
Administrivia

• Project 4 due Friday
• Final exam review section Friday
• Extra office hours next week
• We will use the same four options for final exam as midterm

- Option A: Show up at Gates B03, 12:15pm-3pm Thursday March 17
- Please let us know by email by Friday if using another option

1 / 45

Outline

1 Confining code with legacy OSes

2 Virtual machines

3 Implementing virtual machines

4 Binary translation

5 Hardware-assisted virtualization

6 Memory management optimizations

2 / 45

Confining code with legacy OSes

• Often want to confine code on legacy OSes
• Analogy: Firewalls

Hopelessly
Insecure

Server

Attacker

Attacker

- Your machine runs hopelessly insecure software
- Can’t fix it—no source or too complicated
- Can reason about network traffic

• Can we similarly block untrusted codewithin a machine
- Have OS limit what the code can interact with

3 / 45

Using chroot

• chroot (char *dir) “changes root directory”
- Kernel stores root directory of each process
- File name “/” now refers to dir
- Accessing “..” in dir now returns dir

• Need root privileges to call chroot
- But subsequently can drop privileges

• Ideally “Chrooted process” wouldn’t affect parts of the system
outside of dir

- Even process still running as root shouldn’t escape chroot

• In reality, many ways to cause damage outside dir

4 / 45

Escaping chroot

• Re-chroot to a lower directory, then chroot ../../. . .
- Each process has one root directory in process structure
- Implementation special-cases / (always) & .. in root directory
- chroot does not alway change current directory
- So chrooting to a lower directory puts you above your new root

(Can re-chroot to real system root)

• What else can you do as root in a chrooted process?

5 / 45

Escaping chroot

• Re-chroot to a lower directory, then chroot ../../. . .
- Each process has one root directory in process structure
- Implementation special-cases / (always) & .. in root directory
- chroot does not alway change current directory
- So chrooting to a lower directory puts you above your new root

(Can re-chroot to real system root)

• Create devices that let you access raw disk
• Send signals to or ptrace non-chrooted processes
• Create setuid program for non-chrooted processes to run
• Bind privileged ports, mess with clock, reboot, etc.
• Problem: chroot was not originally intended for security

- FreeBSD jail attempts to address the problems
- Also, Linux cgroups, namespaces allow containers

5 / 45

https://www.freebsd.org/cgi/man.cgi?query=jail_set
http://man7.org/linux/man-pages/man7/cgroups.7.html
http://man7.org/linux/man-pages/man7/namespaces.7.html

System call interposition

• Why not use ptrace or other debugging facilities to control
untrusted programs?

• Almost any “damage” must result from system call
- delete files → unlink
- overwrite files → open/write
- attack over network → socket/bind/connect/send/recv
- leak private data → open/read/socket/connect/write . . .

• So enforce policy by allowing/disallowing each syscall
- Theoretically much more fine-grained than chroot
- Plus don’t need to be root to do it

• Q: Why is this not a panacea?

6 / 45

Limitations of syscall interposition

• Hard to know exact implications of a system call
- Too much context not available outside of kernel

(e.g., what does this file descriptor number mean?)
- Context-dependent (e.g., /proc/self/cwd)

• Indirect paths to resources
- File descriptor passing, core dumps, “unhelpful processes”

• Race conditions
- Remember difficulty of eliminating TOCCTOU bugs?
- Now imagine malicious application deliberately doing this
- Symlinks, directory renames (so “..” changes), . . .

• See [Garfinkel] for a more detailed discussion

7 / 45

https://www.scs.stanford.edu/22wi-cs212/sched/readings/traps-interposition.pdf

Outline

1 Confining code with legacy OSes

2 Virtual machines

3 Implementing virtual machines

4 Binary translation

5 Hardware-assisted virtualization

6 Memory management optimizations

8 / 45

Review: What is an OS

Hardware

OS

emacs gcc firefox

• OS is software between applications and hardware/external
reality

- Abstracts hardware to makes applications portable
- Makes finite resources (memory, # CPU cores) appear much larger
- Protects processes and users from one another

9 / 45

What if. . .

Hardware

Lower-level OS (VMM)

Virtual hardware

OS

Virtual hardware

OS

emacs gcc firefox

• The process abstraction looked just like hardware?

10 / 45

How do process abstraction & HW differ?

Process Hardware
Non-privileged registers and
instructions

All registers and instructions

Virtual memory Both virtual and physical
memory, MMU functions,
TLB/page tables, etc.

Errors, signals Trap architecture, interrupts

File system, directories, files,
raw devices

I/O devices accessed using
programmed I/O, DMA,
interrupts

11 / 45

Virtual Machine Monitor

• Thin layer of software that virtualizes the hardware
- Exports a virtual machine abstraction that looks like the hardware

12 / 45

Old idea from the 1960s

• See [Goldberg] from 1974
• IBM VM/370 – A VMM for IBM mainframe

- Multiplex multiple OS environments on expensive hardware
- Desirable when few machines around

• Interest died out in the 1980s and 1990s
- Hardware got cheap
- Just put a windows machine on every desktop

• Today, VMs are used everywhere
- Used to solve different problems (software management)
- But VMM attributes more relevant now than ever

13 / 45

https://www.scs.stanford.edu/22wi-cs212/sched/readings/virtualization.pdf

VMM benefits

• Software compatibility
- VMMs can run pretty much all software

• Can get low overheads/high performance
- Near “raw” machine performance for many workloads
- With tricks can have direct execution on CPU/MMU

• Isolation
- Seemingly total data isolation between virtual machines

(complicated by side-channel attacks like Spectre)
- Leverage hardware memory protection mechanisms

• Encapsulation
- Virtual machines are not tied to physical machines
- Checkpoint/migration

14 / 45

OS backwards compatibility

• Backward compatibility is bane of new OSes
- Huge effort require to innovate but not break

• Security considerations may make it impossible
- Choice: Close security hole and break apps or be insecure

• Example: Windows XP is end of life
- 4.59% machines ran 2001 Windows XP in 2018 (still 0.5% today)
- XP support ended in 2019, eventually XP-capable hardware will die
- What to do with legacy WinXP applications?
- Not all applications will run on later Windows
- Given the number of WinXP applications, practically any OS

change will break something
if (OS == WinXP) . . .

• Solution: Use a VMM to run both WinXP and Win10
- Obvious for OS migration as well: Windows → Linux

15 / 45

https://www.windowslatest.com/2018/04/04/windows-xp-is-still-going-strong/
https://www.extremetech.com/computing/289440-microsoft-xp-is-finally-dead-nearly-18-years-post-launch

Logical partitioning of servers

• Run multiple servers on same box (e.g., Amazon EC2)
- Modern CPUs more powerful than most services need
- VMs let you give away less than one machine
- Server consolidation trend: Nmachines → 1 real machine
- 0.10U rack space machine – less power, cooling, space, etc.

• Isolation of environments
- Printer server doesn’t take down Exchange server
- Compromise of one VM can’t get at data of others1

• Resource management
- Provide service-level agreements

• Heterogeneous environments
- Linux, FreeBSD, Windows, etc.

1In practice not so simple because of side channels [Ristenpart] [Meltdown]
16 / 45

http://people.csail.mit.edu/tromer/papers/cloudsec.pdf
https://meltdownattack.com/

Outline

1 Confining code with legacy OSes

2 Virtual machines

3 Implementing virtual machines

4 Binary translation

5 Hardware-assisted virtualization

6 Memory management optimizations

17 / 45

Complete Machine Simulation

• Simplest VMM approach, used by bochs

• Build a simulation of all the hardware
- CPU – A loop that fetches each instruction, decodes it, simulates its

effect on the machine state
- Memory – Physical memory is just an array, simulate the MMU on

all memory accesses
- I/O – Simulate I/O devices, programmed I/O, DMA, interrupts

• Problem: Too slow!
- CPU/Memory – 100x CPU/MMU simulation
- I/O Device – < 2× slowdown.
- 100× slowdown makes it not too useful

• Need faster ways of emulating CPU/MMU

18 / 45

Virtualizing the CPU

• Observations: Most instructions are the same regardless of
processor privileged level

- Example: incl %eax

• Why not just give instructions to CPU to execute?
- One issue: Safety – How to get the CPU back? Or stop it from

stepping on us? How about cli/halt?
- Solution: Use protection mechanisms already in CPU

• Run virtual machine’s OS directly on CPU in unprivileged user
mode

- “Trap and emulate” approach
- Most instructions just work
- Privileged instructions trap into monitor and run simulator on

instruction
- Makes some assumptions about architecture

19 / 45

Virtualizing traps

• What happens when an interrupt or trap occurs
- Like normal kernels: we trap into the monitor

• What if the interrupt or trap should go to guest OS?
- Example: Page fault, illegal instruction, system call, interrupt
- Re-start the guest OS simulating the trap

• x86 example:
- Give CPU an IDT that vectors back to VMM
- Look up trap vector in VM’s “virtual” IDT
- Push virtualized %cs, %eip, %eflags, on stack
- Switch to virtualized privileged mode

20 / 45

Virtualizing memory

• Basic MMU functionality:
- OS manages physical memory (0. . .MAX_MEM)
- OS sets up page tables mapping VA PA
- CPU accesses to VA should go to PA (if paging off, PA = VA)
- Used for every instruction fetch, load, or store

• Need to implement a virtual “physical memory”
- Logically need additional level of indirection
- VM’s Guest VA VM’s Guest PA Host PA
- Note “Guest physical” memory no longer means hardware bits
- Hardware is host physical memory (a.k.a. machine memory)

• Trick: Use hardware MMU to simulate virtual MMU
- Point hardware at shadow page table
- Directly maps Guest VA Host PA

21 / 45

Memory mapping summary

Guest
Virtual

Address

Host
Physical
Address

Shadow Page Table

Guest
Virtual

Address

Guest
Physical
Address

Host
Physical
Address

Guest PT VMM map

Host
Virtual

Address

Host
Physical
Address

Host PT

physical machine
virtual machine

22 / 45

Shadow page tables

• VMM responsible for maintaining shadow PT
- And for maintaining its consistency (including TLB flushes)

• Shadow page tables are a cache
- Have true page faultswhen page not in VM’s guest page table
- Have hidden page faultswhen just misses in shadow page table

• On a page fault, VMM must:
- Lookup guest VPN guest PPN in guest’s page table
- Determine where guest PPN is in host physical memory
- Insert guest VPN host PPN mapping in shadow page table
- Note: VMM can demand-page the virtual machine

• Uses hardware protection

23 / 45

Shadow PT issues

• Hardware only ever sees shadow page table
- Guest OS only sees it’s own VM page table, never shadow PT

• Consider the following
- Guest OS has a page table T mapping VU → PU
- T itself resides at guest physical address PT
- Another guest page table entry maps VT → PT

(e.g., in Pintos, VT = PT + PHYS_BASE)
- VMM stores PU in host physical addressMU and PT inMT

• What can VMM put in shadow page table?
- Safe to map user page (VU MU) or page table (VT MT)

• Not safe to map both simultaneously!
- If OS writes to PT , may make VU MU in shadow PT incorrect
- If OS reads/writes VU, may require accessed/dirty bits to be

changed in PT (hardware can only change shadow PT)
24 / 45

Illustration

VU

VT

PU

PT

MU

MT

shadow
PT

m
ap

pe
d

by
P T

Option 2 for shadow PT

Option 1 for shadow PT

• Option 1: Page table accessible at VT , but changes won’t be
reflected in shadow PT or TLB; access to VU dangerous

• Option 2: VU accessible, but hardware sets accessed/dirty bits
only in shadow PT, not in guest PT at PT/MT

25 / 45

Tracing

• VMM needs to get control on some memory accesses
• Guest OS changes previously used mapping in its PT

- Must intercept to invalidate stale mappings in shadow PT, TLB
- Note: OS should use invlpg instruction, which would trap to VMM –

but in practice many/most OSes are sloppy about this

• Guest OS accesses page when its VM PT is accessible
- Accessed/dirty bits in VM PT may no longer be correct
- Must intercept to fix up VM PT (or make VM PT inaccessible)

• Solution: Tracing
- To track page access, make VPN(s) invalid in shadow PT
- If guest OS accesses page, will trap to VMM w. page fault
- VMM can emulate the result of memory access & restart guest OS,

just as an OS restarts a process after a page fault

26 / 45

Tracing vs. hidden faults

• Suppose VMM never allowed access to VM PTs?
- Every PTE access would incur the cost of a tracing fault
- Very expensive when OS changes lots of PTEs

• Suppose OS allowed access tomost page tables (except very
recently accessed regions)

- Now lots of hidden faults when accessing new region
- Plus overhead to pre-compute accessed/dirty bits from shadow PT

as page tables preemptively made valid in shadow PT

• Makes for complex trade-offs
- But adaptive binary translation (later) can make this better

27 / 45

I/O device virtualization

• Types of communication
- Special instruction – in/out
- Memory-mapped I/O (PIO)
- Interrupts
- DMA

• Make in/out and PIO trap into monitor
• Use tracing for memory-mapped I/O
• Run simulation of I/O device

- Interrupt – Tell CPU simulator to generate interrupt
- DMA – Copy data to/from physical memory of virtual machine

28 / 45

CPU virtualization requirements

• Need protection levels to run VMs and monitors
• All unsafe/privileged operations should trap

- Example: disable interrupt, access I/O dev, . . .
- x86 problem: different semantics in different rings (e.g., popfl)

• Privilege level should not be visible to software
- Software shouldn’t be able to query and find out it’s in a VM
- x86 problem: movw %cs, %ax

• Trap should be transparent to software in VM
- Software in VM shouldn’t be able to tell if instruction trapped
- x86 problem: traps can destroy machine state

(E.g., if internal segment register was out of sync with GDT)

• See [Goldberg] for a discussion

29 / 45

https://www.scs.stanford.edu/22wi-cs212/sched/readings/virtualization.pdf

Outline

1 Confining code with legacy OSes

2 Virtual machines

3 Implementing virtual machines

4 Binary translation

5 Hardware-assisted virtualization

6 Memory management optimizations

30 / 45

Binary translation

• Cannot directly execute guest OS kernel code on x86
- Can maybe execute most user code directly
- But how to get good performance on kernel code?

• Original VMware solution: binary translation
- Don’t run slow instruction-by-instruction emulator
- Instead, translate guest kernel code into code that runs in

fully-privileged kernel mode, but acts safely2

• Challenges:
- Don’t know the difference between code and data

(guest OS might include self-modifying code)
- Translated code may not be the same size as original
- Prevent translated code from messing with VMM memory
- Performance, performance, performance, . . .

2actually CPL 1 rather than 0, so that the VMM has its own exception stack
31 / 45

VMware binary translator

• VMware translates kernel dynamically (like a JIT)
- Start at guest eip
- Accumulate up to 12 instructions until next control transfer
- Translate into binary code that can run in VMM context

• Most instructions translated identically
- E.g., regular movl instructions

• Use segmentation to protect VMM memory
- VMM located in high virtual addresses
- Segment registers “truncated” to block access to high VAs
- gs segment not truncated; use it to access VMM data
- Any guest use of gs (rare) can’t be identically translated

Details/examples from [Adams & Agesen]

32 / 45

https://www.scs.stanford.edu/22wi-cs212/sched/readings/virtualization-techniques.pdf

Control transfer

• All branches/jumps require indirection
• Original: isPrime: mov %edi, %ecx # %ecx = %edi (a)

mov $2, %esi # i = 2
cmp %ecx, %esi # is i >= a?
jge prime # jump if yes
...

• C source: int
isPrime (int a)
{
for (int i = 2; i < a; i++) {
if (a % i == 0)
return 0;

}
return 1;

}

33 / 45

Control transfer

• All branches/jumps require indirection
• Original: isPrime: mov %edi, %ecx # %ecx = %edi (a)

mov $2, %esi # i = 2
cmp %ecx, %esi # is i >= a?
jge prime # jump if yes
...

• Translated: isPrime’: mov %edi, %ecx # IDENT
mov $2, %esi
cmp %ecx, %esi
jge [takenAddr] # JCC
jmp [fallthrAddr]

• Brackets ([. . .]) indicate continuations
- First time jumped to, target untranslated; translate on demand
- Then fix up continuation to branch to translated code
- Can elide [fallthrAddr] if fallthrough next translated

33 / 45

Non-identically translated code

• PC-relative branches & Direct control flow
- Just compensate for output address of translator on target
- Insignificant overhead

• Indirect control flow
- E.g., jump though register (function pointer) or ret
- Can’t assume code is “normal” (e.g., must faithfully ret even if

stack doesn’t have return address)
- Look up target address in hash table to see if already translated
- “Single-digit percentage” overhead

• Privileged instructions
- Appropriately modify VMM state
- E.g., cli=⇒ vcpu.flags.IF = 0
- Can be faster than original!

34 / 45

Adaptive binary translation

• One remaining source of overhead is tracing faults
- E.g., when modifying page table or descriptor table

• Idea: Use binary translation to speed up
- E.g., translate write of PTE into write of guest & shadow PTE
- Translate read of PTE to get accessed & dirty bits from shadow

• Problem: Which instructions to translate?
• Solution: “innocent until proven guilty” model

- Initially always translate as much code identically as possible
- Track number of tracing faults caused by an instruction
- If high number, re-translate to non-identical code
- May call out to interpreter, or just jump to new code

35 / 45

Outline

1 Confining code with legacy OSes

2 Virtual machines

3 Implementing virtual machines

4 Binary translation

5 Hardware-assisted virtualization

6 Memory management optimizations

36 / 45

Hardware-assisted virtualization

• Both Intel and AMD now have hardware support
- Different mechanisms, similar concepts
- This lecture covers AMD (see [AMD Vol 2], Ch. 15)
- For Intel details, see [Intel Vol 3c]

• VM-enabled CPUs support new guestmode
- This is separate from kernel/user modes in bits 0–1 of %cs
- Less privileged than hostmode (where VMM runs)
- Some sensitive instructions trap in guest mode (e.g., load %cr3)
- Hardware keeps shadow state for many things (e.g., %eflags)

• Enter guest mode with vmrun instruction
- Loads state from hardware-defined 1-KiB VMCB data structure

• Various events cause EXIT back to host mode
- On EXIT, hardware saves state back to VMCB

37 / 45

http://support.amd.com/TechDocs/24593.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3c-part-3-manual.pdf

VMCB control bits

• Intercept vector specifies what ops should cause EXIT
- One bit for each of %cr0–%cr15 to say trap on read
- One bit for each of %cr0–%cr15 to say trap on write
- 32 analogous bits for the debug registers (%dr0–%dr15)
- 32 bits for whether to intercept exception vectors 0–31
- Bits for various other events (e.g., NMI, SMI, ...)
- Bit to intercept writes to sensitive bits of %cr0
- 8 bits to intercept reads and writes of IDTR, GDTR, LDTR, TR
- Bits to intercept rdtsc, rdpmc, pushf, popf, vmrun, hlt, invlpg, int,
iret, in/out (to selected ports), . . .

• EXIT code and reason (e.g., which inst. caused EXIT)
• Other control values

- Pending virtual interrupt, event/exception injection

38 / 45

Guest state saved in VMCB

• Saved guest state
- Full segment registers (i.e., base, lim, attr, not just selectors)
- Full GDTR, LDTR, IDTR, TR
- Guest %cr3, %cr2, and other cr/dr registers
- Guest %eip and %eflags (%rip & %rflags for 64-bit processors)
- Guest %rax register

• Entering/exiting VMM more expensive than syscall
- Have to save and restore large VM-state structure

39 / 45

Hardware vs. Software virtualization

• HW VM makes implementing VMM much easier
- Avoids implementing binary translation (BT)

• Hardware VM is better at entering/exiting kernel
- E.g., Apache on Windows benchmark: one address space, lots of

syscalls, hardware VM does better [Adams]
- Apache on Linux w. many address spaces: lots of context switches,

tracing faults, etc., Software faster [Adams]
• Fork with copy-on-write bad for both HW & BT

- [Adams] reports fork benchmark where BT-based virtualization
37× and HW-based 106× slower than native!

• Today, CPUs support nested paging (a.k.a. EPT on intel)
- Eliminates shadow PT & tracing faults, simplifies VMM
- Guests can now manipulate %cr3 w/o VM EXIT
- But dramatically increases cost of TLB misses

40 / 45

https://www.scs.stanford.edu/22wi-cs212/sched/readings/virtualization-techniques.pdf
https://www.scs.stanford.edu/22wi-cs212/sched/readings/virtualization-techniques.pdf
https://www.scs.stanford.edu/22wi-cs212/sched/readings/virtualization-techniques.pdf

Outline

1 Confining code with legacy OSes

2 Virtual machines

3 Implementing virtual machines

4 Binary translation

5 Hardware-assisted virtualization

6 Memory management optimizations

41 / 45

ESX memory management [Waldspurger]

• Virtual machines see virtualized physical memory
- Can let VMs use more “physical” memory than in machine

• How to apportion memory between machines?
• VMware ESX has three parameters per VM:

- min – Don’t bother running w/o this much machine memory
- max – Amount of guest physical memory VM OS thinks exists
- share – How much memory to give VM relative to other VMs

• Straw man: Allocate based on share, use LRU paging
- OS already uses LRU =⇒ double paging
- OS will re-cycle whatever “physical” page VMM just paged out
- So better to do random eviction

• Next: 3 cool memory management tricks

42 / 45

https://www.scs.stanford.edu/22wi-cs212/sched/readings/esx.pdf

Reclaiming pages

• Normally OS just uses all available memory
- But some memory much more important than other memory
- E.g., buffer cache may contain old, clean buffers; OS won’t discard

if doesn’t need memory. . . but VMM may need memory

• Idea: Have guest OS return memory to VMM
- Then VMM doesn’t have to page memory to disk

• ESX trick: Balloon driver
- Special pseudo-device driver in supported guest OS kernels
- Communicates with VMM through special interface
- When VMM needs memory, allocates many pages in guest OS
- Balloon driver tells VMM to re-cycle its private pages

43 / 45

Sharing pages across VMs

• Often run many VMs with same OS, programs
- Will result in many host physical pages containing same data

• Idea: Use 1 host physical page for all copies of guest physical
page (in any virtual machine)

• Keep big hash table mapping: Hash(contents)→info
- If host physical page mapped once, info is VM/PPN where mapped.

In that case, Hash is only a hint, as page may have changed
- If machine page mapped copy-on-write as multiple physical pages,

info is just reference count

• Scan OS pages randomly to populate hash table
• Always try sharing a page before paging it out

44 / 45

Idle memory tax

• Need machine page? What VM to take it from?
• Normal proportional share scheme

- Reclaim from VM with lowest “shares-to-pages” (S/P) ratio
- If A & B both have S = 1, reclaim from larger VM
- If A has twice B’s share, can use twice the machine memory

• High-priority VMs might get more memory than needed
• Solution: Idle-memory tax

- Tax idle memory at 0 ≤ τ ≤ 1 so “cost” of idle page is k = 1/(1 − τ)

- Use statistical sampling to determine a VM’s % idle memory
(randomly invalidate pages & count the number faulted back)

- Instead of S/P, reclaim from VM with lowest S/ (P(f + k(1 − f))).
f = fraction of non-idle pages; k = “idle page cost” paremeter.

- Be conservative & overestimate f to respect priorities
(f is max of slow, fast, and recent memory usage samples)

45 / 45

	Confining code with legacy OSes
	Virtual machines
	Implementing virtual machines
	Binary translation
	Hardware-assisted virtualization
	Memory management optimizations

