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* Use disk to simulate larger virtual than physical mem
2/47



Working set model

# of accesses

virtual address
¢ Disk much, much slower than memory
- Goal: run at memory speed, not disk speed

* 80/20 rule: 20% of memory gets 80% of memory accesses

- Keep the hot 20% in memory
- Keep the cold 80% on disk
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Paging challenges

* How to resume a process after a fault?

- Need to save state and resume
- Process may have been in the middle of an instruction!

* What to fetch from disk?
- Just needed page or more?

* What to eject?

- How to allocate physical pages amongst processes?
- Which of a particular process’s pages to keep in memory?
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Re-starting instructions

Hardware must allow resuming after a fault
Hardware provides kernel with information about page fault

- Faulting virtual address (In %cr2 reg on x86—may see it if you
modify Pintos page_fault and use fault_addr)

- Address of instruction that caused fault

- Was the access a read or write? Was it an instruction fetch?
Was it caused by user access to kernel-only memory?

Observation: Idempotent instructions are easy to restart

- E.g., simple load or store instruction can be restarted
- Just re-execute any instruction that only accesses one address

Complex instructions must be re-started, too
- E.g., x86 move string instructions
- Specify src, dst, countin %esi, %edi, %ecx registers
- On fault, registers adjusted to resume where move left off
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* Bringin page that caused page fault

* Pre-fetch surrounding pages?

- Reading two disk blocks approximately as fast as reading one

- Aslong as no track/head switch, seek time dominates

- If application exhibits spacial locality, then big win to store and
read multiple contiguous pages

* Also pre-zero unused pages in idle loop

- Need 0-filled pages for stack, heap, anonymously mmapped
memory

- Zeroing them only on demand is slower

- Hence, many OSes zero freed pages while CPU is idle
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Selecting physical pages

* May need to eject some pages
- More on eviction policy in two slides

* May also have a choice of physical pages

* Direct-mapped physical caches
- Virtual — Physical mapping can affect performance

- In old days: Physical address A conflicts with kC + A
(where k is any integer, C is cache size)

- Applications can conflict with each other or themselves

- Scientific applications benefit if consecutive virtual pages do not
conflict in the cache

- Many other applications do better with random mapping
» Set associative caches (more common)
- Multiple (e.g., 2-4) possible slots for each physical address
- Historically n-way associative cache chooses line by A mod (C/n)
- These days: CPUs use more sophisticated mapping [Hund]
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https://www.scs.stanford.edu/22wi-cs212/sched/readings/hund.pdf

Superpages

* How should OS make use of “large” mappings
- x86 has 2/4MiB pages that might be useful
- Alpha has even more choices: 8KiB, 64KiB, 512KiB, 4MiB
* Sometimes more pages in L2 cache than TLB entries
- Don’t want costly TLB misses going to main memory
- Try cpuid tool to find CPU’s TLB configuration on linux...
then compare to cache size reported by Iscpu
* Or have two-level TLBs
- Want to maximize hit rate in faster L1 TLB

* OS can transparently support superpages [Navarro]
- “Reserve” appropriate physical pages if possible
- Promote contiguous pages to superpages
- Does complicate evicting (esp. dirty pages) - demote
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http://www.etallen.com/cpuid.html
https://linux.die.net/man/1/lscpu
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Straw man: FIFO eviction

* Evict oldest fetched page in system
* Example—reference string 1,2, 3,4,1,2,5,1,2,3,4,5
» 3 physical pages: 9 page faults

11114 5
2 12| 1 3 9pagefaults
3132 4
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Straw man: FIFO eviction

Evict oldest fetched page in system

Example—reference string 1, 2, 3,4,1,2,5,1, 2,3,4,5

3 physical pages: 9 page faults

4 physical pages: 10 page faults

11115 4
2 71 5 10 page faults
3032
4043
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Belady’s Anomaly
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10 <

number of page faults
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* More physical memory doesn’t always mean fewer faults
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Optimal page replacement

¢ What is optimal (if you knew the future)?
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Optimal page replacement

* What is optimal (if you knew the future)?
- Replace page that will not be used for longest period of time

* Example—reference string 1,2, 3,4,1,2,5,1,2,3,4,5
* With 4 physical pages:

114

6 page faults

2
3
415

* What do we do when an OS can’t predict the future?
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LRU page replacement

* Approximate optimal with least recently used
- Because past often predicts the future

Example—reference string 1, 2,3,4,1,2,5,1,2,3,4,5
With 4 physical pages: 8 page faults

115

2

3|5 4
413

Problem 1: Can be pessimal - example?

Problem 2: How to implement?
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LRU page replacement

* Approximate optimal with least recently used
- Because past often predicts the future

Example—reference string 1, 2,3,4,1,2,5,1,2,3,4,5
With 4 physical pages: 8 page faults

115

2

3|5 4
413

Problem 1: Can be pessimal - example?
- Looping over memory (then want MRU eviction)

Problem 2: How to implement?
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Straw man LRU implementations

e Stamp PTEs with timer value
- E.g., CPU has cycle counter
- Automatically writes value to PTE on each page access
- Scan page table to find oldest counter value = LRU page
- Problem: Would double memory traffic!
* Keep doubly-linked list of pages
- On access remove page, place at tail of list
- Problem: again, very expensive
* What to do?
- Just approximate LRU, don’t try to do it exactly
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Clock algorithm

* Use accessed bit supported by most hardware

- E.g.,x86 will write 1 to A bitin PTE on first access
- Software managed TLBs like MIPS can do the same

Do FIFO but skip accessed pages A
Keep pages in circular FIFO list A=1" "A=1

e Scan: A=0 A=0

- page’sAbit=1, set to 0 & ski \
Pag P A=0 A=0

- elseif A=0, evict

A.k.a. second-chance replacement 4= 1 A=1

A=1 A=0
A
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Clock algorithm (continued)

A=0
= A =
e Large memory may be a problem f 0
- Most pages referenced in long interval A= 1\/ A=1
* Add a second clock hand A—0 A—0

- Two hands move in lockstep
- Leading hand clears A bits A=1 A=1
- Trailing hand evicts pages with A=0 A1 A=0
A=0
* Can also take advantage of hardware Dirty bit

- Each page can be (Unaccessed, Clean), (Unaccessed, Dirty),
(Accessed, Clean), or (Accessed, Dirty)

- Consider clean pages for eviction before dirty
* Or use n-bit accessed count instead just A bit
- On sweep: count = (A << (n — 1)) | (count >> 1)

- Evict page with lowest count
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Other replacement algorithms

°* Random eviction

- Dirt simple to implement

- Not overly horrible (avoids Belady & pathological cases)
* LFU (least frequently used) eviction

- Instead of just A bit, count # times each page accessed

- Least frequently accessed must not be very useful
(or maybe was just brought in and is about to be used)

- Decay usage counts over time (for pages that fall out of usage)

* MFU (most frequently used) algorithm

- Because page with the smallest count was probably just brought in
and has yet to be used

* Neither LFU nor MFU used very commonly
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frame  valid—invalid bit A
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* Naive page replacement: 2 disk 1/Os per page fault
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Page buffering

¢ ldea: reduce # of I/Os on the critical path

* Keep pool of free page frames

On fault, still select victim page to evict

But read fetched page into already free page

Can resume execution while writing out victim page
Then add victim page to free pool

» Can also yank pages back from free pool

- Contains only clean pages, but may still have data
- If page fault on page still in free pool, recycle
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Page allocation

* Allocation can be global or local

* Global allocation doesn’t consider page ownership

- E.g., with LRU, evict least recently used page of any proc
- Works well if P; needs 20% of memory and P, needs 70%:

[P | P2 |

- Doesn’t protect you from memory pigs
(imagine P, keeps looping through array that is size of mem)
* Local allocation isolates processes (or users)

- Separately determine how much memory each process should
have

- Then use LRU/clock/etc. to determine which pages to evict within
each process
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* Processes require more memory than system has
- Each time one page is brought in, another page, whose contents
will soon be referenced, is thrown out

- Processes will spend all of their time blocked, waiting for pages to
be fetched from disk

- Disk at 100% utilization, but system not getting much useful work
done

* What we wanted: virtual memory the size of disk with access
time the speed of physical memory

* What we got: memory with access time of disk
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Reasons for thrashing

* Access pattern has no temporal locality (past +# future)

WNM“MWM““M“““W“MMMWL (80/20 rule has broken down)

* Hot memory does not fit in physical memory

P:

memory

* Each process fits individually, but too many for system

L R L BN

memory

- At least this case is possible to address
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Multiprogramming & Thrashing

I -

I thrashing

CPU utilization

degree of multiprogramming

* Must shed load when thrashing
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Dealing with thrashing

* Approach 1: working set
- Thrashing viewed from a caching perspective: given locality of
reference, how big a cache does the process need?

- Or: how much memory does the process need in order to make
reasonable progress (its working set)?

- Only run processes whose memory requirements can be satisfied

* Approach 2: page fault frequency

- Thrashing viewed as poor ratio of fetch to work
- PFF = page faults / instructions executed

- If PFF rises above threshold, process needs more memory.
Not enough memory on the system? Swap out.

- If PFF sinks below threshold, memory can be taken away
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Working sets

Transitions

N
?

working set size

A d

time

* Working set changes across phases
- Baloons during phase transitions
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Calculating the working set

* Working set: all pages that process will access in next T time
- Can’t calculate without predicting future

* Approximate by assuming past predicts future
- So working set = pages accessed in last T time

* Keep idle time for each page

* Periodically scan all resident pages in system

- Abit set? Clear it and clear the page’s idle time
- Abit clear? Add CPU consumed since last scan to idle time
- Working set is pages with idle time < T
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Two-level scheduler

» Divide processes into active & inactive
- Active - means working set resident in memory
- Inactive - working set intentionally not loaded
* Balance set: union of all active working sets
- Must keep balance set smaller than physical memory

* Use long-term scheduler [recall from lecture 4]

- Moves procs active — inactive until balance set small enough
- Periodically allows inactive to become active
- As working set changes, must update balance set

¢ Complications

- How to chose idle time threshold 77
- How to pick processes for active set
- How to count shared memory (e.g., libc.so)
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Some complications of paging

* What happens to available memory?
- Some physical memory tied up by kernel VM structures

* What happens to user/kernel crossings?

- More crossings into kernel
- Pointers in syscall arguments must be checked
(can’t just kill process if page not present—might need to page in)
* What happens to IPC?

- Must change hardware address space
- Increases TLB misses

- Context switch flushes TLB entirely on old x86 machines
(But not on MIPS...Why?)
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* What happens to user/kernel crossings?
- More crossings into kernel
- Pointers in syscall arguments must be checked
(can’tjust kill process if page not present—might need to page in)
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- Must change hardware address space
- Increases TLB misses

- Context switch flushes TLB entirely on old x86 machines
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64-bit address spaces

* Recall x86-64 only has 48-bit virtual address space

* What if you want a 64-bit virtual address space?

- Straight hierarchical page tables not efficient

- But software TLBs (like MIPS) allow other possibilities
* Solution 1: Hashed page tables

- Store Virtual — Physical translations in hash table
- Table size proportional to physical memory
- Clustering makes this more efficient [Talluri]

* Solution 2: Guarded page tables [Liedtke]

- Omit intermediary tables with only one entry

- Add predicate in high level tables, stating the only virtual address
range mapped underneath + # bits to skip
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https://www.scs.stanford.edu/22wi-cs212/sched/readings/clustered.pdf
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Recall typical virtual address space

«——— breakpoint

read-only data

code (text)

¢ Dynamically allocated memory goes in heap

* Top of heap called breakpoint
- Addresses between breakpoint and stack all invalid
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Early VM system calls

0S keeps “Breakpoint” - top of heap
- Memory regions between breakpoint & stack fault on access

char *brk (const char *addr);
- Set and return new value of breakpoint
® char *sbrk (int incr);

- Increment value of the breakpoint & return old value

Can implement malloc in terms of sbrk
- But hard to “give back” physical memory to system
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Memory mapped files

mmapped
regions

read-only data

code (text)

* Other memory objects between heap and stack
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mmap System call

® void *mmap (void *addr, size_t len, int prot,
int flags, int fd, off_t offset)

- Map file specified by fd at virtual address addr

- If addr is NULL, let kernel choose the address
* prot - protection of region

- OR of PROT_EXEC, PROT_READ, PROT_WRITE, PROT_NONE
¢ flags

- MAP_ANON - anonymous memory (£d should be -1)

- MAP_PRIVATE — modifications are private
- MAP_SHARED - modifications seen by everyone
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More VM system calls

® int msync(void *addr, size_t len, int flags);

- Flush changes of mmapped file to backing store

¢ int munmap(void *addr, size_t len)

- Removes memory-mapped object

¢ int mprotect(void *addr, size_t len, int prot)

- Changes protection on pages to bitwise or of some PROT_...values

® int mincore(void *addr, size_t len, char *vec)

- Returns in vec which pages present
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Exposing page faults

struct sigaction {
union { /* signal handler */

void (*sa_handler) (int);

void (*sa_sigaction) (int, siginfo_t *, void *);
};
sigset_t sa_mask; /* signal mask to apply */
int sa_flags;

s

int sigaction (int sig, const struct sigaction *act,
struct sigaction *oact)

¢ Can specify function to run on SIGSEGV
(Unix signal raised on invalid memory access)

38/47



Example: OpenBSD/i386 siginfo

struct sigcontext {
int sc_gs; int sc_fs; int sc_es; int sc_ds;
int sc_edi; int sc_esi; int sc_ebp; int sc_ebx;
int sc_edx; int sc_ecx; int sc_eax;

int sc_eip; int sc_cs; /* instruction pointer */
int sc_eflags; /* condition codes, etc. */
int sc_esp; int sc_ss; /* stack pointer */

int sc_onstack; /* sigstack state to restore */
int sc_mask; /* signal mask to restore */

int sc_trapno;
int sc_err;

};

* Linux uses ucontext_t - same idea, just uses nested structures
that won’t all fit on one slide
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VM tricks at user level

e Combination of mprotect/sigaction very powerful

- Canuse OS VM tricks in user-level programs [Appel]

- E.g., fault, unprotect page, return from signal handler
* Technique used in object-oriented databases

- Bringin objects on demand

- Keep track of which objects may be dirty

- Manage memory as a cache for much larger object DB
¢ Other interesting applications

- Useful for some garbage collection algorithms
- Snapshot processes (copy on write)
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4.4 BSD VM system [McKusick]!

* Each process has a vmspace structure containing

- vm_map - machine-independent virtual address space
- vm_pmap - machine-dependent data structures
- statistics - e.g., for syscalls like getrusage ()

e vm_map is a linked list of vym_map_entry structs
- vm_map_entry covers contiguous virtual memory
- points to vm_object struct

e vm_object is source of data

- e.g.vnode object for memory mapped file
- points to list of vm_page structs (one per mapped page)
- shadow objects point to other objects for copy on write

tUse link on searchworks page for access

42/47


https://learning.oreilly.com/library/view/the-design-and/9780768685275/chapter05.html
https://searchworks.stanford.edu/view/3161318

vmspace

shadow

_>|vm_map_em‘ry|_> object -
vnode/
| vim_page object
Em_map_ent >
Y shadow vnode/ vm_page
|;m_map_e?y'_> object - object
Y vm_page
m_map_enta »| vnode/
object
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Pmap (machine-dependent) layer

Pmap layer holds architecture-specific VM code

VM layer invokes pmap layer
- On page faults to install mappings
- To protect or unmap pages
- To ask for dirty/accessed bits

Pmap layer is lazy and can discard mappings

- No need to notify VM layer
- Process will fault and VM layer must reinstall mapping

Pmap handles restrictions imposed by cache
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Example uses

* vm_map_entry structs for a process
- rf/o text segment — file object
- r/w data segment — shadow object — file object
- r/w stack — anonymous object

* New vm_map_entry objects after a fork:

- Share text segment directly (read-only)

- Share data through two new shadow objects
(must share pre-fork but not post-fork changes)

- Share stack through two new shadow objects

e Must discard/collapse superfluous shadows
- E.g., when child process exits
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What happens on a fault?

Traverse vm_map_entry list to get appropriate entry
- No entry? Protection violation? Send process a SIGSEGV

Traverse list of [shadow] objects

For each object, traverse vm_page structs

Found a vm_page for this object?
- Iffirst vm_object in chain, map page
- If read fault, install page read only
- Else if write fault, install copy of page

Else get page from object
- Page in from file, zero-fill new page, etc.
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Paging in day-to-day use

* Demand paging
- Read pages from vm_object of executable file

Copy-on-write (fork, mmap, etc.)
- Use shadow objects
Growing the stack, BSS page allocation

- Abit like copy-on-write for /dev/zero
- Can have a single read-only zero page for reading
- Special-case write handling with pre-zeroed pages

Shared text, shared libraries

- Share vm_object (shadow will be empty where read-only)
Shared memory

- Two processes mmap same file, have same vm_object (no shadow)
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