
Administrivia

• Lab 1 due Friday 10am (5pm if you attend section)
• We give will give short extensions to groups that run into

trouble. But email us:
- How much is done and left?
- How much longer do you need?

• Attend section Friday at 10am to learn about lab 2

1 / 37



Virtual memory

• Came out of work in late 1960s
by Peter Denning (lower right)

- Established working set model
- Led directly to virtual memory

2 / 37

http://denninginstitute.com/pjd/PUBS/Workingsets.html


Want processes to co-exist

OS
0x9000

0x7000
gcc

0x4000
bochs/pintos

0x3000
emacs

0x0000

• Consider multiprogramming on physical memory
- What happens if pintos needs to expand?
- If emacs needs more memory than is on the machine?
- If pintos has an error and writes to address 0x7100?
- When does gcc have to know it will run at 0x4000?
- What if emacs isn’t using its memory?

3 / 37



Issues in sharing physical memory

• Protection
- A bug in one process can corrupt memory in another
- Must somehow prevent process A from trashing B’s memory
- Also prevent A from even observing B’s memory (ssh-agent)

• Transparency
- A process shouldn’t require particular physical memory bits
- Yet processes often require large amounts of contiguous memory

(for stack, large data structures, etc.)

• Resource exhaustion
- Programmers typically assume machine has “enough” memory
- Sum of sizes of all processes often greater than physical memory

4 / 37



Virtual memory goals

...
load

...

kernel

MMU memory

Is address
legal?

virtual address
0x30408

Yes: phys.
addr 0x92408

No: to fault handler

• Give each program its own virtual address space
- At runtime, Memory-Management Unit relocates each load/store
- Application doesn’t see physical memory addresses

• Also enforce protection
- Prevent one app from messing with another’s memory

• And allow programs to see more memory than exists
- Somehow relocate some memory accesses to disk

5 / 37



Virtual memory goals

...
load

...

kernel

MMU memory

Is address
legal?

virtual address
0x30408

Yes: phys.
addr 0x92408

No: to fault handler

• Give each program its own virtual address space
- At runtime, Memory-Management Unit relocates each load/store
- Application doesn’t see physical memory addresses

• Also enforce protection
- Prevent one app from messing with another’s memory

• And allow programs to see more memory than exists
- Somehow relocate some memory accesses to disk

5 / 37



Virtual memory advantages

• Can re-locate program while running
- Run partially in memory, partially on disk

• Most of a process’s memory may be idle (80/20 rule).

kernel

idle

gcc

kernel

idle

emacs

physical
memory

- Write idle parts to disk until needed
- Let other processes use memory of idle part
- Like CPU virtualization: when process not using CPU, switch

(Not using a memory region? switch it to another process)
• Challenge: VM = extra layer, could be slow

6 / 37



Idea 1: load-time linking

...
call 0x2200

...

static a.out
...

call 0x5200
...

kernel

0x3000

0x1000

0x6000

0x4000

• Linker patches addresses of symbols like printf
• Idea: link when process executed, not at compile time

- Determine where process will reside in memory
- Adjust all references within program (using addition)

• Problems?

- How to enforce protection?
- How to move once already in memory? (consider data pointers)
- What if no contiguous free region fits program?

7 / 37



Idea 1: load-time linking

...
call 0x2200

...

static a.out
...

call 0x5200
...

kernel

0x3000

0x1000

0x6000

0x4000

• Linker patches addresses of symbols like printf
• Idea: link when process executed, not at compile time

- Determine where process will reside in memory
- Adjust all references within program (using addition)

• Problems?
- How to enforce protection?
- How to move once already in memory? (consider data pointers)
- What if no contiguous free region fits program?

7 / 37



Idea 2: base + bound register

...
call 0x2200

...

static a.out
...

call 0x2200
...

kernel

0x3000

0x1000

0x6000

0x4000

• Two special privileged registers: base and bound
• On each load/store/jump:

- Physical address = virtual address + base
- Check 0 ≤ virtual address < bound, else trap to kernel

• How to move process in memory?

- Change base register

• What happens on context switch?

- OS must re-load base and bound register

8 / 37



Idea 2: base + bound register

...
call 0x2200

...

static a.out
...

call 0x2200
...

kernel

0x3000

0x1000

0x6000

0x4000

• Two special privileged registers: base and bound
• On each load/store/jump:

- Physical address = virtual address + base
- Check 0 ≤ virtual address < bound, else trap to kernel

• How to move process in memory?
- Change base register

• What happens on context switch?

- OS must re-load base and bound register

8 / 37



Idea 2: base + bound register

...
call 0x2200

...

static a.out
...

call 0x2200
...

kernel

0x3000

0x1000

0x6000

0x4000

• Two special privileged registers: base and bound
• On each load/store/jump:

- Physical address = virtual address + base
- Check 0 ≤ virtual address < bound, else trap to kernel

• How to move process in memory?
- Change base register

• What happens on context switch?
- OS must re-load base and bound register

8 / 37



Definitions

• Programs load/store to virtual addresses
• Actual memory uses physical addresses
• VM Hardware is Memory Management Unit (MMU)

CPU MMU memory
virtual

addresses
physical

addresses

- Usually part of CPU
- Configured through privileged instructions (e.g., load bound reg)
- Translates from virtual to physical addresses
- Gives per-process view of memory called address space

9 / 37



Definitions

• Programs load/store to virtual addresses
• Actual memory uses physical addresses
• VM Hardware is Memory Management Unit (MMU)

CPU MMU memory
virtual

addresses
physical

addresses

- Usually part of CPU
- Configured through privileged instructions (e.g., load bound reg)
- Translates from virtual to physical addresses
- Gives per-process view of memory called address space

9 / 37



Base+bound trade-offs

• Advantages
- Cheap in terms of hardware: only two registers
- Cheap in terms of cycles: do add and compare in parallel
- Examples: Cray-1 used this scheme

• Disadvantages

- Growing a process is expensive or impossible
- No way to share code or data (E.g., two

copies of bochs, both running pintos)

• One solution: Multiple segments
- E.g., separate code, stack, data segments
- Possibly multiple data segments

free space

pintos2

gcc

pintos1

10 / 37



Base+bound trade-offs

• Advantages
- Cheap in terms of hardware: only two registers
- Cheap in terms of cycles: do add and compare in parallel
- Examples: Cray-1 used this scheme

• Disadvantages
- Growing a process is expensive or impossible
- No way to share code or data (E.g., two

copies of bochs, both running pintos)

• One solution: Multiple segments
- E.g., separate code, stack, data segments
- Possibly multiple data segments

free space

pintos2

gcc

pintos1

10 / 37



Segmentation

text r/o

gcc

data

stack

physical
memory

• Let processes have many base/bound regs
- Address space built from many segments
- Can share/protect memory at segment granularity

• Must specify segment as part of virtual address

11 / 37



Segmentation mechanics

• Each process has a segment table
• Each VA indicates a segment and offset:

- Top bits of addr select segment, low bits select offset (PDP-10)
- Or segment selected by instruction or operand (means you need

wider “far” pointers to specify segment)
12 / 37



Segmentation example

0x4000

0x3000

0x2000

0x1500

0x1000
0x0700

0x0000

virtual physical

0x4700

0x3000

0x500

0x0000

0x4000

• 2-bit segment number (1st digit), 12 bit offset (last 3)
- Where is 0x0240? 0x1108? 0x265c? 0x3002? 0x1600?

13 / 37



Segmentation trade-offs

• Advantages
- Multiple segments per process
- Allows sharing! (how?)
- Don’t need entire process in memory

• Disadvantages
- Requires translation hardware, which could limit performance
- Segments not completely transparent to program (e.g., default

segment faster or uses shorter instruction)
- n byte segment needs n contiguous bytes of physical memory
- Makes fragmentation a real problem.

14 / 37



Fragmentation

• Fragmentation =⇒ Inability to use free memory
• Over time:

- Variable-sized pieces = many small holes (external fragmentation)
- Fixed-sized pieces = no external holes, but force internal waste

(internal fragmentation)

15 / 37



Alternatives to hardware MMU

• Language-level protection (JavaScript)
- Single address space for different modules
- Language enforces isolation
- Singularity OS does this with C# [Hunt]

• Software fault isolation
- Instrument compiler output
- Checks before every store operation prevents modules from

trashing each other
- Google’s now deprecated Native Client does this for x86 [Yee]
- Easier to do for virtual architecture, e.g., Wasm

16 / 37

http://research.microsoft.com/pubs/52716/tr-2005-135.pdf
https://developer.chrome.com/native-client
http://research.google.com/pubs/archive/34913.pdf
https://webassembly.org/


Paging

• Divide memory up into small, equal-size pages
• Map virtual pages to physical pages

- Each process has separate mapping

• Allow OS to gain control on certain operations
- Read-only pages trap to OS on write
- Invalid pages trap to OS on read or write
- OS can change mapping and resume application

• Other features sometimes found:
- Hardware can set “accessed” and “dirty” bits
- Control page execute permission separately from read/write
- Control caching or memory consistency of page

17 / 37



Paging trade-offs

• Eliminates external fragmentation
• Simplifies allocation, free, and backing storage (swap)
• Average internal fragmentation of .5 pages per “segment”

18 / 37



Simplified allocation

gcc emacs

Disk

physical
memory

• Allocate any physical page to any process
• Can store idle virtual pages on disk

19 / 37



Paging data structures
• Pages are fixed size, e.g., 4 KiB

- Least significant 12 (log2 4 Ki) bits of address are page offset
- Most significant bits are page number

• Each process has a page table
- Maps virtual page numbers (VPNs) to physical page numbers (PPNs)
- Also includes bits for protection, validity, etc.

• On memory access: Translate VPN to PPN,
then add offset

20 / 37



Example: Paging on PDP-11

• 64 KiB virtual memory, 8 KiB pages
- Separate address space for instructions & data
- I.e., can’t read your own instructions with a load

• Entire page table stored in registers
- 8 Instruction page translation registers
- 8 Data page translations

• Swap 16 machine registers on each context switch

21 / 37



x86 Paging

• Paging enabled by bits in a control register (%cr0)
- Only privileged OS code can manipulate control registers

• Normally 4 KiB pages
• %cr3: points to physical address of 4 KiB page directory

- See pagedir_activate in Pintos
• Page directory: 1024 PDEs (page directory entries)

- Each contains physical address of a page table
• Page table: 1024 PTEs (page table entries)

- Each contains physical address of virtual 4K page
- Page table covers 4 MiB of Virtual mem

• See old intel manual for simplest explanation
- Also volume 2 of AMD64 Architecture docs
- Also volume 3A of latest intel 64 architecture manual

22 / 37

https://www.scs.stanford.edu/22wi-cs212/pintos/pintos_3.html#SEC37
http://www.scs.stanford.edu/05au-cs240c/lab/i386/s05_02.htm
https://developer.amd.com/resources/developer-guides-manuals/
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html


x86 page translation

Page Directory

Directory Entry

CR3 (PDBR)

Page Table

Page−Table Entry

4−KByte Page

Physical Address

32*

10

12

10

20

0

irectory e f s

31 21 111222

Linear Address

D Tabl O f et

*32 bits aligned onto a 4−KByte boundary

1024 PDE × 1024 PTE = 220 Pages

23 / 37



x86 page directory entry

3 1

A v a ila b le fo r s y s te m p ro g ra m m e r ’s u s e

G lo b a l p a g e (Ig n o re d )

P a g e s iz e (0 in d ic a te s 4 K B y te s )

R e s e rv e d (s e t to 0 )

1 2 11 9 8 7 6 5 4 3 2 1 0

P
S

P
CA0

A c c e s s e d

C a c h e d is a b le d

W rite −th ro u g h

U s e r/S u p e rv is o r

R e a d /W rite

P re s e n t

D
P

P
W
T

U
/

S

R
/

W
GA v a ilP a g e −Ta b le B a s e A d d re ss

P a g e −D i r e c t o r y E n t r y (4 −K B y t e P a g e Ta b l e )

24 / 37



x86 page table entry

31

Available for system programmer’s use

Global Page

Page Table Attribute Index

Dirty

12 11 9 8 7 6 5 4 3 2 1 0

P
CAD

Accessed

Cache Disabled

Write−Through

User/Supervisor

Read/Write

Present

D
P

P
W
T

U
/
S

R
/

W
AvailPage Base Address

Page−Table En ry (4−KByte Page)

P
A
T

G

t

25 / 37



x86 hardware segmentation

• x86 architecture also supports segmentation
- Segment register base + pointer val = linear address
- Page translation happens on linear addresses

• Two levels of protection and translation check
- Segmentation model has four privilege levels (CPL 0–3)
- Paging only two, so 0–2 = kernel, 3 = user

• Why do you want both paging and segmentation?

• Short answer: You don’t – just adds overhead
- Most OSes use “flat mode” – set base = 0, bounds = 0xffffffff

in all segment registers, then forget about it
- x86-64 architecture removes much segmentation support

• Long answer: Has some fringe/incidental uses
- Keep pointer to thread-local storage w/o wasting normal register
- 32-bit VMware runs guest OS in CPL 1 to trap stack faults
- OpenBSD used CS limit for W∧X when no PTE NX bit

26 / 37



x86 hardware segmentation

• x86 architecture also supports segmentation
- Segment register base + pointer val = linear address
- Page translation happens on linear addresses

• Two levels of protection and translation check
- Segmentation model has four privilege levels (CPL 0–3)
- Paging only two, so 0–2 = kernel, 3 = user

• Why do you want both paging and segmentation?
• Short answer: You don’t – just adds overhead

- Most OSes use “flat mode” – set base = 0, bounds = 0xffffffff
in all segment registers, then forget about it

- x86-64 architecture removes much segmentation support
• Long answer: Has some fringe/incidental uses

- Keep pointer to thread-local storage w/o wasting normal register
- 32-bit VMware runs guest OS in CPL 1 to trap stack faults
- OpenBSD used CS limit for W∧X when no PTE NX bit

26 / 37



Making paging fast

• x86 PTs require 3 memory references per load/store
- Look up page table address in page directory
- Look up physical page number (PPN) in page table
- Actually access physical page corresponding to virtual address

• For speed, CPU caches recently used translations
- Called a translation lookaside buffer or TLB
- Typical: 64-2k entries, 4-way to fully associative, 95% hit rate
- Modern CPUs add second-level TLB with ∼1,024+ entries; often

separate instruction and data TLBs
- Each TLB entry maps a VPN → PPN + protection information

• On each memory reference
- Check TLB, if entry present get physical address fast
- If not, walk page tables, insert in TLB for next time

(Must evict some entry)

27 / 37



TLB details

• TLB operates at CPU pipeline speed =⇒ small, fast
• Complication: what to do when switching address space?

- Flush TLB on context switch (e.g., old x86)
- Tag each entry with associated process’s ID (e.g., MIPS)

• In general, OS must manually keep TLB valid
- Changing page table in memory won’t affect cached TLB entry

• E.g., on x86 must use invlpg instruction
- Invalidates a page translation in TLB
- Note: very expensive instruction (100–200 cycles)
- Must execute after changing a possibly used page table entry
- Otherwise, hardware will miss page table change

• More Complex on a multiprocessor (TLB shootdown)
- Requires sending an interprocessor interrupt (IPI)
- Remote processor must execute invlpg instruction

28 / 37



x86 Paging Extensions

• PSE: Page size extensions
- Setting bit 7 in PDE makes a 4 MiB translation (no PT)

• PAE Page address extensions
- Newer 64-bit PTE format allows 36+ bits of physical address
- Page tables, directories have only 512 entries
- Use 4-entry Page-Directory-Pointer Table to regain 2 lost bits
- PDE bit 7 allows 2 MiB translation

• Long mode PAE (x86-64)
- In Long mode, pointers are 64-bits
- Extends PAE to map 48 bits of virtual address (next slide)
- Why are aren’t all 64 bits of VA usable?

29 / 37



x86 long mode paging

Sign Extend Level−4 offset

Page−Map

(PML4)

Virtual Address

Pointer Offset

Page Directory−

Offset

Page Directory Page−Table

Offset

Physical−

Page Offset

Table Table Table Table

Page
Page−

DirectoryPointer
Directory

Page−
Page−Map

Level−4

4−Kbyte

Physical

Page

01112202129303839474863

Physical

Address

PTE

PDE

PDPE

PML4E

9999

52

52

52

52

1251

CR3Page−Map L4 Base Addr

12

30 / 37



Where does the OS live?

• In its own address space?
- Can’t do this on most hardware (e.g., syscall instruction won’t

switch address spaces)
- Also would make it harder to parse syscall arguments passed as

pointers
• So in the same address space as process

- Use protection bits to prohibit user code from writing kernel
• Typically all kernel text, most data at same VA in every address

space
- On x86, must manually set up page tables for this
- Usually just map kernel in contiguous virtual memory when boot

loader puts kernel into contiguous physical memory
- Some hardware puts physical memory (kernel-only) somewhere in

virtual address space
- Typically kernel goes in high memory; with signed numbers, can

mean small negative addresses (small linker relocations)
31 / 37



Pintos memory layout

Data segment

Kernel/

User stack

Pseudo-physical memory
0xffffffff

0x00000000

0x08048000

(PHYS_BASE)
0xc0000000

BSS / Heap

Code segment

Invalid virtual addresses

32 / 37

https://www.scs.stanford.edu/22wi-cs212/pintos/pintos_3.html#SEC38


Very different MMU: MIPS

• Hardware checks TLB on application load/store
- References to addresses not in TLB trap to kernel

• Each TLB entry has the following fields:
Virtual page, Pid, Page frame, NC, D, V, Global

• Kernel itself unpaged
- All of physical memory contiguously mapped in high VM

(hardwired in CPU, not just by convention as with Pintos)
- Kernel uses these pseudo-physical addresses

• User TLB fault hander very efficient
- Two hardware registers reserved for it
- utlb miss handler can itself fault—allow paged page tables

• OS is free to choose page table format!

33 / 37



DEC Alpha MMU

• Firmware managed TLB
- Like MIPS, TLB misses handled by software
- Unlike MIPS, TLB miss routines ship with machine in ROM

(but copied to main memory on boot—so can be overwritten)
- Firmware known as “PAL code” (privileged architecture library)

• Hardware capabilities
- 8 KiB, 64 KiB, 512 KiB, 4 MiB pages all available
- TLB supports 128 instruction/128 data entries of any size

• Various other events vector directly to PAL code
- call_pal instruction, TLB miss/fault, FP disabled

• PAL code runs in special privileged processor mode
- Interrupts always disabled
- Have access to special instructions and registers

34 / 37



PAL code interface details

• Examples of Digital Unix PALcode entry functions
- callsys/retsys - make, return from system call
- swpctx - change address spaces
- wrvptptr - write virtual page table pointer
- tbi - TBL invalidate

• Some fields in PALcode page table entries
- GH - 2-bit granularity hint → 2N pages have same translation
- ASM - address space match → mapping applies in all processes

35 / 37



Example: Paging to disk

• gcc needs a new page of memory
• OS re-claims an idle page from emacs

• If page is clean (i.e., also stored on disk):
- E.g., page of text from emacs binary on disk
- Can always re-read same page from binary
- So okay to discard contents now & give page to gcc

• If page is dirty (meaning memory is only copy)
- Must write page to disk first before giving to gcc

• Either way:
- Mark page invalid in emacs
- emacs will fault on next access to virtual page
- On fault, OS reads page data back from disk into new page, maps

new page into emacs, resumes executing

36 / 37



Paging in day-to-day use

• Demand paging
• Growing the stack
• BSS page allocation
• Shared text
• Shared libraries
• Shared memory
• Copy-on-write (fork, mmap, etc.)
• Q: Which pages should have global bit set on x86?

37 / 37


