chrooted processes

Create setuid program for non-chrooted processes to run

Bind privileged ports, mess with clock, reboot, etc.

Problem: chroot was not originally intended for security

- FreeBSD jail attempts to address the problems
- Also, Linux cgroups, namespaces allow containers

5/45

System call interposition Limitations of syscall interposition

* Why not use ptrace or other debugging facilities to control .
untrusted programs?

Hard to know exact implications of a system call

- Too much context not available outside of kernel
¢ Almost any “damage” must result from system call (e.g., what does this file descriptor number mean?)

- delete files — unlink - Context-dependent (e.g., /proc/self/cwd)
- overwrite files — open/write

- attack over network — socket/bind/connect/send/recv
- leak private data — open/read/socket/connect/write...

Indirect paths to resources
- File descriptor passing, core dumps, “unhelpful processes’

3

Race conditions
- Remember difficulty of eliminating TOCCTOU bugs?
- Now imagine malicious application deliberately doing this
- Symlinks, directory renames (so “..” changes), ...

* So enforce policy by allowing/disallowing each syscall

- Theoretically much more fine-grained than chroot
- Plus don’t need to be root to do it

® Q: Why is this not a panacea?

See [Garfinkel] for a more detailed discussion

6/45 7/45

@ Confining code with legacy OSes - -

@ Virtual machines 0s

© Implementing virtual machines _

e OSis software between applications and hardware/external

@ Binary translation

reality
e Hardware-assisted virtualization - Abstracts hardware to makes applications portable
- Makes finite resources (memory, # CPU cores) appear much larger
6 Memory management optimizations - Protects processes and users from one another
8/45 9/45

How do process abstraction & HW differ?

Process Hardware

Non-privileged registers and = All registers and instructions
instructions |

Virtual memory Both virtual and physical

: memory, MMU functions,
- TLB/page tables, etc.
Errors, signals Trap architecture, interrupts
* The process abstraction looked just like hardware? File system, directories, files, ' /0 devices accessed using
raw devices - programmed 1/0, DMA,

! interrupts

10/45 11/45

Virtual Machine Monitor Old idea from the 1960s

e Thin layer of software that virtualizes the hardware

- Exports a virtual machine abstraction that looks like the hardware

App App

Operating
System

Virtual
Machine

Monitor

Hardware

* Software compatibility
- VMMs can run pretty much all software

e Can get low overheads/high performance
- Near “raw” machine performance for many workloads
- With tricks can have direct execution on CPU/MMU

e Isolation

- Seemingly total data isolation between virtual machines
(complicated by side-channel attacks like Spectre)

- Leverage hardware memory protection mechanisms
* Encapsulation

- Virtual machines are not tied to physical machines
- Checkpoint/migration

* Run multiple servers on same box (e.g., Amazon EC2)
- Modern CPUs more powerful than most services need
- VMs let you give away less than one machine
- Server consolidation trend: N machines — 1 real machine
- 0.10U rack space machine - less power, cooling, space, etc.
¢ Isolation of environments
- Printer server doesn’t take down Exchange server
- Compromise of one VM can’t get at data of others?
* Resource management
- Provide service-level agreements
* Heterogeneous environments
- Linux, FreeBSD, Windows, etc.

LIn practice not so simple because of side channels [Ristenpart] [Meltdown]

12/45

14/45

16/45

See [Goldberg] from 1974

IBM VM/370 - AVMM for IBM mainframe
- Multiplex multiple OS environments on expensive hardware
- Desirable when few machines around

¢ Interest died out in the 1980s and 1990s

- Hardware got cheap
- Just put a windows machine on every desktop

Today, VMs are used everywhere

- Used to solve different problems (software management)
- But VMM attributes more relevant now than ever

13/45

* Backward compatibility is bane of new OSes
- Huge effort require to innovate but not break

e Security considerations may make it impossible
- Choice: Close security hole and break apps or be insecure

* Example: Windows XP is end of life
- 4.59% machines ran 2001 Windows XP in 2018 (still 0.5% today)
- XP support ended in 2019, eventually XP-capable hardware will die
- What to do with legacy WinXP applications?
- Not all applications will run on later Windows

- Given the number of WinXP applications, practically any OS
change will break something
if (0S == WinXP) ...

¢ Solution: Use a VMM to run both WinXP and Win10
- Obvious for OS migration as well: Windows — Linux

15/45

@ Confining code with legacy OSes
@ Virtual machines

® Implementing virtual machines
@ Binary translation

© Hardware-assisted virtualization

@ Memory management optimizations

17/45

Complete Machine Simulation Virtualizing the CPU

e Observations: Most instructions are the same regardless of

L4 fSinn[)lE!St VMM a[)plT)a(:h, used b)/lNDCIIS processor p'i\,ileige(j level
¢ Build a simulation of all the hardware - Example: incl %eax
- CPU - Aloop that fetches each instruction, decodes it, simulates its * Why not just give instructions to CPU to execute?

effect on the machine state

- Memory - Physical memory is just an array, simulate the MMU on
all memory accesses

- 1/0 - Simulate I/O devices, programmed /O, DMA, interrupts

- Oneissue: Safety - How to get the CPU back? Or stop it from
stepping on us? How about c1i/halt?

- Solution: Use protection mechanisms already in CPU

* Run virtual machine’s OS directly on CPU in unprivileged user
mode
- “Trap and emulate” approach
- Most instructions just work

- Privileged instructions trap into monitor and run simulator on
* Need faster ways of emulating CPU/MMU instruction

- Makes some assumptions about architecture

* Problem: Too slow!
- CPU/Memory - 100x CPU/MMU simulation
- 1/0 Device - < 2x slowdown.
- 100x slowdown makes it not too useful

18/45 19/45

Virtualizing traps Virtualizing memory

e Basic MMU functionality:
- OS manages physical memory (0... MAX_MEM)
- OS sets up page tables mapping VA — PA

. . - CPU accesses to VA should go to PA (if paging off, PA = VA)
* What if the interrupt or trap should go to guest 0S? - Used for every instruction fetch, load, or store

- Example: Page fault, illegal instruction, system call, interrupt
- Re-start the guest OS simulating the trap

* What happens when an interrupt or trap occurs
- Like normal kernels: we trap into the monitor

* Need to implement a virtual “physical memory”
- Logically need additional level of indirection

° x86 example: - VM’s Guest VA —» VM’s Guest PA — Host PA
- Give CPU an IDT that vectors back to VMM - Note “Guest physical” memory no longer means hardware bits
- Look up trap vector in VM’s “virtual” IDT - Hardware is host physical memory (a.k.a. machine memory)
- Pushvirtualized %cs, %eip, eflags, on stack e Trick: Use hardware MMU to simulate virtual MMU

- Switch to virtualized privileged mod
witch tovirtualized priviieged mode - Point hardware at shadow page table

- Directly maps Guest VA — Host PA

20/45 21/45
Memory mapping summary Shadow page tables
Host Host * VMM responsible for maintaining shadow PT
Virtual Physical S . . .
Address Address - And for maintaining its consistency (including TLB flushes)
_physicalmachipne e Shadow page tables are a cache
virtual machine - Have true page faults when page not in VM’s guest page table

- Have hidden page faults when just misses in shadow page table

Guest Guest Host
Virtual Physical Physical ¢ On a page fault, VMM must:
Address Address Address - Lookup guest VPN — guest PPN in guest’s page table
- Determine where guest PPN is in host physical memory

Guest Host - Insert guest VPN — host PPN mapping in shadow page table
Virtual Shadow Page Table Physical - Note: VMM can demand-page the virtual machine
Address Address

Uses hardware protection

22/45 23/45

Option 1 for shadow PT

* Hardware only ever sees shadow page table
- Guest OS only sees it’s own VM page table, never shadow PT My

e Consider the following
- Guest OS has a page table T mapping Vy — Py Vr

- Titself resides at guest physical address Pr i
- Another guest page table entry maps Vr — Pr :§ Pr
(e.g., in Pintos, Vr = Py + PHYS_BASE) g
- VMM stores Py in host physical address My and Py in My §
* What can VMM put in shadow page table? Thadow
- Safe to map user page (Vy — My) or page table (V; — M) option 2fof
* Not safe to map both simultaneously! » Option 1: Page table accessible at V7, but changes won’t be
- If OS writes to Py, may make V; — My in shadow PT incorrect reflected in shadow PT or TLB; access to Vi, dangerous
- If OS reads/writes Vy, may require accessed/dirty bits to be » Option 2: V;, accessible, but hardware sets accessed/dirty bits
changed in Py (hardware can only change shadow PT) only in shadow PT, not in guest PT at Pr/M;
24 /45 25/45

* VMM needs to get control on some memory accesses

* Guest OS changes previously used mapping in its PT * Suppose VMM never allowed access to VM PTs?
- Must intercept to invalidate stale mappings in shadow PT, TLB - Every PTE access would incur the cost of a tracing fault
- Note: OS should use invlpg instruction, which would trap to VMM - - Very expensive when OS changes lots of PTEs

butin practice many/most OSes are sloppy about this * Suppose OS allowed access to most page tables (except very

* Guest OS accesses page when its VM PT is accessible recently accessed regions)
- Accessed/dirty bits in VM PT may no longer be correct - Now lots of hidden faults when accessing new region
- Must intercept to fix up VM PT (or make VM PT inaccessible) - Plus overhead to pre-compute accessed/dirty bits from shadow PT

+ Solution: Tracing as page tables preemptively made valid in shadow PT

- To track page access, make VPN(s) invalid in shadow PT * Makes for complex trade-offs
- If guest OS accesses page, will trap to VMM w. page fault - But adaptive binary translation (later) can make this better

- VMM can emulate the result of memory access & restart guest OS,
just as an OS restarts a process after a page fault

26/45 27/45

1/O device virtualization CPU virtualization requirements

* Need protection levels to run VMs and monitors

Types of communication
- Special instruction - in/out
- Memory-mapped I/O (PIO)

- Interrupts
- DMA ¢ Privilege level should not be visible to software

e Allunsafe/privileged operations should trap
- Example: disable interrupt, access 1/O devy, ...
- x86 problem: different semantics in different rings (e.g., popf1)

- Software shouldn’t be able to query and find out it’sin a VM
- x86 problem: movw Y%cs, %ax

Make in/out and PIO trap into monitor

Use tracing for memory-mapped 1/0
& y-mapped I/ ¢ Trap should be transparent to software in VM

* Runsimulation of I/O device - Software in VM shouldn’t be able to tell if instruction trapped
- Interrupt - Tell CPU simulator to generate interrupt - x86 problem: traps can destroy machine state
- DMA - Copy data to/from physical memory of virtual machine (E.g., if internal segment register was out of sync with GDT)

e See [Goldberg] for a discussion

28/45 29/45

@ Confining code with legacy OSes
@ Virtual machines

© Implementing virtual machines

@ Binary translation

© Hardware-assisted virtualization

@ Memory management optimizations

30/45

VMware binary translator Control transfer

* VMware translates kernel dynamically (like a JIT)
- Startat guest eip
- Accumulate up to 12 instructions until next control transfer
- Translate into binary code that can run in VMM context
* Most instructions translated identically
- E.g., regularmovl instructions
¢ Use segmentation to protect VMM memory

- VMM located in high virtual addresses

- Segment registers “truncated” to block access to high VAs
- gs segment not truncated; use it to access VMM data

- Any guest use of gs (rare) can’t be identically translated

Details/examples from [Adams & Agesen]

32/45

Control transfer Non-identically translated code

e All branches/jumps require indirection
e Original: isPrime: mov %edi, %ecx # %ecx = %edi (a)
mov $2, Yesi #i=2
cmp %ecx, hesi # is i >= a?
jge prime # jump if yes

e Translated: isPrime’: mov %edi, %ecx
mov $2, %esi
cmp %ecx, %hesi
jge [takenAddr] # JCC
jmp [fallthrAddr]

IDENT

* Brackets ([...]) indicate continuations

- First time jumped to, target untranslated; translate on demand
- Then fix up continuation to branch to translated code
- Can elide [fallthrAddr] if fallthrough next translated

33/45

e Cannot directly execute guest OS kernel code on x86

- Can maybe execute most user code directly
- But how to get good performance on kernel code?

e Original VMware solution: binary translation
- Don’t run slow instruction-by-instruction emulator
- Instead, translate guest kernel code into code that runs in
fully-privileged kernel mode, but acts safely?
¢ Challenges:

- Don’t know the difference between code and data
(guest OS might include self-modifying code)
- Translated code may not be the same size as original
- Prevent translated code from messing with VMM memory
- Performance, performance, performance, ...

2actually CPL 1 rather than 0, so that the VMM has its own exception stack
31/45

e All branches/jumps require indirection

e Original: isPrime: mov Y%edi, %ecx # %ecx = %edi (a)
mov $2, Yesi #i=2
cmp hecx, hesi # is i >= a?
jge prime # jump if yes
e Csource: int
isPrime (int a)

{
for (int i = 2; i < a; i++) {
if (a % i ==0)
return 0;
}

return 1;

33/45

¢ PC-relative branches & Direct control flow

- Just compensate for output address of translator on target
- Insignificant overhead

¢ Indirect control flow

- E.g.,jump though register (function pointer) or ret

- Can’t assume code is “normal” (e.g., must faithfully ret even if
stack doesn’t have return address)

- Look up target address in hash table to see if already translated
- “Single-digit percentage” overhead
e Privileged instructions
- Appropriately modify VMM state
- E.g.,cli = vcpu.flags.IF = 0
- Can be faster than original!

34/45

* One remaining source of overhead is tracing faults

- E.g., when modifying page table or descriptor table
* ldea: Use binary translation to speed up

- E.g., translate write of PTE into write of guest & shadow PTE

- Translate read of PTE to get accessed & dirty bits from shadow
¢ Problem: Which instructions to translate?

e Solution: “innocent until proven guilty” model
- Initially always translate as much code identically as possible
- Track number of tracing faults caused by an instruction
- If high number, re-translate to non-identical code
- May call out to interpreter, or just jump to new code

Hardware-assisted virtualization VMCB control bits

¢ Both Intel and AMD now have hardware support
- Different mechanisms, similar concepts
- This lecture covers AMD (see [AMD Vol 2], Ch. 15)
- For Intel details, see [Intel Vol 3c]
* VM-enabled CPUs support new guest mode
- This is separate from kernel/user modes in bits 0-1 of %cs
- Less privileged than host mode (where VMM runs)
- Some sensitive instructions trap in guest mode (e.g., load %cr3)
- Hardware keeps shadow state for many things (e.g., %eflags)
e Enter guest mode with vmrun instruction
- Loads state from hardware-defined 1-KiB VMCB data structure

* Various events cause EXIT back to host mode
- On EXIT, hardware saves state back to VMCB

Guest state saved in VYMCB Hardware vs. Software virtualization

¢ Saved guest state

- Full segment registers (i.e., base, lim, attr, not just selectors)

- Full GDTR, LDTR, IDTR, TR

- Guest %cr3, %cr2, and other cr/dr registers

- Guest %eip and %eflags (%rip & %rflags for 64-bit processors)
- Guest %rax register

* Entering/exiting VMM more expensive than syscall
- Have to save and restore large VM-state structure

35/45

37/45

39/45

@ Confining code with legacy OSes
@ Virtual machines

© Implementing virtual machines
@ Binary translation

© Hardware-assisted virtualization

@ Memory management optimizations

36/45

e Intercept vector specifies what ops should cause EXIT
- One bit for each of %cr0-%cr15 to say trap on read
- One bit for each of %cro-%cr15 to say trap on write
- 32 analogous bits for the debug registers (%dro-%dr15)
- 32 bits for whether to intercept exception vectors 0-31
- Bits for various other events (e.g., NMI, SMI, ...)
- Bit to intercept writes to sensitive bits of %cro
- 8 bits to intercept reads and writes of IDTR, GDTR, LDTR, TR
- Bits to intercept rdtsc, rdpmc, pushf, popf, vmrun, hlt, invlpg, int,
iret, in/out (to selected ports), ...
e EXIT code and reason (e.g., which inst. caused EXIT)

e Other control values
- Pending virtual interrupt, event/exception injection

38/45

° HW VM makes implementing VMM much easier
- Avoids implementing binary translation (BT)

e Hardware VM is better at entering/exiting kernel

- E.g., Apache on Windows benchmark: one address space, lots of
syscalls, hardware VM does better [Adams]

- Apache on Linux w. many address spaces: lots of context switches,
tracing faults, etc., Software faster [Adams]

* Fork with copy-on-write bad for both HW & BT
- [Adams] reports fork benchmark where BT-based virtualization
37x and HW-based 106 x slower than native!
* Today, CPUs support nested paging (a.k.a. EPT on intel)
- Eliminates shadow PT & tracing faults, simplifies VMM
- Guests can now manipulate %cr3 w/o VM EXIT
- But dramatically increases cost of TLB misses

40/45

e Virtual machines see virtualized physical memory
- Can let VMs use more “physical” memory than in machine

@ Confining code with legacy OSes

@ Virtual machines * How to apportion memory between machines?
* VMware ESX has three parameters per VM:
© Implementing virtual machines - min - Don’t bother running w/o this much machine memory
- max - Amount of guest physical memory VM OS thinks exists
@ Binary translation - share - How much memory to give VM relative to other VMs

e Straw man: Allocate based on share, use LRU paging
- OS already uses LRU = double paging
- OS will re-cycle whatever “physical” page VMM just paged out
- So better to do random eviction

© Hardware-assisted virtualization

@® Memory management optimizations

Next: 3 cool memory management tricks

41/45 42/45

Reclaiming pages Sharing pages across VMs

* Normally OS just uses all available memory Often run many VMs with same OS, programs

- But some memory much more important than other memory - Will result in many host physical pages containing same data

- E.g., buffer cache may contain old, clean buffers; 0S won’t discard
if doesn’t need memory... but VMM may need memory

Idea: Use 1 host physical page for all copies of guest physical
page (in any virtual machine)
* Idea: Have guest OS return memory to VMM

- Then VMM doesn’t have to page memory to disk

Keep big hash table mapping: Hash(contents)—info
- If host physical page mapped once, info is VM/PPN where mapped.
e ESX trick: Balloon driver In that case, Hash is only a hint, as page may have changed
- Special pseudo-device driver in supported guest OS kernels - If machine page mapped copy-on-write as multiple physical pages,
- Communicates with VMM through special interface info is just reference count
- When VMM needs memory, allocates many pages in guest OS
- Balloon driver tells VMM to re-cycle its private pages

Scan OS pages randomly to populate hash table

Always try sharing a page before paging it out

43/45 44/45

Idle memory tax

* Need machine page? What VM to take it from?

* Normal proportional share scheme
- Reclaim from VM with lowest “shares-to-pages” (S/P) ratio
- IfA&Bboth have S = 1, reclaim from larger VM
- If Ahas twice B’s share, can use twice the machine memory

e High-priority VMs might get more memory than needed

¢ Solution: Idle-memory tax
- Taxidle memoryat0 < 7 < 1so “cost” of idle pageisk =1/(1 —7)

- Use statistical sampling to determine a VM’s % idle memory
(randomly invalidate pages & count the number faulted back)

- Instead of S/P, reclaim from VM with lowest S/ (P(f + k(1 — f))).
f =fraction of non-idle pages; k = “idle page cost” paremeter.

- Be conservative & overestimate f to respect priorities
(f is max of slow, fast, and recent memory usage samples)

45/45

